Dynamic Assessment of Relevancy in a Case-Based Reasoner

Kevin D. Ashley Edwina L. Rissland

Department of Computer and Information Science
University of Massachusetts
Amherst, Massachusetts 01003

Abstract

In this paper, we demonstrate techniques employed in the HYPO program for representing and applying knowledge in the form of real and hypothetical cases to assist an attorney in evaluating and making legal arguments about a new fact situation. To perform this task, indexing and retrieval of relevant cases are not enough. HYPO needs to know how to make factual comparisons of the cases relative to the facts and what the legal significance of those comparisons are in terms of arguments about the facts. HYPO uses the mechanism of claim-lattices. A claim-lattice projects the fact situation through the Case Knowledge Base to create a neighborhood of cases surrounding the cfs in which the above comparisons become explicit. We present a detailed example of a claim-lattice actually generated by HYPO to analyze a real legal case.

Keywords: Case-Based Reasoning, Legal Reasoning, Law

1. Introduction

In this paper, we demonstrate techniques employed in the HYPO program for representing and applying knowledge in the form of real and hypothetical cases to assist a decision maker in evaluating a new fact situation. HYPO is a computer program that models reasoning with cases and hypotheticals in the legal domain. It is designed to help attorneys analyze and make arguments about a new fact situation (called the current fact situation or "cfs") by comparing it critically to the most relevantly similar prior cases (called "most-on-point cases" or "mope's"). The goal is to build an argument how to decide the current fact situation based on its significant similarities to and differences from the most-on-point cases.

To perform this task it is essential, but not sufficient, to represent and index legal cases. HYPO has a Case Knowledge Base ("CKB") of leading cases in trade secrets law and indexes them using a mechanism called dimensions. HYPO analyzes an inputted fact situation to determine which dimensions apply and retrieves the cases indexed by those dimensions.

Indexing and retrieval of relevant cases, however, are not enough. An attorney needs to be aware of, and a program that models legal reasoning needs to represent, the connections among cases, in particular, connections in terms of their comparative:

1. Factual similarities and differences relative to the current fact situation - Which cases are more on point; which are nearly so?
2. Outcomes - Which cases, though similarly on point to the current fact situation, came to conflicting results and how does the current fact situation differentially compare?
3. Uses in a legal argument about the current fact situation - Which cases make stronger legal points for a party on a claim; which cases are troublesome to an argument; which cases distinguish other cases; which take a point to extremes?
4. Potential relevance to the current fact situation - Which cases are nearly on point or most-on-point but for some missing facts that might jog the attorney's mind to look for and discover new facts and arguments about his current fact situation.
5. Significance to other parts of the legal argument - What are the cases and connections when the current fact situation is viewed from the slant of a different kind of legal claim?
6. Possible variations - What new cases and connections come into view when the facts of the current fact situation are changed hypothetically? How do the connections change when features are added, subtracted, exaggerated, combined with those of neighboring cases?
HYPO uses claim-lattices to represent and exploit the connections among relevant cases that arise from making comparisons among them relative to the current fact situation. A claim-lattice projects the current fact situation through the Case Knowledge Base to create the neighborhood of cases that surround the CFS. The neighborhood of cases is the Case Knowledge Base as seen modulo the current fact situation. Claim-lattices: (1) organize and abstract all of the cases from the CKB that are relevant for analyzing the current fact situation, (2) graph them according to their comparative similarities and usefulness as precedents for arguing how to decide the current fact situation, (3) focus on troublesome contrary cases, and (4) suggest fruitful combinations of facts for new hypotheticals.

2. Knowledge Representation in HYPO

As already mentioned, HYPO uses two kinds of domain knowledge to construct claim-lattices: (1) the Case Knowledge Base (CKB) containing actual legal cases and (2) the library of dimensions. HYPO's current CKB contains 30 or so cases on trade secrets misappropriation and a few related areas, like basic contract law. For a complete description of the HYPO program, see [Ashley, 1987]. (Other A.I. approaches to modeling legal reasoning, for example, those of Gardner, McCarty and Waterman, place less or no emphasis on representing and indexing cases and hypotheticals. For an extensive bibliography see [Rissland, 1985].)

