Twenty-Second Annual IEEE Conference on Computational Complexity (CCC'07) (2007)

San Diego, California

June 13, 2007 to Mar. 16, 2007

ISSN: 1093-0159

ISBN: 0-7695-2780-9

pp: 96-108

DOI Bookmark: http://doi.ieeecomputersociety.org/10.1109/CCC.2007.38

Venkatesan Guruswami , University of Washington, USA

Christopher Umans , California Institute of Technology, USA

Salil Vadhan , Harvard University, USA

ABSTRACT

We give an improved explicit construction of highly unbalanced bipartite expander graphs with expansion arbitrarily close to the degree (which is polylogarithmic in the number of vertices). Both the degree and the number of right-hand vertices are polynomially close to optimal, whereas the previous constructions of Ta-Shma, Umans, and Zuckerman (STOC ?01) required at least one of these to be quasipolynomial in the optimal. Our expanders have a short and self-contained description and analysis, based on the ideas underlying the recent list-decodable error-correcting codes of Parvaresh and Vardy (FOCS ?05). <p>Our expanders can be interpreted as near-optimal "randomness condensers," that reduce the task of extracting randomness from sources of arbitrary min-entropy rate to extracting randomness from sources of min-entropy rate arbitrarily close to 1, which is a much easier task. Using this connection, we obtain a new construction of randomness extractors that is optimal up to constant factors, while being much simpler than the previous construction of Lu et al. (STOC ?03) and improving upon it when the error parameter is small (e.g. 1/poly(n)).</p>

INDEX TERMS

expander graphs, randomness extractors, error-correcting codes, list decoding, condensers.

CITATION

V. Guruswami, C. Umans and S. Vadhan, "Unbalanced Expanders and Randomness Extractors from Parvaresh-Vardy Codes,"

*Twenty-Second Annual IEEE Conference on Computational Complexity (CCC'07)(CCC)*, San Diego, California, 2007, pp. 96-108.

doi:10.1109/CCC.2007.38

CITATIONS