The Community for Technology Leaders
2015 IEEE/ACM 10th International Workshop on Automation of Software Test (AST) (2015)
Florence, Italy
May 23, 2015 to May 24, 2015
ISBN: 978-1-4673-7022-6
pp: 38-42
ABSTRACT
Instrumentation and monitoring plays an important role in measurement-based performance analysis of software systems. However, in practice the performance overhead of extensive instrumentation is not negligible. Experiment-based performance analysis overcomes this problem through a series of experiments on selectively instrumented code, but requires additional manual effort to adjust required instrumentation and hence introduces additional costs. Automating the experiments and selective instrumentation can massively reduce the costs of performance analysis. Such automation, however, requires the capability of dynamically adapting instrumentation instructions. In this paper, we address this issue by introducing AIM, a novel instrumentation and monitoring approach for automated software performance analysis. We apply AIM to automate derivation of resource demands for an architectural performance model, showing that adaptable instrumentation leads to more accurate measurements compared to existing monitoring approaches.
INDEX TERMS
Monitoring, Java, Probes, Time factors, Unified modeling language, Load modeling
CITATION

A. Wert, H. Schulz and C. Heger, "AIM: Adaptable Instrumentation and Monitoring for Automated Software Performance Analysis," 2015 IEEE/ACM 10th International Workshop on Automation of Software Test (AST), Florence, Italy, 2015, pp. 38-42.
doi:10.1109/AST.2015.15
83 ms
(Ver 3.3 (11022016))