Each legal case in the CKB corresponds to real legal dispute, tried by a court, whose decision as reported in a published opinion is represented in a case representation language consisting of hierarchical clusters of frames (implemented as flavors) which describe the main components of the case including: plaintiff (P), defendant (D), legal claim, prevailing party (plaintiff or defendant), holding and facts. Some of the factual features are in turn expanded and represented as frames (e.g., plaintiff, products, employees, disclosure events, secret information and agreements). See [Ashley, 1987; Rissland et al., 1984] for examples. A legal claim is a recognized kind of complaint for which the court will grant relief (e.g., breach of contract, negligence, trade secrets misappropriation, copyright infringement). The holding is the decision of the court as to the legal effect on each claim of the facts of the case, either in favor of the plaintiff or defendant.

Current fact situations are represented in the same case representation language as the cases in the CKB. From this basic level of representation of a fact situation, HYPO computes whether certain higher level descriptors, called factual predicates, are satisfied. Factual predicates state whether or not a particular legal fact is true (e.g., there exist-disclosers, employee-has-switched-employers) in a fact situation. Factual predicates form a language used to encode the second source of legal knowledge in HYPO, the dimensions.

Dimensions capture the legal relevance of a cluster of facts to the merits of a claim. For a particular kind of case, dimensions generalize collections of facts that constitute strengths and weaknesses in a party's position. Each of the generalizations can be backed up by one or more cases where a court held in favor of a party, in part because of the cluster of facts associated with the dimension. Figure 1 shows some examples of some potential strengths and weaknesses in a trade secrets situation and the dimensions that capture them.

Dimensions allow HYPO to view the cases from various perspectives. They can be thought of as a "cross section" or "projection" of the facts of a case through a space spanned by HYPO's set of factual predicates. At this point, thirteen dimensions are implemented, although we know about thirty dimensions in all. We do not compile these ourselves but rather take them from scholarly analyses and treatises like [Gilburne and Johnston, 1982; Milgrim, 1985].

A dimension is itself, a frame-like knowledge source. It has several facets that enable HYPO to perform various tasks: First, the program can test if a dimension applies to a case or is a near miss using the dimension's prerequisites which are stated in terms of factual predicates. For instance, the prerequisites of the Bribe-Employee dimension are that two corporations, plaintiff and defendant, compete with respect to a product, plaintiff has confidential product information to which defendant has gained access by luring plaintiff's former employees to work for defendant and to disclose the information. Second, HYPO compares cases along a dimension using its focal slots. The focal slot of Bribe-Employee is what defendant offered the employees to lure them to switch employment; its range is a set of possible enticements including salary increases, stock options, bonuses, promotions, or no enticement. To strengthen the plaintiff's position in a fact situation to which this dimension applies, add more enticements for inducing the employees to defect. Third, HYPO finds similar cases by retrieving cases that the dimension indexes. Bribe-Employee indexes at least two cases in the CKB: (1) Telex v. IBM in which the court held for the plaintiff's, IBM's trade secrets claim where Telex had offered stock options, higher salaries and bonuses (one for $500,000) to IBM's employees and (2) the Midland Ross case where defendant won eventhough the former employee gained a modest salary increase in switching employers. Other examples of dimensions can be found in [Ashley, 1987; Ashley and Rissland, 1987b; Rissland and Ashley, 1987; Ashley and Rissland, 1987a].

