
The Automated Generation of Test Cases using an Extended Domain Based
Reliability Model

Alberto Avritzer Elaine J. Weyuker
Siemens Corporate Research AT&T Labs - Research
755 College Road East 180 Park Avenue
Princeton, NJ 08540 Florham Park, NJ 07932

alberto.avritzer@siemens.com weyuker@research.att.com

Abstract

We present a new approach for the automated generation
of test cases to be used for demonstrating the reliability of
large industrial mission-critical systems. In this paper we
extend earlier work by adding failure tracking and transient
Markov chain analysis. Results from the transient Markov
chain analysis are used to estimate the software reliability
at a given system execution time.

1 Introduction

We introduce a newmodel-based test case generation ap-
proach to be used to assess the reliability of large indus-
trial mission-critical systems. For such systems, the relia-
bility objective is usually specified in terms of the proba-
bility of failure-free operation for a certain period of time
under given operational conditions. Therefore, to study the
reliability evolution of a large industrial system, the reliabil-
ity model must track failure evolution as a function of the
system execution time, t, under realistic operational condi-
tions.
With this goal in mind, we extend the software reliabil-

ity model introduced in [3] by adding both failure tracking
and system execution time. Both the reliability modeling
and test case generation approaches that we will present in
this paper use the function p(n, t), the transient value of the
probability of program P ’s correct execution, for input n

and time t.
In our earlier paper [3] we introduced an automated ap-

proach for test case generation and test case execution that
was applied to several large industrial telecommunications
systems. These systems were modeled by using Markov
chains because the arrival processes could be modeled as
Poisson processes, and it was reasonable to assume that
the service times were exponentially distributed. We fur-

ther assumed that the types of reliable telecommunications
systems we were studying were designed to operate at low
to medium utilization rates. Again, this was a realistic as-
sumption for such systems.
Therefore, the test case generation approaches we in-

troduced, known as Deterministic State Testing or DST,
were able to achieve the specified model coverage by us-
ing search algorithms based on the underlying spanning-
tree generated by the depth first search algorithms rooted at
the idle state. In that approach, all states with steady-state
probability values that were determined to be smaller than
an empirically-defined ε could be safely discarded because
of the low to medium utilization assumption.
Taking the DST approach as a starting point, we now ex-

tend the test case generation algorithm to incorporate both
the resource usage perspective used in [3], and also resource
failures.
The outline of the remainder of the paper is as follows.

In Section 2 we survey the relevant literature with particu-
lar emphasis on Markov modeling approaches that are use-
ful for our automated test case generation and reliability
estimation approaches. In Section 3 we extend the DST
test case generation algorithm introduced in [3] to use the
transient solution of the Markov model generated by the
Tangram-II tool. Section 4 describes how we have extended
the reliability estimation approach introduced in [3] by in-
cluding system execution time. In Section 5 we present
some empirical results, while Section 6 contains our con-
clusions and suggestions for future research.

2 Related Work

In [11], Whittaker and Thomason introduced a statisti-
cal testing approach supported by Markov models repre-
senting usage behavior. In this model, the Markovian state
definition captures information related to the user interface
navigation. For a given state i, the transition probability to

AST’09, May 18-19, 2009, Vancouver, Canada
978-1-4244-3711-5/09/$25.00 © 2009 IEEE ICSE’09 Workshop44

state j, denoted pi,j , represents the probability of navigating
from state i to state j. The Markov chain in this approach
is a discrete-time Markov chain, with no loops. The au-
thors propose using complete navigation patterns to select
test cases, since the whole path probability can be computed
as the product of its individual transition probabilities.
Building on this approach, Kallepalli and Tian [9] pre-

sented a method forWeb testing and reliability analysis sup-
ported byWeb log data. The authors used a Unified Markov
Model to support usage-based statistical testing.
In [13], Yan et al. introduced a scenario usage diagram

model that could be derived from annotated UML model
diagrams. Their approach was also based on the Whittaker
and Thomason Markov chain usage model, using a method
for acceleration of statistical testing.
Woit introduced a tool for automated test case genera-

