The Community for Technology Leaders
2013 IEEE 5th International Conference on Cloud Computing Technology and Science (2010)
Indianapolis, Indiana USA
Nov. 30, 2010 to Dec. 3, 2010
ISBN: 978-0-7695-4302-4
pp: 41-48
Hadoop Distributed File System (HDFS) has been widely adopted to support Internet applications because of its reliable, scalable and low-cost storage capability. Blue Sky, one of the most popular e-Learning resource sharing systems in China, is utilizing HDFS to store massive courseware. However, due to the inefficient access mechanism of HDFS, access latency of reading files from HDFS significantly impacts the performance of processing user requests. This paper introduces a two-level correlation based file prefetching approach, taking the characteristics of HDFS into consideration, to improve performance by reducing access latency. Four placement patterns to store prefetched data are presented, with policies to achieve trade-off between performance and efficiency of HDFS prefetching. Moreover, a dynamic replica selection algorithm is investigated to improve the efficiency of HDFS prefetching. The proposed prefetching approach has been implemented in Blue Sky, and experimental results prove that correlation based file prefetching can significantly reduce access latency therefore improve performance of Hadoop-based Internet applications.
prefetching, Hadoop distributed file system, cloud storage, file correlation
Ying Li, Xiao Zhong, Qinghua Zheng, Jie Qiu, Jian Liu, Lirong Jian, Bo Dong, "Correlation Based File Prefetching Approach for Hadoop", 2013 IEEE 5th International Conference on Cloud Computing Technology and Science, vol. 00, no. , pp. 41-48, 2010, doi:10.1109/CloudCom.2010.60
104 ms
(Ver 3.3 (11022016))