3. Neighborhoods of Cases: Claim-lattices

A current fact situation is presented to HYPO in the case representation language. In analyzing a new current fact situation, HYPO runs through the library of dimensions and produces a case-analysis-record that contains: (1)
applicable factual predicates; (2) applicable dimensions; (3) near-miss dimensions; (4) potential claims and (5) relevant cases from the CKB. Near-miss dimensions are those for which some, but not all, of the prerequisites are satisfied. The combined list of applicable and near-miss dimensions is called the D-list. Figure 2 describes a current fact situation based, for purposes of illustration, on Telex v. IBM, a real case in the CKB. Figure 3 shows the case-analysis-record for the cfs.

HYPO uses the case-analysis-record to construct the claim-lattice, which is a lattice such that: (1) the root is the current fact situation together with its D-list; and (2) successor nodes contain pointers to cases that share a subset, usually proper, of the dimensions in the cf's D-list. Figure 4 shows the claim-lattice actually generated by the HYPO program for analyzing the current fact situation of Figure 2 from the viewpoint of a trade secrets misappropriation claim. (There is a separate claim-lattice for each possible claim.)

The main idea about claim-lattices is that they order relevant cases from the CKB in terms of how on point they are to the current fact situation, where this is measured by the degree of overlap between the set of dimensions of the cf and that of retrieved cases. In other words, the claim-lattice captures the extent that cases share the strengths and weaknesses of the current fact situation. More specifically, of all the dimensions in the cf's D-list, all and only those in a particular successor node's D-list (which is subset of the cf's D-list) apply to each of the cases associated with that node. Each successor node is the ancestor of all nodes whose subsets of dimensions are proper subsets of its subset. The descendants are ordered in terms of the set inclusiveness of their subsets of the cf's D-list. Each successor node may contain pointers to more than one case and comprise cases won by plaintiffs (π) and defendants (δ).

4. Interpreting the Claim-lattice

The ordering scheme enables claim-lattices to capture a sense of closeness to the current fact situation of cases in the Case Knowledge Base. It views the relevant cases in terms of their relevance — or on-pointness — to the current fact situation. Computationally, this means that the nodes closest to the root can be considered most-on-point cases (mopc's) to the current fact situation (as long as their subsets of the cf's D-list do not contain near-miss dimensions); leaf nodes are the least on point. All of the cases displayed are relevant to the current fact situation because they all share some legally important strengths or weaknesses with the fact situation as represented by the dimensions shared with the cf.

HYPO makes a dynamic judgment of which case appears to be most-on-point. It is possible for a well-known landmark case not to appear since it is not relevant to the case at hand because, for instance, it does not share enough overlap of dimensions (and therefore facts) and thus the basis of its decision rests on factors not present in the current case. Likewise, a seemingly unimportant case might be very relevant modulo the current fact situation because not only does it share the same base of facts (and therefore dimensions) but also it might share more than any other case. This is shown in the claim-lattice by positioning those cases sharing more dimensions nearer to the current fact situation.

Different major branches of the lattice indicate different ways to argue the case, effectively one way for each group of most-on-point cases. HYPO can argue the case for side 1, let us say the defendant in the current fact situation, by citing a pro-defendant mopc. In Figure 4, the most-on-point cases are Telex v. IBM, Raycorp v. Tronic and Modern Controls. Of course, Telex v. IBM is also the basis of the current fact situation in Figure 2. A case should be most on point to itself! Midland Ross, for example, is not a most-on-point case because, although it is very close to the root, the Disclose-Secrets dimension which applies to Midland Ross, and which would help δ if it applied to the current fact situation, is only a near-miss for the cf.

HYPO argues in the following way that the δ in the current fact situation as side 1 should win on a claim for Trade Secrets Misappropriation:

[1] ← Side 1's Point: (δ)

Cite: Raycorp v. Tronic (δ should win eventhough employee who disclosed information signed nondisclosure agreement with π.)

[2] ← Side 2's Response: (π)

Distinguish Raycorp v. Tronic: (In the current fact situation, defendant's access to plaintiff's product information saved it more time or expense than in Raycorp v. Tronic and defendant paid plaintiff's former employee to switch employment.)

