A Partitioning Approach for Object-Oriented Software Development for Parallel Processing Systems

Stephen S. Yau, Doo-Hwan Bae and Gilda Pour
Computer and Information Sciences Department
University of Florida
Gainesville, Florida 32611-2024

1 Introduction

One of the important issues in the software development for parallel processing systems is the distribution of software components or modules to the processors so that the execution of the software system can be completed with a minimum amount of time. This process can be divided into two phases: partitioning and then allocation. In partitioning phase, the software system is partitioned into a set of modules. In allocation phase, the modules are assigned to the processors. Intuitively, to exploit parallel processing power, the modules should be distributed to as many processors as possible to be executed in parallel. On the other hand, to reduce high communication overhead among processors, the modules should be distributed over as few processors as possible. The trade-off between these two conflicting criteria has been well known in parallel processing systems design. It is very difficult to increase the performance of the system in proportion to the number of processors in parallel processing systems due to communication costs between processors, contention of shared resources and inability to keep all the processors busy all the time[1]. This is one of the reasons for having a large gap between the ideal peak performance and the real performance in most parallel processing systems.

The problem of partitioning for software development for distributed and parallel processing systems has been studied extensively. Existing approaches can be classified in three categories: graph-theoretic [2,3], 0-1 integer programming [4] and heuristic [5]-[11]. Some approaches adopt more than one method. Partitioning approaches attempt to minimize the sum of communication cost among processors and exploiting potential parallelism among objects. The software system is modeled by a graph, and a bottom-up clustering technique is presented to partition the objects into a set of clusters to achieve our goal.

Object-oriented software development has a number of advantages, especially maintainability and extensibility. In object-oriented software development for parallel processing systems [12], the software system is considered as a set of objects where every object can contain shared data that may be accessed by a number of objects. If the shared data is modified, the access must be serialized. When shared data is not modified, parallel invocation of methods in the object should be allowed. The way the objects are assigned to the processors can significantly affect the overall system performance. The existing approaches are generally not suitable for object-oriented software development for parallel processing systems because they do not consider the shared data concept.

In software development for parallel processing systems [13], partitioning phase precedes coding and allocation phases. Most existing approaches cannot be applied prior to coding and allocation because they require the information on the execution time for each module and the communication time among modules to be a part of their input while this information is unlikely available prior to coding and allocation phase. In this paper, we will present a partitioning approach for object-oriented software development for parallel processing systems. The objective of our partitioning approach is to improve the overall performance of the software system by minimizing communication cost among processors while maintaining the potential parallelism among objects. Our partitioning approach can be applied as early as at the end of object design phase. We will assume that object invocations are synchronous, and assignment to the processors is static.

Abstract
Existing partitioning approaches for distributed and parallel processing systems are not suitable for partitioning in object-oriented software development for parallel processing systems mainly due to the lack of shared data concept. In this paper, a partitioning approach for object-oriented software development for parallel processing systems is presented. The objective of our partitioning approach is to improve the overall performance of a software system by minimizing communication cost among processors and exploiting potential parallelism among objects. The software system is modeled by a graph, and a bottom-up clustering technique is presented to partition the objects into a set of clusters to achieve our goal.

0730-3157/92 $3.00 © 1992 IEEE
2 Our Partitioning Approach

The behavior of objects in a software system can be identified as parallel, sequential, selective, or waiting. The input to our partitioning approach is the information available after the object design phase, and it consists of the object behavior, object invocation frequency, the upper limit on data units transferred between two objects at every invocation, and the number of replications of every object. Our partitioning approach has three stages: initialization, normalization, and clustering.

2.1 Initialization

The software system is modeled by an undirected weighted graph. The initial graph $G = (V, E)$ has a set of nodes V and a set of edges E such that:

- An object o_i is represented by a node v_i in V.
- An edge (i, j) is in E if and only if o_i and o_j can communicate with one another or both objects can be invoked concurrently by another object.
- A node v_i has a non-negative weight, denoted by r_i, with a value equal to the number of replications of object o_i.
- An edge (i, j) has an ordered set of weights (u_{ij}, v_{ij}) where u_{ij} and v_{ij} are the communication and concurrency weights for that edge, respectively.

