The Community for Technology Leaders
Cluster Computing and the Grid, IEEE International Symposium on (2008)
May 19, 2008 to May 22, 2008
ISBN: 978-0-7695-3156-4
pp: 295-305
To be competitive, Enterprises are collecting and analyzing increasingly large amount of data in order to derive business insights. However, there are at least two challenges to meet the increasing demand. First, the growth in the amount of data far outpaces the computation power growth of a uniprocessor. The growing gap between the supply and demand of computation power forces Enterprises to parallelize their application code.??Unfortunately,parallel programming is both time-consuming and error-prone. Second,the emerging Cloud Computing paradigm imposes constraints on the underlying infrastructure, which forces Enterprises to rethink their application architecture.??We propose the GridBatch system, which aims at solving large-scale data-intensive batch problems under the Cloud infrastructure constraints. GridBatch is a programming model and associated library that hides the complexity of parallel programming,yet it gives the users complete control on how data are partitioned and how computation is distributed so that applications can have the highest performance possible. Through a real client example, we show that GridBatch achieves high performance in Amazon's EC2 computingCloud.
Cloud Computing, Amazon, EC2, S3, GridBatch, MapReduce

H. Liu and D. Orban, "GridBatch: Cloud Computing for Large-Scale Data-Intensive Batch Applications," 2008 8th International Symposium on Cluster Computing and the Grid (CCGRID '08)(CCGRID), Lyon, 2008, pp. 295-305.
95 ms
(Ver 3.3 (11022016))