The Community for Technology Leaders
2016 IEEE 9th International Conference on Cloud Computing (2016)
San Francisco, California, USA
June 27, 2016 to July 2, 2016
ISSN: 2159-6190
ISBN: 978-1-5090-2619-7
pp: 148-155
ABSTRACT
Data-driven application workflows that leverage compute capabilities and hosted services near the network edge can support latency-sensitive and critical applications in emerging areas such as Internet of Things (IoT) and smart infrastructure. However, distributed instantiation and execution of these workflows using resources across service providers and datacenters can be challenging. In this paper, we present the formulation of a decentralized workflow management approach for the autonomous instantiation and execution of dynamic data-driven workflows based on the opportunistic discovery and composition of services on-demand. Given a workflow template specification, this approach allows us to decouple workflow stages, allowing the execution of different stages to be performed by individual services, which are discovered and instantiated dynamically, and can be independently scaled as needed. These services may be geographically distributed and may be offered by different service providers using various QoS levels and cost models. The design, implementation and experimental evaluation of a decentralized workflow management framework using a live media stream application in a multi-cloud infrastructure is presented. Evaluations using a sample topology shows up to 2.5 times increase in QoS-meeting throughput when using our dynamic multi-cloud approach instead of using a fixed centralized cloud of identical capacity.
INDEX TERMS
Distributed Workflows, Multi-Cloud, Multimedia Streaming
CITATION

M. Zou, J. Diaz-Montes, K. Nagaraja, N. Radia and M. Parashar, "D3W: Towards Self-Management of Distributed Data-Driven Workflows with QoS Guarantees," 2016 IEEE 9th International Conference on Cloud Computing(CLOUD), San Francisco, California, USA, 2016, pp. 148-155.
doi:10.1109/CLOUD.2016.0029
99 ms
(Ver 3.3 (11022016))