Communication and concurrency weights are assigned according to the following five rules. A communication weight is assigned a non-negative sign to imply the communication cost resulted from assigning the objects connected by the edge to different processors. A concurrency weight is assigned a positive sign to imply the gain achieved as a result of parallel execution of the objects represented by the nodes connected by the edge to different processors.

In this discussion, f_{ij} is the frequency of invocation between o_i and o_j, and d_{ij} is the upper limit on data units transferred between o_i and o_j at every invocation.

Rule 1. $o_1 : CON(o_2, o_3, \ldots, o_n)$ describes a case where o_1 invokes o_j's for $2 \leq j \leq n$ in the sequential order o_2, o_3, \ldots, o_n. It corresponds to a subgraph $G = (V, E)$ where $V = \{i \mid 1 \leq i \leq n\}$ and $E = \{(1, j) \mid 2 \leq j \leq n\}$. In assigning communication and concurrency weights to the edges in E, there are two possible cases for $2 \leq j \leq n$:

1) If $(1, j)$ does not exist, then create $(1, j)$ with weights $u_{ij} = -(f_{ij} \times d_{ij})$ and $v_{ij} = 0$.
2) If $(1, j)$ exists, then $u_{ij} = u_{ij} - (f_{ij} \times d_{ij})$ and v_{ij} remains unchanged.

Rule 2. $o_1 : SEQ(o_2, o_3, \ldots, o_n)$ describes a case where o_1 invokes o_j's for $2 \leq j \leq n$ in the sequential order o_2, o_3, \ldots, o_n. It corresponds to a subgraph $G = (V, E)$ where $V = \{i \mid 1 \leq i \leq n\}$ and $E = \{(1, j) \mid 2 \leq j \leq n\}$. In assigning communication and concurrency weights to the edges in E, there are two possible cases for $2 \leq j \leq n$:

1) If $(1, j)$ does not exist, then create $(1, j)$ with weights $u_{ij} = -(f_{ij} \times d_{ij})$ and $v_{ij} = 0$.
2) If $(1, j)$ exists, then $u_{ij} = u_{ij} - (f_{ij} \times d_{ij})$ and v_{ij} remains unchanged.

Rule 3. $o_1 : ONE-OF(0_2, 0_3, \ldots, 0_n)$ or $o_1 : SEL(0_2, 0_3, \ldots, 0_n)$ each describes a case where o_1 invokes only one of o_j's for $2 \leq j \leq n$. SEL is used when the selection depends on the True/False status of a boolean condition, but $ONE-OF$ is used when the selection is done without checking any condition. The corresponding subgraph for either one is $G = (V, E)$ where $V = \{i \mid 1 \leq i \leq n\}$ and $E = \{(1, j) \mid 2 \leq j \leq n\}$. In assigning communication and concurrency weights to the edges in E, there are two possible cases for $2 \leq j \leq n$:

1) If $(1, j)$ does not exist, then create $(1, j)$ with weights $u_{ij} = -(f_{ij} \times d_{ij})/(n - 1)$ and $v_{ij} = 0$.
2) If $(1, j)$ exists, then $u_{ij} = u_{ij} - (f_{ij} \times d_{ij})/(n - 1)$ and v_{ij} remains unchanged.

Rule 4. $o_1 : WAIT(o_j)$ describes a case where o_j waits to be invoked by o_1. It corresponds to a subgraph $G = (V, E)$ where $V = \{i, j\}$ and $E = \{(i, j)\}$. There are two possibilities:

1) If (i, j) does not exist, then create $(1, j)$ with weights $u_{ij} = v_{ij} = 0$.1
2) If (i, j) exists, then both u_{ij} and v_{ij} remain unchanged.