tion and reliability estimation [12]. This tool was based on
random sampling of a module’s expected inputs, with the
reliability estimation based on module testing results.
Cortelessa et al. presented a component-based reliabil-

ity estimation approach to be applied early in the project’s
life cycle [8]. In their proposed methodology, a Bayesian
framework for reliability prediction was created, based on
reliability-annotated UML diagrams.
Markov chain models can also be used to model system

failures and to support reliability computation [5]. Avritzer
et al. used a discrete-state continuous-time Markov chain.
The Markovian state, S(t), contained a list of resources that
had failed up to time t. These Markov chains were used
to provide a reliability estimation for a given system exe-
cution time t. Defining reliability to be the probability of
failure-free operation at time t, it was computed by evaluat-
ing the transient Markov chain states’ probability distribu-
tion for time t, and then summing over the set of states that
represented failure-free operation. They used the Tangram-
II [10] tool transient solution method which provides differ-
ent solution techniques for both the stationary and transient
analysis of the Markovian model.
This approach provided a very practical means of esti-

mating reliability as a function of system execution time and
expected failure rates, since the Markovian state was de-
fined as the number of failed resources at time t. Therefore,
the Markovian state explosion problem could be solved by
limiting attention to only those states that have a certain
number of failed resources. The drawback of this approach
is that resource usage is not modeled.
For this reason, the new approach introduced in this pa-

per combines the DST perspective [3] which models re-
source usage but does not include reliability computation
based on system execution time and failures, with the sys-
tem execution time-based approach described in [5].
Our approach is also related to the ones introduced in [8]

and [12], which use a Bayesian framework to evaluate the

overall system reliability by decomposing the system into
modules. In contrast, the algorithm which we will intro-
duce in Section 3, decomposes the system Markov chain
state into a resource usage part and a failure part. Pass/fail
criteria is assessed for each resource usage test case, for all
possible failure states. We then apply a Bayesian framework
to compute the overall system reliability.

3 The Test Case Generation Algorithm

We now introduce our automated test case generation ap-
proach that takes into account both resource usage and re-
source failure events. The intuition is that when designing
test suites for performance testing, we want to select test
cases that occur frequently because the impact of a failure
in such a state will be significant since it happens often in
practice. In addition, we also want to select test cases that
have a high probability of failure, even if the likelihood of
occurrence is relatively low. We determine likelihood of
failure based on past behavior.
By using decomposition theory, we generate two sepa-

rate Markov chains: a resource usage-based Markov chain
and a resource failure-based Markov chain. We use the De-
terministic State Testing approach introduced in [3] for au-
tomated test case generation.
In the first type of Markov chain, the number of failure

events of each type are explicitly tracked. In the second
type of Markov chain, the state definition does not explic-
itly track failures; it is instead defined in terms of the num-
ber of resources of each type currently in use and resource
allocation and deallocation are explicitly tracked.
By combining the two types of Markov chains, we are

able to focus on both types of issues - testing the inputs that
are most likely to occur, and testing the inputs that are most
likely to fail. In both cases these classes are determined
based on historical data.
We begin by assuming that resources may be allocated

and deallocated both in the course of normal system oper-
ation and also due to failure and repair events. We apply
decomposition and aggregation concepts [7] to generate the
two Markov chains.
The first step involves applying our original DST algo-

rithm to generate a failure-based Markov chain. For this
Markov chain, a state F1 represents the number of re-
sources of each type that have been consumed by a fail-
ure event. Assuming that there are N distinct types of re-
sources, we represent a state by an N-tuple (r1, r2, ..., rN)
with ri denoting the number of resources of type i that are
unavailable because of failures. The state (0, 0, ..., 0) for
this Markov chain is known as the ok state because no re-
sources have failed.
After building this failure-based Markov chain, we build

