The Community for Technology Leaders
2013 IEEE 5th International Conference on Cloud Computing Technology and Science (2011)
Athens, Greece
Nov. 29, 2011 to Dec. 1, 2011
ISBN: 978-0-7695-4622-3
pp: 40-47
ABSTRACT
MapReduce is a powerful platform for large-scale data processing. To achieve good performance, a MapReduce scheduler must avoid unnecessary data transmission by enhancing the data locality (placing tasks on nodes that contain their input data). This paper develops a new MapReduce scheduling technique to enhance map task's data locality. We have integrated this technique into Hadoop default FIFO scheduler and Hadoop fair scheduler. To evaluate our technique, we compare not only MapReduce scheduling algorithms with and without our technique but also with an existing data locality enhancement technique (i.e., the delay algorithm developed by Face book). Experimental results show that our technique often leads to the highest data locality rate and the lowest response time for map tasks. Furthermore, unlike the delay algorithm, it does not require an intricate parameter tuning process.
INDEX TERMS
MapReduce, Hadoop, data locality, scheduling technique
CITATION
Chen He, David Swanson, Ying Lu, "Matchmaking: A New MapReduce Scheduling Technique", 2013 IEEE 5th International Conference on Cloud Computing Technology and Science, vol. 00, no. , pp. 40-47, 2011, doi:10.1109/CloudCom.2011.16
185 ms
(Ver 3.3 (11022016))