Rule 5 is applied to the cases of nested clauses.

Before presenting Rule 5, we define the preservation of the edge relationship, denoted by $E-R$, between two subgraphs. Let $G_A = (V_A, E_A)$ and $G_B = (V_B, E_B)$ be two subgraphs where $V_A = \{x_1, \ldots, x_p\}$ and $V_B = \{y_1, \ldots, y_q\}$ for some $q \geq 1$ and $p \geq 1$. For every x in V_A and every y in V_B, one of the following holds: $E-R(x, y) = true$, if edge (x, y) exists. $E-R(x, y) = false$, otherwise. Then the preservation of the edge relationship $E-R$

1A nonzero communication weight will be assigned to this edge when object o_j is processed.
between the two subgraphs is defined as follows: \(E(R(G_A, G_B) = \bigwedge_{1 \leq i \leq J, 1 \leq j \leq J} E(R(i, j)) \)

Rule 5. It is applied when nested clauses are used to specify the object behavior. The steps are:

1) Modifying the object behavior by substituting every nested clauses with one dummy object.
2) For every dummy object introduced in step 1:
 2.1) Applying the appropriate rule(s) and preserving its edge relationships with other objects.
 2.2) Assigning communication and concurrency weights to edges using Rules 1-4.

2.2 Normalization

As stated earlier, the goal of our partitioning approach is to make a trade-off between two conflicting criteria of minimizing communication cost between the processors and exploiting potential parallelism among the objects. In other words, it is desirable to find an optimal point at which communication costs are reasonably reduced while the parallel execution of objects is well achieved. However, finding an optimal solution requires execution and communication time to be available which is unlikely prior to coding and allocation. Even if such information were available, the problem of clustering to be discussed in the next section is NP-hard. As a result, our approach would provide a suboptimum solution.

In order to accommodate the two conflicting partitioning subgoals, we present a normalization method so that the communication and concurrency weights associated to every edge can be combined to obtain a common metric for the two kinds of weights. Let \(u_{\text{min}} \) be the minimum communication weight and \(v_{\text{max}} \) be the maximum concurrency weight. First for every edge \((i, j)\), we replace \(w_{ij} \) with \(-u_{ij}/u_{\text{min}}\) and \(v_{ij} \) with \(v_{ij}/v_{\text{max}}\). This brings all communication weights to the range of \((-1, 0)\) and all concurrency weights to the range of \((0, 1)\). Then, we define a new edge weight \(w_{ij} \), called gain, to replace \((u_{ij}, v_{ij})\). The value of \(w_{ij} \) is taken to be \(\alpha \times u_{ij} + (1 - \alpha) \times v_{ij} \) where \(\alpha \) is in the range of \((0, 1)\). To obtain a suitable \(\alpha \), the exact figure of the parallel machine, the exact execution time and the exact communication cost are needed. Our partitioning approach is applied before coding and allocation phases where this information is unlikely to be available. Therefore, modification of \(\alpha \) is allowed in the sense that if after allocation, the results of partitioning turns out not to be satisfactory, the overall performance of the software system can be tuned by using the required information available at the end of allocation phase to find a suitable \(\alpha \) and then repeating the last two stages of our approach for the new \(\alpha \).

Next, we define the objective function \(Y \) to be sum of real-value weights of all edges in the graph.

2.3 Clustering

The main objective of this stage is to maximize the value of \(Y \) by taking a bottom-up approach to cluster the objects represented by the nodes connected by the edges with negative weight values. Note that an edge with a positive weight suggests that parallel execution of the objects represented by the nodes connected by the edge will reduce the execution time of the software system. Hence, these objects should not be in one cluster. On the other hand, an edge with a negative weight suggests that the objects represented by the nodes connected by the edge should be placed in the same cluster because execution of these objects on different processors will increase the communication cost among processors. If the weight of an edge is equal to zero, we choose not to cluster the objects represented by the nodes of that edge together because clustering of such objects does not increase the value of \(Y \). Furthermore, comparing a partition consisting of many small processes with one consisting of a few large processes, the partition with many small processes will provide the allocation phase with more flexibility for the purpose of load balance or growth potential.