a second resource usage-based Markov chain. This is done

45

by applying the DST algorithm to a state definition R1 that
represents the number of resources of each type that have
been consumed by a resource allocation event in the course
of normal system operation. Again the states are N-tuples,
(r1, r2, ..., rN), but for this Markov chain, ri denotes the
number of resources of type i that are being used at the
current time. The state (0, 0, ..., 0) for this Markov chain
is known as the idle state because no resources are being
used.
For the Markov chain defined by state F1, resource fail-

ure events are assumed to form a Poisson process with aver-
age failure rates denoted λf . Resource repair events are as-
sumed to be exponentially distributed for this Markov chain
with average μf , where f represents the index to the failed
resource.
The homogeneous Poisson assumption has typically

been made in the reliability modeling literature when the
number of faults in a system is constant once the system
has been deployed, and we also make this assumption.
In addition, the average time for repair is generally a rea-

sonable approximation because the maintenance workforce
is often composed of a fixed number of people, and it is as-
sumed that each person performs work with a service time
that is approximately exponentially distributed.
For the Markov chain defined by state R1, resource

allocation events are assumed to form a Poisson process
with average rates λr and resource deallocation events are
assumed to be exponentially distributed with average μr,
where r represents an index to the allocated/deallocated re-
source.
The Markov chain state F1 for the failure-based model

is defined to be the number of resources of each type that
have been consumed by a failure event. Let x represent a
generic system-wide resource, and let

λx = λf (1)

Similarly, for resource repair we have,

μx = μf (2)

Therefore, lettingNx be the number of resources of type
x, the ratio λx

Nxμx

represents the average utilization of re-
source x, or the probability that the resource x is found to
be busy, for the resource usage-based Markov chain. When
λx

μx

¡ 1, then resource requests are coming in at a slower rate
than they are being completed, so the resource is unlikely to
be busy, in contrast to when λx

μx

≥ 1.
Similarly, for the failure-based Markov chain, the ratio

λx

Nxμx

represents the probability of finding resource x in the
failed state.
Strategy: Generate all states that are likely to occur in prac-
tice as represented by having a steady-state probability of
occurrence greater than ε, as well as those states that are

likely to be busy, or in a failed state and use this as the basis
for test case generation.
Algorithm : Generate a list of test cases starting from the
software state S.

1. Index x denotes the resource type. Set x to 1.

2. If by adding one more resource of type x, a previously
unreached state is reached and the steady-state prob-
ability of the state so generated is greater than ε or
λx

μx

≥ 1 then:

• Generate a test case for the software state reached
from S by adding one more resource failure of
type x. Call it state S′;

• Generate a list of test cases by recursively exe-
cuting this algorithm on (S′);

• If x is greater than N , the number of resource
types, return;

• Otherwise set the index of resource types to x+1,
and go to step 2.

To generate the Markov chain associated with resource
allocation/deallocation events, we use the same algorithm
with the appropriate change of state definition and resource
allocation/deallocation rates.
For the second model, recall that the Markov chain state

R1 is defined as the number of resources of each type that
have been consumed by a resource allocation event. Let x
represent a generic system-wide resource, and let,

λx = λr (3)

Similarly, for resource deallocation we have,

μx = μr (4)

This algorithm can be used to automatically generate test
cases when the objective is to estimate reliability as a func-
tion of system execution time, for a specific operational en-
vironment. The Markov chain generated by the execution
of the algorithm on (F1) is solved using transient analysis
methods. Each state generated by the execution of the algo-
rithm on (R1) is weighted by the transient failure probabil-
ity associated with it and by the pass/fail assessment of the
state.
The set of states that have a steady state probability

greater than ε for theMarkov chain associated with resource
allocation/deallocation events defines a test suite that may
have thousands of test cases. This test suite can be effi-
ciently executed by automatically driving the system to the
resource configuration specified in each test case.