Cite as Counter-example: Modern Controls (This case is just as on point and held for π where the employee who disclosed info to δ signed a nondisclosure agreement with π.)
In support of its point, HYPO draws the analogy between the most-on-point case and the current fact situation. Since most-on-point cases share the most legally important strengths and weaknesses with the current fact situation (i.e., mopc’s are the closest analogies to the cfs), Raycorp v. Tronic is the most persuasive case HYPO could cite for the defendant as side 1. The relevantly similar facts are just those summarized by the dimension[s] that the mopc shares with the cfs. In this case there is but one shared dimension Agreed-Not-To-Disclose. The argument point in [1] is not very strong but it is well formed from a legal viewpoint.

HYPO also uses the claim-lattice to figure out how to respond to an argument like side 1’s by citing counter-examples to the cited case. In a legal argument, an attorney can discount the persuasive effect of a cited case by citing another case that is just as or more on point but held for the opponent. Finding such a case is a simple matter in the claim-lattice; if it exists it must be a most-on-point case residing in the nodes between the root and the node containing the cited case. (Mopc’s on other major branches of the lattice won’t do – that would be like comparing apples and oranges.) In Figure 4 distinguishing mopc’s would be either Telez v. IBM or Modern Controls, both of which held for plaintiff (π) and are as or more on point than Raycorp. In other words, HYPO makes side 2’s (i.e., the plaintiff’s) response to side 1’s argument by citing the Modern Controls case as a counter-example. (See [2] above.) It would be silly for HYPO to cite the Telez case in response, but that is just because, for illustration, we have chosen Telez as the current fact situation.) In supporting the response, HYPO underscores the additional facts, if any, that make the counter-example as or more on point than the case cited for side 1.

The claim-lattice supports other ways of responding to a point by distinguishing the cited case. Suppose side 1 had cited the Midland Ross case as in the following exchange:

[1] ← Side 1’s Point: (6)

Cite: Midland Ross (6 should win even though defendant paid plaintiff’s former employee to switch employment.)

[2] ← Side 2’s Response: (x)

Distinguish Midland Ross: (In the current fact situation, defendant’s access to plaintiff’s product information saved it more time or expense than in Midland Ross and plaintiff’s former employee entered into a nondisclosure agreement with plaintiff. In Midland Ross plaintiff disclosed its product information to more outsiders than in the current fact situation.)

HYPO points out the “dis-analogy” between the current fact situation and Midland Ross, that the facts associated with the Disclose-Secrets dimension, namely that the plaintiff disclosed its secrets to outsiders, obtained only in Midland Ross, not in the current fact situation. Also, in the cfs, defendant gained a competitive advantage and plaintiff’s employee had entered into nondisclosure agreements. In other words, using the claim-lattice and reciting unshared dimensions that help π in the current fact situation or hurt π in Midland Ross, HYPO knows that and why the cfs presents a much stronger case for plaintiff than Midland Ross.

As the above examples illustrate, the claim-lattice embodies HYPO’s knowledge of how to compare cases relative to the current fact situation and what the legal significance of those comparisons are in terms of arguments about the current fact situation. See [Ashley and Rissland, 1987b]. HYPO uses that knowledge to help an attorney build an argument. For example, the Midland Ross case is potentially a most-on-point case. If it were true that the plaintiff in the current fact situation had made disclosures of his secrets to outsiders, Midland Ross would become a very important case to side 1. A potential mopc is very similar to the fact situation, except that some dimensions (i.e., a strength or weakness) that apply to it are near-misses with respect to the cfs; they are located in the nodes closest to the root whose subsets of dimensions contain near-misses. Potential most-on-point cases are useful: (1) when looking for cases to cite as counter-examples to a particular most-on-point case, (2) in fact finding about the current fact situation and (3) in planning for the contingency that an opponent might be able to prove that the missing facts are true. In Figure 4, the Midland Ross, Structural Dynamics and Automated Systems cases are all potential mopc’s.

