As systems and networks become increasing complex, distributed, and dynamic, traditional design, development, and management techniques have become ineffective. Autonomic computing is a promising solution to the design of such systems, with autonomous entities exhibiting self-governing behavior. In autonomic systems, autonomous entities will be created that are self-aware and self-healing. In their deployment, they will be self-adapting, self-optimizing and self-configuring; and in operation they will be self-protecting, self-managing and self-composing.

This workshop will provide a forum for interactive and in-depth discussion of model-driven approaches to the architecture, design, and deployment of autonomic systems, components, and services. The focus of this workshop is on new means for realizing model-driven development and deployment of autonomic components, devices, and systems to support various aspects of self-governance. This workshop brings together researchers and practitioners to share their ideas, solutions, experiences, and lessons learned from real-world applications.

This year, we received 14 submissions, each of which was carefully reviewed by 3 PC members against the defined criteria of originality, significance, quality and relevance. 7 papers were accepted as full paper. The final program is organized into two sessions:

- **Session 1 (Models and Methods).** This session focuses on the modeling methods and techniques for developing autonomic systems. Combemale et al describe ongoing works on the modeling of management policies. Strassner et al present a context-aware policy model to support autonomic networking. Carroll et al discuss a novel approach to integrate user and service data by use of semantic integration techniques.

- **Session 2 (Architectures and Applications).** This session contains architectures and applications for autonomic systems. Solomon et al explore a model-driven approach to create the architecture of autonomic systems. Sriplakich et al present a framework for enabling dynamic adaptations of component-based systems. Caragiozidis et al describe a component-based software architecture and design methodology to enable software configuration management. Doostmohammadi introduces a performance model approach to design an autonomic web server.

We gratefully thank all the PC members for their strong support and high-quality reviews. Look forward to meeting you in Turku.

John Strassner
Sven van der Meer
Jing Zhang

Motorola Labs
Waterford Institute of Technology
May 2008