46

4 Reliability Modeling and Assessment Ap-
proach

We have introduced a new approach to the generation
of the most likely states in the Markov chain, taking into
account both resource usage and resource failures. In con-
trast, the original DST algorithm introduced in [3] only took
resource usage into account. The reliability assessment ap-
proach introduced in that paper was domain-based and did
not have any provision for system execution time. The
equation below describes the domain-based reliability as-
sessment approach introduced in [3]:

α(n) =

{
0 if P (n) = S(n)
1 otherwise.

Then
∑

nεD p(n)α(n) is the probability that a run of pro-
gram P with input n chosen according to the probability
distribution p will result in a failure. D represents the input
domain, n is an element in the input domain and P repre-
sents a program that was designed to implement specifica-
tion S. It then follows that

R(P) = 1−
∑
nεD

p(n)α(n) =
∑
nεD

p(n)(1− α(n))

is the probability that a run with input n chosen according to
p will result in a correct execution. Here correctness does
not refer to functional correctness, but rather to a lack of
resource exhaustion.
In this section, we extend this reliability assessment ap-

proach by including system execution time. We use the
new algorithm introduced in Section 3 to generate the most
likely states in the twoMarkov chains. We then use the tran-
sient analysis method to generate the state probability dis-
tribution for the required system execution time, using the
state space derived by the algorithm for the failure-based
Markov chain.
The summation of the state probabilities for the states

generated by the algorithm that represent failure-free opera-
tion provide an accurate estimation of the system reliability.
A state is defined as being failure-free if resource allocation
is successful when the system is in that state. In contrast,
a failed state represents the condition in which a resource
allocation cannot be satisfied because of a resource failure
that occurred before the system entered that state.
The process for reliability modeling and reliability as-

sessment using domain-based reliability modeling is as fol-
lows:

1. Define system state and required input parameters,

2. Run the algorithm to generate a test suite,

3. Execute the generated test suite to obtain pass/fail con-
ditions for each test case,

4. Use the domain-based reliability model with steady-
state probability distribution p(n) for reliability assess-
ment.

In the domain-based reliability modeling approach, we
let the set of states that have been tested be denoted by
1, 2, . . . , z, with si

s denoting the intended state correspond-
ing to the ith test case. Then the software reliability after a
deterministic state testing algorithm application is given by:

R[p, S](P) = 1−

z∑
i=1

p(i)α(i) (5)

where,

α(i) =

{
0 if P (i) = si

s

1 otherwise.

The process for reliability modeling using system execu-
tion time-based modeling is as follows:

1. Define failure-based system state F1 and execute the
algorithm to generate a test suite TF1,

2. Use a Markov chain solver to obtain the transient so-
lution of the Markov chain, for the specified system
execution time,

3. Define resource usage-based system state R1 and exe-
cute the algorithm to generate a test suite TR1,

4. For each state R1S in the test suite TR1, evaluate
pass/fail condition for the state R1S for each state in
test suite TF1.

5. To obtain the reliability assessment for the system, we
compute the weighted sum of the state probabilities
that are failure-free. This step consists of the appli-
cation of Bayes Theorem.

The transient solution of the failure-based Markov chain
for a given system execution time, creates a probability dis-
tribution that is used to compute the overall probability for
each state of the resource usage Markov chain. In Equa-
tion 6, the term pt(j) is obtained from the transient solution
of the failure-based Markov chain for a given system exe-
cution time t. α(i, j) is the pass/fail assessment for the re-
source usage test case i for the failure-based Markov chain
state j. p(i|j) is the steady state probability of the resource
usage Markov chain state i conditioned on the occurrence
of the resource failure represented by failure state j.
In the system execution time-based reliability modeling

approach, we let the set of failure-based states that have
been tested be denoted by 1, 2, . . . , y. We let the set of re-
source usage-based states that have been tested be denoted
by 1, 2, . . . , z. We let sij denote the intended state corre-
sponding to the ith resource usage-based test case, when
resource failure j is active.

47

R[p, S, t](P) = 1−

z∑
i=1

y∑
j=1

p(i|j)pt(j)α(i, j) (6)

where,

α(i, j) =

{
0 if P (i, j) = sij

1 otherwise.