The claim-lattice also focuses on another kind of extreme case: boundary cases, the weakest [strongest] cases along some dimension that the plaintiff still won [lost]. A boundary case may not be as on point as a mopc, but it is still useful to HYPO as a counter-example. For instance, suppose in the current fact situation that IBM had made disclosures to, let us say, 50 outsiders and that side 1 had cited what would then be a most-on-point case for the defendant: the Midland Ross case. In responding for side 2, HYPO could cite the Data General case (see Figure 4) as an example of a much weaker case for the plaintiff along the Disclose-Secrets dimension (with disclosures to 6000 outsiders) that plaintiff still won. In other words, π’s behavior could have been much worse and it still should win, or so the argument goes.

211
In the previous example we posed a hypothetical variation of the current fact situation (that IBM had made disclosures to 50 outsiders) to make a legal point about the connections between the Data General and Midland Ross cases. That is a very natural thing for attorneys to do and points out one of the most important uses of claim-lattices: they suggest interesting hypothetical cases.

The structure of the claim-lattice provides clues about how to "flesh out" sparse areas of the Case Knowledge Base. It suggests how to modify hypothetically either actual cases or the current fact situation to construct hypothetical cases and new connections between the cfs and its neighbors. The idea is, having located the current fact situation in its neighborhood of cases, to use hypothetical modifications to explore the neighborhood.

Interesting hypotheticals reside in two locales of the claim-lattice:

First, as the above hypothetical variant of the current fact situation suggests, in the nodes containing potentially most-on-point cases. Using the potential mopc's as targets, the current fact situation can be modified slightly to incorporate the "missing" facts associated with the near-miss dimensions, for example, in Figure 4: (1) by adding disclosures as in Midland Ross, (2) by making the secret information be vertical knowledge about customer's business methods as in Automated Systems or (3) to favor the plaintiff, by having former employees bring plaintiff's product-related notes and copies of code as in the Structural Dynamics case. See [Rissland and Ashley, 1986].

HYPO uses the hypothetical variants of the current fact situation to explain the significance of the potential mopc's and to illustrate the effect on the argument of the hypothetical facts' becoming true. For example, if IBM did make such disclosures, not only would Midland Ross become a most-on-point case, but Data General would also become potentially an even more on point case that could be used to respond to an argument citing the Midland Ross case. HYPO makes these changes in possible arguments explicit by reconstructing the claim-lattice around the modified current fact situation. Using the claim-lattice to plan for contingencies in an argument is very practical. In the real Telex Corp. v. IBM Corp., 367 F. Supp. 258, 358 (N.D. Okla. 1975), defendant Telex actually attempted to raise the issue of disclosures by IBM. In its opinion, the court cited another case involving disclosures by Midland Ross but disposed of the defense on other grounds.

Second, other interesting hyps reside between nodes containing most-on-point cases; they combine the features of π's mopc's with those of δ's. In pitting pro plaintiff and pro defendant features against one another, these hybrid mopc's implicitly raise the issue of which features are more important (i.e., how would such a case be decided.) In Figure 4, an interesting hypothetical hybrid most-on-point case combines the pro-plaintiff features of the Telex case with the pro-defendant disclosures of secrets as in the Midland Ross case. It is the same hypothetical as above, but now we are changing the Telex case rather than the current fact situation (which, for purposes of illustration is based on Telex.) Judges and attorneys actually use hypotheticals like this one. In his opinion in Executive Development Center of Boston v. Hirsch, Civ. Action 50441 (Suffolk Superior Ct. Mass. 1985), p.28, Judge Young makes a point by constructing a similar hypothetical that pits plaintiff's disclosures against defendant's improper means of access. The hybrid hypo can be made even more interesting by pushing the number of disclosees to extremes - one disclosure or one million. See [Rissland and Ashley, 1986].

