The lessons from property market melt-down a few years ago have been reflected on in all sorts of areas including service domain. Indeed, we've witnessed similar problems in service industry, and quite often, it is the dark side of a “bright” methodology that devours itself. Agile delivery, for example, a well adopted principle that aims to deliver customer requirement in speed has somehow resulted in duplicated software codes that become headache for software testing, maintenance and evolution. In a larger scale, the stakes and costs are higher. Driven by rapid customer orders and demanding revenue targets, service companies tend to grow into a bulky shape with duplicated service lines and redundant resources. The result is of course red in profit, sacking staffs and change of management.

How about Cloud then, a vision that brings all the computing under ultimate central control with minimal cost per unit? It may work well for some types of applications, but not others. Migrating mission-critical enterprise applications over to cloud faces barriers of platform portability, high cost of software transformation, and downgrade in service level performance that becomes final show-stopper for this type of applications. But above all, a simple question that is often ignored by cloud researchers is “would not that be much more cost effective if my applications just stay on local servers rather than cloud, even if putting security issue aside”?

Here, we see familiar struggling and collision between two ideologies as we often saw in social and political arena. On one extreme, there is totally free competition without any coordination or compromise; on the other extreme, there is absolute central control at the expense of sacrificing local efficiency. None of these extremes can sustain itself in long term; a right balance stroke between the two would provide more permanent habitant. The question is how? This is the mission of service science and systems that employs scientific methods and devises enabling systems to tackle bottlenecks in the life cycle of service, spanning across service creation, marketing, delivery and management.

This year’s workshop solicited six papers in this area that are divided into two sessions. In service engineering session, we are interested in service agility, reusability, interoperability. Hrgovcic et al proposes a model driven approach to support business and IT alignment in the service life cycle. Chao et al proposes an improved query suggestion approach for digital library based on computing semantic relationships. Kobayashi et al proposes a universal spatial model for both outdoor and indoor applications. In service management session, we look at in-life service performance to improve customer satisfaction. Chen et al opens up discussions on how cloud computing techniques and body area networks could improve health care applications. Chazalet et al proposes QoS monitoring and analysis approach for digital homes. Mohana et al proposes an expert system for ranking web services based on their quality of service.

Yang Li, British Telecom, UK
Jijiang Yang, Tsinghua University, China
Kwang-Jae Kim, Pohang University of Science & Technology, Korea
Committee

Workshop Organizers
Dr. Yang Li (Co-chair)
British Telecom, UK
yang.li at bt.com

Prof. Jijiang Yang (Co-chair)
Tsinghua University, China
yangjijiang at tsinghua.edu.cn

Prof. Kwang-Jae Kim (Co-chair)
Pohang University of Science and Technology, Korea
kjk at postech.ac.kr

Program Committee
Ezendu Ariwa, London Metropolitan University, UK
Lianne Bodenstaff, University of Twente, The Netherlands
Darek Ceglarek, University of Warwick, UK
Shu-Ching Chen, Florida International University, USA
Xiaochun Cheng, Middlesex University, UK
Tang Loon Ching, National University of Singapore, Singapore
Nam Wook Cho, Seoul National University of Technology, Korea
Shuo-Yan Chou, National Taiwan University of Science and Technology
Jen-Yao Chung, IBM Research, USA
Raymond P. Fisk, Texas State University, USA
Genady Grabarnik, IBM Research, USA
Remigijus Gustas, Karlstad University, Sweden
Sandeep Karamongikar, Infosys Technologies, India
Kwang-Jae Kim, Pohang University of Science and Technology, Korea
Yang Li, BT Research & Technology, UK
Xiaodong Liu, Napier University, UK
Zongwei Luo, Hongkong University, China
Daihwan Min, Korea University, Korea
David Mulligan, National University of Ireland (Galway), Ireland
Andy Neely, Cambridge University, UK
Christos Nikolaou, University of Crete, Greece
William Song, Durham University, UK
Daoping Wang, University of Science and Technology Beijing, China
Hongbing Wang, Southeast University, China
Jijiang Yang, Tsinghua University, China
Kongyu Yang, Beijing Information Science and Technology University, China
Kun Yang, Essex University, UK
Wan Chul Yoon, KAIST, Korea
Muhammad Younas, Oxford Brookes University, UK
Ming Yu, Tsinghua University, China
Lin Zhang, BeiHang University, China
Yong Zhang, Tsinghua University, China