In our approach, both resource usage-based and failure-
based test cases are derived from the associated Markov
chains. Therefore, we use i to denote both test cases and
their associated Markov chain states. When we apply the
decomposition assumption to the solutions of the failure-
based Markov chain and the resource usage-based Markov
chain, p(i|j) = p(i), as the solution of the resource usage-
based Markov chain is independent of the solution of the
failure-based Markov chain. Therefore, we can rewrite
Equation 6 as Equation 7 and the software reliability, for
a given execution time t, after a deterministic state testing
algorithm application is given by:

R[p, S, t](P) = 1−

z∑
i=1

p(i)

y∑
j=1

pt(j)α(i, j) (7)

5 Empirical Results

In this section we apply our new algorithm to generate
test cases and assess the reliability of two systems which
are similar to actual large industrial systems that we have
worked with. Recalling that the state (0, 0, ...0) is called
the ok state because no resources have failed, the first ex-
ample represents a system with five operations and a steady
state probability of being in the ok state of 0.869. The sec-
ond example represents a system with three operations and
a steady state probability of being in the ok state of 0.995.

5.1 Example 1

Table 1 contains the resource allocation and deallocation
rates, while Table 2 contains the estimated failure and repair
rates for this sample system.
Failure rates for the most critical function of the example

is assumed to be 1 failure per 1000 hours and for the other
functions, the failure rate is assumed to be 5 failures per
1000 hours. We assume the maintenance process is unified
and most functions will be repaired in 8 hours, except that
the most critical function will get highest priority and so be
repaired in 4 hours. When we applied our algorithm with
the data shown in Table 2, the following test suite charac-
teristics for the failure-based Markov chain were observed:

1. ok state probability is 0.869

2. Total probability mass covered is 1.0

3. Number of test cases needed for probability mass cov-
erage of 1.0 is 2,002

4. Number of test cases needed for probability mass cov-
erage of 0.99999 is 39

5. Number of test cases needed for probability mass cov-
erage of 0.9999 is 26

6. Number of test cases needed for probability mass cov-
erage of 0.999 is 14

7. Number of test cases needed for probability mass cov-
erage of 0.99 is 5

For the 0.99 probability mass coverage the test case config-
uration and the test case probabilities for the 5 test cases are
shown in Table 3.
For the 0.999 probability mass coverage, the test case

configuration and the test case probabilities for the 9 addi-
tional test cases required to cover 0.999 are shown in Ta-
ble 4.
Note that the first operation has a lower failure rate and

a higher repair rate and therefore a lower probability of oc-
currence. Therefore, the failure modes investigated do not
include the failure of the first operation as shown in Table 3
and Table 4.
We are now ready to determine test cases based solely

on the operational usage of the system. This is known as
the resource usage Markov chain, and it is derived from the
resource allocation and deallocation rates contained in Ta-
ble 1. The total number of test cases that were generated
by our algorithm, for the resource usage Markov chain test
suite, based on the selected value of ε and the target prob-
ability mass coverage, was 24,492 and the total probability
mass coverage associated with these 24,492 test cases was
0.964. The probability mass associated with the idle state
p0 = (0, 0, 0, 0, 0), was 0.00000005. For Example 1, the
five most likely to occur resource configurations for the re-
source usageMarkov chain are shown in Table 5, and would
therefore be selected as test cases.
We now show the application of Equation 7 to Example 1

for the most probable resource usage test case, (9, 2, 2, 1, 0),
for which the resource usage-based Markov chain steady
state probability is 0.02. We evaluate Equation 7 for the
0.99 reliability objective case, shown in Table 3, which has
five failure-based states.
We assume for illustration purposes, that test case

(9, 2, 2, 1, 0), passed for resource failure conditions
(0, 0, 0, 0, 0), (0, 0, 0, 0, 1), and (0, 0, 0, 1, 0). That means
we assume that the resource allocation requests for the