Another use of the claim-lattice is to view a fact situation from the perspective of other kinds of claims. The lattice in Figure 4 depicts the current fact situation as a trade secrets misappropriation case. But by virtue of the Agreed-Not-To-Disclose dimension, the current fact situation could also be thought of as involving a claim for breach of the nondisclosure agreements entered into by the employee. The claim-lattice representing that claim is yet another dimension, for example, in Figure 4: (1) by adding disclosures as in Midland Ross, (2) by making the secret information be vertical knowledge about customer's business methods as in Automated Systems or (3) to favor the plaintiff, by having former employees bring plaintiff's product-related notes and copies of code as in the Structural Dynamics case. See [Rissland and Ashley, 1986].

REFERENCES

In this paper, we have described a technique for dynamically viewing or reorganizing a case knowledge base around a particular fact situation to provide a sophisticated analysis of it. Claim lattices project the fact situation through the Case Knowledge Base to create a neighborhood of cases surrounding the situation in which factual and interpretive comparisons of the cases relative to the situation become both simple and explicit. We have described how the HYPO program uses claim lattices to create a skeletal legal argument about a fact situation, spot troublesome contrary cases and suggest fruitful combinations of facts for new hypotheticals.

5. Conclusion
6. Figures

Plaintiff's (π's) position is strengthened to extent:

Brought-Tools: π's former employees brought π's notes, diagrams, tools to defendant (δ).

Competitive-Advantage: δ's access to π's secret information gave δ a competitive advantage.

Disclose-Secrets: π did not voluntarily disclose his secrets to outsiders.

Nocompete-Agreement: π's employees had entered into nondisclosure agreements.

Bribe-Employee: δ bribed π's employees to switch employ.

Vertical-Knowledge: π's secrets were not simply about customer's business methods.

Figure 1: Sample Dimensions and Related Factual Strengths

An attorney's corporate client, IBM, complains that Telex has been misappropriating its trade secrets in its "Merlin" disk drive system. Specifically, IBM complains:

- Telex offered IBM's Merlin project engineers extremely large salaries, bonuses (e.g., one for $500,000) and stock options to induce them to join Telex. **Bribe-Employee**
- All of the former IBM employees had entered into nondisclosure agreements with IBM to keep confidential IBM's trade secret information. **Nocompete-Agreement**
- As a result of its access to IBM's trade secrets, Telex was able to develop its competing products in substantially less time and at lower expense. **Competitive-Advantage**

Figure 2: The Current Fact Situation ("CFS") based on Telex v. IBM.

(Names of dimensions for which recited facts are focal are in italics.)
Applicable Factual Predicates: exists-corporate-claimant, exists-confidential-info, employee-switched-employers...

Applicable Dimensions: Agreed-Not-To-Disclose, Bribe-Employee, Competitive-Advantage

Near-Miss Dimensions: Brought-Tools, Disclose-Secrets, Vertical-Knowledge

Potential Claims: Trade Secrets Misappropriation, Breach of Nondisclosure Agreement

Relevant CKB cites: Midland Ross, Data General, Structural Dynamics, Raycorp v. Tronic, Modern Controls...

Figure 3: Case-Analysis-Record for CFS

The root node represents the current fact situation and its D-list. (Dimensions that are near-misses as to the current fact situation have *'s.) Successor nodes contain pro-plaintiff (π) or pro-defendant (δ) cases, involving trade secrets misappropriation claims, that are on point to cfs. Nodes closest to root that do not have near-miss dimensions contain most-on-point cases (i.e., mopc's); otherwise they may contain potential mopc's. Leaf nodes are least-on-point. Each major branch of lattice that contains mopc's represents one way of arguing about the current fact situation. Mopc's may be counter-examples to cases with opposite outcomes in successor nodes. Boundary cases are examples of extremes along particular dimensions. Hypothetical hybrid mopc's combine features of different mopc's that hold for π and δ. Potential mopc's suggest fruitful hypothetical variants of current fact situation.

Figure 4: A Claim-lattice.