The Community for Technology Leaders
Cluster Computing and the Grid, IEEE International Symposium on (2009)
Shanghai, China
May 18, 2009 to May 21, 2009
ISBN: 978-0-7695-3622-4
pp: 372-379
In large-scale clusters and computational grids, component failures become norms instead of exceptions. Failure occurrence as well as its impact on system performance and operation costs have become an increasingly important concern to system designers and administrators. In this paper, we study how to efficiently utilize system resources for high-availability clusters with the support of the virtual machine (VM) technology. We design a reconfigurable distributed virtual machine (RDVM) infrastructure for clusters computing. We propose failure-aware node selection strategies for the construction and reconfiguration of RDVMs. We leverage the proactive failure management techniques in calculating nodes' reliability status. We consider both the performance and reliability status of compute nodes in making selection decisions. We define a capacity-reliability metric to combine the effects of both factors in node selection, and propose Best-fit algorithms to find the best qualified nodes on which to instantiate VMs to run parallel jobs. We have conducted experiments using failure traces from production clusters and the NAS Parallel Benchmark programs on a real cluster. The results show the enhancement of system productivity and dependability by using the proposed strategies. With the Best-fit strategies, the job completion rate is increased by 17.6% compared with that achieved in the current LANL HPC cluster, and the task completion rate reaches 91.7%.
Failure-aware resource management, Distributed virtual machines, System reconfiguration, High availability computing

S. Fu, "Failure-Aware Construction and Reconfiguration of Distributed Virtual Machines for High Availability Computing," Cluster Computing and the Grid, IEEE International Symposium on(CCGRID), Shanghai, China, 2009, pp. 372-379.
122 ms
(Ver 3.3 (11022016))