48

Resource Type Avg Arr Rate (calls/min) Avg Hldg Time (Minutes)
OP1 3.3 3.0
OP2 0.823 3.0
OP3 0.588 2.0
OP4 0.297 1.0
OP5 0.588 5.0

Table 1. Example 1: Resource Allocation and Deallocation Rates

Resource Type Failures/hour Average Repair Time (Hours)
OP1 0.001 4.0
OP2 0.005 8.0
OP3 0.005 8.0
OP4 0.005 8.0
OP5 0.005 8.0

Table 2. Example 1: Resource Failure and Repair Rates

N1 N2 N3 N4 N5 Prob
0 0 0 0 0 0.869
0 0 0 0 1 0.035
0 0 0 1 0 0.035
0 0 1 0 0 0.035
0 1 0 0 0 0.017

Table 3. Example 1: Test Suite for 0.99 Probability Mass Coverage based on Resource Failure and
Repair Rates

N1 N2 N3 N4 N5 Prob
0 0 0 1 1 0.0014
0 0 1 0 1 0.0014
0 0 1 1 0 0.0014
0 0 0 0 2 0.0007
0 0 0 2 0 0.0007
0 0 2 0 0 0.0007
0 1 0 0 1 0.0007
0 1 0 1 0 0.0007
0 1 1 0 0 0.0007

Table 4. Example 1: Test Suite for 0.999 Probability Mass Coverage based on Resource Failure and
Repair Rates

49

resource usage test case (9, 2, 2, 1, 0), were correctly ex-
ecuted for these resource failure conditions. Therefore
α((9, 2, 2, 1, 0), j) is set to 0 for these states.
In addition, we assume that test case (9, 2, 2, 1, 0)

failed for the resource failure conditions (0, 0, 1, 0, 0) and
(0, 1, 0, 0, 0). Therefore, we assume that the resource allo-
cation requests for the resource usage test case (9, 2, 2, 1, 0)
were not correctly executed for these resource failure con-
ditions.
It then follows that α((9, 2, 2, 1, 0), j) is set to 1 for

these states. The application of Equation 7 for the state
(9, 2, 2, 1, 0), for time t = 0, for Example 1 is shown in
Equation 8.

R[p, (9, 2, 2, 1, 0), 0](P) = 1−0.02×(0.035+0.017) (8)

Therefore, instead of deducting the total state probability
for state (9, 2, 2, 1, 0), we instead only deduct the cases un-
der which the test case failed. Assuming that this test case
failed only under the failure conditions (0, 0, 1, 0, 0) and
(0, 1, 0, 0, 0), we deduct (0.035+0.017)×0.02 = 0.00104.
The reliability due to the observed failures for test case
(9, 2, 2, 1, 0) is therefore estimated from Equation 8 to be
1 - .00104 = 0.99896.

5.2 Example 2

Table 6 contains the resource allocation and deallocation
rates, while Table 7 contains the estimated failure and repair
rates for the second example.
The failure rate for the most critical function of the sec-

ond system is assumed to be 0.1 failure per 1000 hours and
for the other functions the rate is assumed to be 1 failure per
1000 hours. We assume the maintenance process is unified
and most functions will be repaired in 4 hours, although
again it is assumed that the most critical function will get
highest priority and so be repaired in 1 hour.
When we applied our algorithm with the data shown

in Table 7, the following test suite characteristics for the
failure-based Markov chain were observed:

1. ok state probability is 0.995

2. Total probability mass covered is 1.0

3. Number of test cases needed for probability mass cov-
erage of 1.0 is 220

4. Number of test cases needed for probability mass cov-
erage of 0.99999 is 4

5. Number of test cases needed for probability mass cov-
erage of 0.9999 is 3

6. Number of test cases needed for probability mass cov-
erage of 0.999 is 3

7. Number of test cases needed for probability mass cov-
erage of 0.99 is 1

The most likely test cases and their associated test case
probability are shown in Table 8. For the total probabil-
ity coverage of 0.999 and 0.9999 the three most likely test
cases needed to be exercised.
The resource usage Markov chain for the second system

