Tutorial I

Beyond DFT:
The Convergence of DFM, Variability, Yield, Diagnosis and Reliability

Srikanth Venkataraman
Intel

Robert Aitken
ARM

Abstract
The tutorial goal is to show how design for yield (DFY) and design for manufacturability (DFM) are tightly coupled into what we conventionally think of as test. As process geometries shrink, the line between defects and process variation blurs to the point where it is essentially non-existent. The basics of yield and what fabs do to improve defectivity and manage yield are described. DFM techniques to analyze the design content, flag areas of design that could limit yield, and make changes to improve yield are discussed. This tutorial will provide background needed for DFT practitioners to understand DFM and DFY, and see how their work relates to it. The ultimate goal is to spur attendees to conducting their own research in the area, and to apply these concepts in their jobs.

Keywords
Yield, Yield Modeling, Design-for-Manufacturability, Diagnosis, Design Margin, Yield monitors, Variability and Reliability
Abstract
Managing the power consumption of circuits and systems is now considered as one of the most important challenges for the semiconductor industry. Elaborate power management strategies, such as voltage scaling, clock gating or power gating techniques, are used today to control the power dissipation during functional operation. The usage of these strategies has various implications on manufacturing test, and power-aware test is therefore increasingly becoming a major consideration during design-for-test and test preparation for low power devices. This tutorial provides knowledge in this area. It is organized into three main parts. The first one gives necessary background and discusses issues arising from excessive power dissipation during test application. The second part provides comprehensive knowledge of structural and algorithmic solutions that can be used to alleviate such problems. The last part surveys low power design techniques and shows how these low power devices can be tested safely without affecting yield and reliability. EDA solutions for considering power during test and design-for-test are also discussed in the last part of the tutorial.

Keywords