The Community for Technology Leaders
2015 24th Australasian Software Engineering Conference (ASWEC) (2015)
Adelaide, SA, Australia
Sept. 28, 2015 to Oct. 1, 2015
ISSN: 1530-0803
ISBN: 978-1-4673-9390-4
pp: 195-202
Human-induced faults play a large role in systems reliability. In cloud platforms, system administrators may inadvertently make catastrophic mistakes, like deleting a virtual disk with important data. Providing rollback for cloud operations can reduce the severity and impact of such mistakes by allowing to revert back to a known, good state. In this paper, we present a scalable approach to rollback operations that change state of a system on proprietary cloud platforms. In our previous work, we provided a system that augments cloud APIs and provides roll-back operation using an AI planner. However, the previous system eventually suffers from the exponential complexity inherent to AI planning tasks. In this paper, we divide and parallelize rollback plan generation, based on characteristics unique to the rollback scenario. Through experimental evaluation, we show that this approach scales better than the previous, naive approach, and effectively avoids the exponential behavior.
Cloud computing, Planning, Artificial intelligence, Australia, Virtual machining, Complexity theory

S. Satyal, I. Weber, L. Bass and M. Fu, "Scalable Rollback for Cloud Operations Using AI Planning," 2015 24th Australasian Software Engineering Conference (ASWEC), Adelaide, SA, Australia, 2015, pp. 195-202.
93 ms
(Ver 3.3 (11022016))