The input to clustering is an undirected weighted graph \(G = (V, E) \) where \(V = V', E = E', \) and \(G = (V', E) \) is the initial graph. The difference between \(G \) and \(G' \) is that every edge \((i, j) \in E \) has a set of weights \((u_{ij}, v_{ij})\) while the same edge \(E' \) has a weight \(w_{ij} \) representing the degree of contribution to improving the overall system performance that is made by the parallel execution of the objects represented by the nodes connected by that edge.

We define function \(\text{SIZE} \) to map every node in the graph to a positive integer that is equal to the number of objects in the cluster represented by that node. The steps of clustering stage are listed below.

1. for every node \(c \) do Set \(\text{SIZE}(c) = 1 \).
2. while there is an edge with a negative weight and there is more than one node in the graph do begin
3. find edge \((a, b)\) where \(w_{ab} \) is not greater than any other edge weight in the graph.
4. group \(a \) and \(b \) to form a new cluster \(q \).
5. set \(\text{SIZE}(q) = \text{SIZE}(a) + \text{SIZE}(b) \).
6. for every node \(c \) there are four possible cases:
 C.1 if \(\text{E-R}(c, a) = \text{true} \) and \(\text{E-R}(c, b) = \text{true} \) then
 \(\text{E-R}(c, q) = \text{true} \).
 assign weight \(w_{ac} + w_{bc} \) to edge \((c, q)\).
 C.2 if \(\text{E-R}(c, a) = \text{true} \) and \(\text{E-R}(c, b) = \text{false} \) then
 \(\text{E-R}(c, q) = \text{true} \).
 assign weight \(w_{ac} \) to edge \((c, q)\).
 C.3 if \(\text{E-R}(c, a) = \text{false} \) and \(\text{E-R}(c, b) = \text{true} \) then
 \(\text{E-R}(c, q) = \text{true} \).
 assign weight \(w_{bc} \) to edge \((c, q)\).
 C.4 if \(\text{E-R}(c, a) = \text{false} \) and \(\text{E-R}(c, b) = \text{false} \) then
 \(\text{E-R}(c, q) = \text{false} \).

253
The output of clustering is an undirected weighted graph in which each node q represents a cluster of object(s) and every edge (p, q) has a positive weight representing the degree of contribution to improving the overall system performance that can be made by parallel execution of clusters p and q. Note that a larger weight of an edge implies that more gain in improving the overall performance of the software system can be obtained as a result of allocating two clusters of objects represented by the nodes connected by the edge on two different processors.

3 Time Complexity

Let m be the number of objects in the software system, n be the number of objects without considering replications of the objects, and c be the total number of edges if all objects including replicated ones were represented in the initial graph. Step 1 takes $O(n)$ time to run. Step 2 runs at most in $O(e)$ time. Step 3 has a constant running time. Step 4 runs in $O(n)$ time. In Step 5, the time complexity of else part dominates that of if-then part because else part takes $O(n)$ and if-then part takes constant time. Step 6 is simply the repetition of Step 5. The while loop will be executed at most $O(min(e, m))$ time. Hence, the entire loop runs at most in $O(min(e, m) \times max(e, n))$ time. When there is at least one replicated object in the graph, c cannot be smaller than n. The reason is that a node i in the initial graph represents object o_i which has some relationship with at least another object o_j and this relationship requires edge (i, j) to be in the initial graph. Because c cannot be smaller than n, $max(e, n)$ is always equal to e. With similar reasoning, we can show that $min(e, m)$ is equal to m. Therefore, the entire loop can be executed at most in $O(em)$ time. Step 7 can also run in $O(em)$ time. Thus, the clustering algorithm can be completed in no more than $O(em)$ time.