was derived from the resource allocation and deallocation
rates contained Table 6. The total number of test cases in
the resource usage Markov chain test suite was 1,275 and
the total probability mass coverage associated with these
1,275 test cases was 1.0. The probability mass associated
with the idle state p0 = (0, 0, 0), was 0.18. For Example
2, the five most probable test cases for the resource usage
Markov chain are shown in Table 9.
We now show the application of Equation 7 to Example 2

for the most probable resource usage test case, (0, 1, 0), for
which the resource usage-based Markov chain steady state
probability is 0.2. We evaluate Equation 7 for the 0.99999
reliability objective case, shown in Table 8, which has four
failure-based states. We assume that test case (0, 1, 0)
passed for resource failure conditions (0, 0, 0), (0, 0, 1), and
(0, 1, 0). Therefore, we assume that the resource allocation
requests for the resource usage test case (0, 1, 0), were cor-
rectly executed for these resource failure conditions. It then
follows that α((0, 1, 0), j) is set to 0 for these states.
In addition, we assume that test case (0, 1, 0), failed for

resource failure condition (0, 0, 2). Therefore, we assume
that the resource allocation requests for the resource usage
test case (0, 1, 0) were not correctly executed for this re-
source failure condition. Therefore α((0, 1, 0), j) is set to
1 for this state. The application of Equation 7 for the state
(0, 1, 0), for time t = 0, for Example 2 is shown in Equa-
tion 9.

R[p, (0, 1, 0), 0](P) = 1− 0.2× 0.00000796 (9)

Therefore, we observe that instead of deducting the total
state probability of state (0, 1, 0) due to the observed fail-
ure, (0.00000796) × 0.2 = 0.000001592 is deducted. It
then follows that the reliability due to the observed failures
for test case (0, 1, 0) is estimated from Equation 8 to be
0.999998408.

6 Conclusions

In this paper we have extended our automated test case
generation approach introduced in [3] to define a test suite
that includes both the most likely to occur inputs, and also

50

N1 N2 N3 N4 N5 Prob
9 2 2 1 0 0.002
10 2 2 1 0 0.00199
9 3 2 1 0 0.00197
10 3 2 1 0 0.00195
8 2 2 1 0 0.00183

Table 5. Example 1: Five Most Probable Test Cases based on Resource Allocation and Resource
Deallocation rates

Resource Type Avg Arr Rate (calls/min) Avg Hldg Time (Minutes)
OP1 0.01667 30.0
OP2 0.037 10.0
OP3 0.06 30.0

Table 6. Example 2: Resource Allocation and Deallocation Rates

Resource Type Failures/hour Average Repair Time (Hours)
OP1 0.0001 1.0
OP2 0.001 4.0
OP3 0.001 4.0

Table 7. Example 2: Resource Failure and Repair Rates

N1 N2 N3 Prob
0 0 0 0.995
0 0 1 0.00398
0 1 0 0.000995
0 0 2 0.00000796

Table 8. Example 2: Most Likely Probability Mass Coverage based on Resource Failure and Repair
Rates

N1 N2 N3 Prob
0 1 0 0.201
0 1 1 0.120
0 2 0 0.111
0 0 1 0.109
0 2 1 0.067

Table 9. Example 2: Five Most Probable Test Cases based on Resource Allocation and Resource
Deallocation rates

