The Community for Technology Leaders
2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid) (2015)
Shenzhen, China
May 4, 2015 to May 7, 2015
ISBN: 978-1-4799-8006-2
pp: 31-40
ABSTRACT
The focus of this work is the on-demand resource provisioning in cloud computing, which is commonly referredto as cloud elasticity. Although a lot of effort has been invested in developing systems and mechanisms that enable elasticity, the elasticity decision policies tend to be designed without quantifying or guaranteeing the quality of their operation. We present an approach towards the development of more formalized and dependable elasticity policies. We make two distinct contributions. First, we propose an extensible approach to enforcing elasticity through the dynamic instantiation and online quantitative verification of Markov Decision Processes(MDP) using probabilistic model checking. Second, various concrete elasticity models and elasticity policies are studied. We evaluate the decision policies using traces from a realNoSQL database cluster under constantly evolving externalload. We reason about the behaviour of different modelling and elasticity policy options and we show that our proposal can improve upon the state-of-the-art in significantly decreasing under-provisioning while avoiding over-provisioning.
INDEX TERMS
Elasticity, Load modeling, Probabilistic logic, Computational modeling, Model checking, Decision making, Analytical models
CITATION

A. Naskos et al., "Dependable Horizontal Scaling Based on Probabilistic Model Checking," 2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid)(CCGRID), Shenzhen, China, 2015, pp. 31-40.
doi:10.1109/CCGrid.2015.91
96 ms
(Ver 3.3 (11022016))