4 An Example

In order to illustrate our partitioning approach, we apply it to a Warehouse Management System (WMS). A brief statement of the requirements of the WMS is as follows:

The warehouse management system interacts with manufacturers and customers such as retailers. Manufacturers generate items and send them to the warehouse manager and items are stored on the warehouse racks. The warehouse manager retrieves items from warehouse-racks and sends them to the customers upon their requests. The capacity of this warehouse is fixed. Reports of transaction information are generated periodically.

The object-oriented model of WMS consists of the following objects: o_1 = report-generator, o_2 = rack, o_3 = transaction, o_4 = product-information, o_5 = customer-server, o_6 = purchaser, and o_7 = check-counter.
1) Object behavior of the system can be described as

\begin{align*}
o_1 & : CON(o_2, o_3, o_4) \\
o_5 & : SEQ(o_4) \\
o_6 & : CON[01:02]
\end{align*}

2) The frequencies of the object invocations and the upper limit on data units transferred between two objects every time one invokes the other (i.e. the two objects communicate) are assumed to be as follow. Those not listed are equal to zero.

\begin{align*}
f_{12} &= 1000 & d_{12} &= 100 \\
f_{13} &= 1000 & d_{13} &= 200 \\
f_{14} &= 1000 & d_{14} &= 500 \\
f_{26} &= 2000 & d_{26} &= 100 \\
f_{27} &= 1000 & d_{27} &= 200 \\
f_{36} &= 2000 & d_{36} &= 40 \\
f_{37} &= 1000 & d_{37} &= 100 \\
f_{45} &= 2000 & d_{45} &= 100 \\
\end{align*}

3) Let \(r_i \) be the number of replications of \(o_i \), \(i = 1, 2, \ldots, 7 \).

\begin{align*}
r_1 &= 1 & r_2 &= 0 & r_3 &= 0 & r_4 &= 0 \\
r_5 &= 0 & r_6 &= 0 & r_7 &= 0 \\
\end{align*}

The three stages of partitioning are as follows:

1. **Initialization** Figure 1 shows the initial graph where \(o_i \) is modeled by node \(i \), and every edge \((i, j)\) in the graph has weights \((u_{ij}, v_{ij})\) where \(u_{ij} \) is the communication weight and \(v_{ij} \) is the concurrency weight associated with \((i, j)\).

2. **Normalization** Figure 2 shows the graph after \(u_{ij} \) and \(v_{ij} \) are normalized and combined into a new weight \(w_{ij} \), called gain, assuming \(\alpha \) to be 0.5.

3. **Clustering** The edge connected by nodes 1 and 3 has a minimum weight with a negative value. Hence these nodes should be clustered as shown in Figure 5.

The edge connecting node 6 and the node \((2, 7)\) has a minimum weight with a negative value which suggests that these nodes should be clustered together. As a result, \(o_2, o_6 \), and \(o_7 \) are placed in one cluster. The graph after creating this new cluster is shown in Figure 7 in which there is no edge with a negative weight. Therefore, clustering stops, and the graph in Figure 7 is the output of partitioning phase.

5 Discussion

In this paper, we have presented a partitioning approach for object-oriented software development for parallel processing systems which incorporates the shared data concept \([12]\) with synchronous access. The objective of our partitioning approach is to improve the overall performance of the software system through a trade-off of minimizing communication cost among processors and exploiting the potential parallelism among objects. The output of our partitioning approach is an undirected weighted graph in which each node represents a cluster of object(s) and every edge has a weight. A larger weight of an edge implies that parallel execution of the clusters represented by two nodes connected by the edge can improve the overall system performance to a larger extent. Hence at the allocation phase, if the number of processors available is smaller than the number of nodes in the output graph of our partitioning approach, the nodes incident
to the edges with smaller weights are the candidates for clustering.

Currently, we are extending our partitioning approach through introducing new constraint imposed by limited processor memory size into the model. We are also conducting a sensitivity analysis on the normalization parameter. The preliminary results are encouraging.

References