51

the most likely to fail inputs. Our new algorithm takes ad-
vantage of Markov chain decomposition theory [7] to de-
compose the state space into two Markov chains that are
modeled and solved independently.
We have applied our concepts to two sample systems,

which are similar to large industrial systems we have
worked with [3]. We have demonstrated that our algorithms
are able to reduce the required modeling effort significantly
according to the target reliability objective, provided the as-
sumptions made are realistic.
For the first example, the number of test cases generated

for the failure-based Markov chain was reduced from 2,002
for the reliability objective of 1.0 to 5 for the reliability ob-
jective of 0.99. For the reliability objective of 0.99999 only
39 test cases were required. For the second example, the
number of test cases generated for the failure-basedMarkov
chain was reduced from 220 for the reliability objective of
1.0 to 1 for the reliability objective of 0.99. For the reliabil-
ity objective of 0.99999 only 4 test cases were required.
We are currently designing an approach to certify a very

large mission-critical system for reliability and we are plan-
ning to use the reliability estimation algorithm introduced
in this paper to generate the resource usage test cases and to
derive the plots of the reliability metric as a function of sys-
tem execution time. This will represent a real usage of the
approach described in this paper. It will allow us to collect
empirical data to verify the Poisson distribution for failure
events and the exponential distribution for failure repairs,
and to evaluate the impact of these assumptions on the size
and complexity of our automatically generated test suites.

References

[1] A. Avizienis and D. E. Ball. On the achievement of a
highly dependable and fault-tolerant air traffic control
system. IEEE Computer, 1987, pp 84-90.

[2] A. Avritzer and B. Larson. Load testing software
using deterministic state testing. In T. Ostrand and
E.J.Weyuker, editors, Proc. of the International Sympo-
sium on Software Testing and Analysis(ISSTA). ACM
Press, June 1993, pp. 82-88.

[3] A. Avritzer and E. J. Weyuker. The Automatic Gen-
eration of Load Test Suites and the Assessment of the
Resulting Software. IEEE Trans. on Software Engineer-
ing, Sept 1995, pp. 705-716.

[4] A. Avritzer, J. Ros and E. J. Weyuker. Reliability Test-
ing of Rule-Based Systems. IEEE Software, September
1996, pp. 76–82.

[5] A. Avritzer, F. P. Duarte, R. M. M. Leo, E. S. Silva,
M. Cohen, D. Costello. Reliability Estimation for Large
Distributed Software Systems. Cascon. October 2008.

[6] M. O. Ball. Computational Complexity of Network Re-
liability Analysis: An Overview. IEEE Trans. on Reli-
ability, Vol. R-35, NO.3, August, 1986, pp. 230-238.

[7] P. J. Courtois and P. Semal. Bounds for the Positive
Eigenvectors of NonnegativeMatrices and for their Ap-
proximations by Decomposition. J. ACM, vol. 31, no. 4,
pp. 804–824, 1984.

[8] V. Cortelessa, H. Singh, and B. Cukic. Early Reliability
Assessment of UML based Software Models. Proc. of
the Third International Workshop on Software and Per-
formance, WOSP 2002, Rome, Italy, 2002, pp 302-309.

[9] C. Kallepalli and J. Tian. Measuring and Modeling Us-
age and Reliability for Statistical Web Testing. IEEE
Transactions on Software Engineering, Vol. 27, No. 11,
November 2001.

[10] E. de Souza e Silva, R. M.M. Leão, Richard R. Muntz,
Ana P. C. da Silva, Antonio A. de A. Rocha, Flávio P.
Duarte, Fernando J. S. Filho, Guilherme D. G. Jaime,
Modeling, analysis, measurement and experimentation
with the Tangram-II integrated environment. In Proc.
of Int. Conf. on Performance EvaluationMethodologies
and Tools (ValueTools’06), 2006.

[11] J. A. Whittaker and M. G. Thomason. A Markov
Chain Model for Statistical Software Testing. IEEE
Trans. Software Eng., vol. 20, no. 10, pp 812-824, Oct.
1994.

[12] D. M. Woit. A Framework for Reliability Estima-
tion. Proceedings of the 5th International Symposium
on Software Reliability Engineering. Nov. 1994, pp. 18
- 24.

[13] J. Yan, J. Wang, and H-C. Chen. UML Based Statis-
tical Testing Acceleration of Distributed Safety Criti-
cal Software. Proceedings of the Second International
Symposium on Parallel and Distributed Processing and
Applications, Hong Kong, China, Dec. 2004, Springer.

52

