The Community for Technology Leaders
2009 Sixth International Conference on Computer Graphics, Imaging and Visualization (2009)
Tianjin, China
Aug. 11, 2009 to Aug. 14, 2009
ISBN: 978-0-7695-3789-4
pp: 164-169
We develop a polygonal mesh simplification algorithm using a vertex-decimation approach. The novelty in our method lies in (a) a characterization of mesh vertices as hyperbolic or non-hyperbolic based upon their discrete local geometry, (b) the cost function used to select a vertex for decimation, and (c) the heuristics applied to re-triangulate the resulting hole. The algorithm begins by classifying the input mesh vertices as hyperbolic or non-hyperbolic, and then computes a volume cost for each non-hyperbolic vertex, in analogy with spherical volume, to capture the loss of fidelity if that vertex is decimated. Vertices of least volume cost are successively deleted and the resulting hole re-triangulated. Preliminary experiments indicate a performance comparable to that of the best known mesh simplification algorithms.
Hyperbolic vertex, level of detail, local geometry, mesh simplification, multi-resolution, vertex decimation, volume cost

C. Chuon and S. Guha, "Volume Cost Based Mesh Simplification," 2009 Sixth International Conference on Computer Graphics, Imaging and Visualization(CGIV), Tianjin, China, 2009, pp. 164-169.
81 ms
(Ver 3.3 (11022016))