
Automated Test Program Generation for an Industrial Optimizing

Compiler

Chen Zhao, Yunzhi Xue, Qiuming Tao, Liang Guo, Zhaohui Wang

Institute of Software, Chinese Academy of Sciences

P.O. BOX 8718, Beijing, China

zhaochen@iscas.ac.cn, yunzhi,qiuming@itechs.iscas.ac.cn

guoliang@pubmail.iscas.ac.cn, wzh@itechs.iscas.ac.cn

Abstract

This paper presents joint research and practice on
automated test program generation for an industrial
compiler, UniPhier, by Matsushita Electric Industrial
Co., Ltd. (MEI) and Institute of Software, Chinese
Academy of Sciences (ISCAS) since Sept. 2002. To
meet the test requirements of MEI’s engineers, we pro-
posed an automated approach to produce test programs
for UniPhier, and as a result we developed an integrated
tool named JTT. Firstly, we show the script-driven
test program generation process in JTT. Secondly, we
show how to produce test programs automatically, based
on a temporal-logic model of compiler optimizations,
to guarantee the execution of optimizing modules un-
der test during compilation. JTT has gained success
in testing UniPhier: even after benchmark testing and
comprehensive manual testing, JTT still found 6 new
serious defects.

1 Introduction

This paper shows research and practice on auto-
mated test program generation for an industrial com-
piler: a script-driven test program generation process,
a formal model-based approach for generating test pro-
gram for optimizing modules in any compiler, as well
as a brief report of an industrial application.

Matsushita Electric Industrial Co., Ltd. (MEI) has
developed an EC++ compiler, named UniPhier [12],
for its new processor used in its embedded products.
To improve its performance, a large number of compiler
optimizations have been implemented in UniPhier. Ob-
viously, UniPhier, especially the compiler optimiza-
tions, need to be fully tested to ensure its correctness.

Benchmarks and public test suites are often used to

test compilers. Though they can provide a standard
evaluation on a compiler’s performance or correctness,
they cannot be used to test compiler-specific features,
like optimizations, data structures, compilation direc-
tives, and so on, especially when these features are in-
terleaved. To test UniPhier thoroughly, MEI’s test en-
gineers have to prepare a large number of programs.
But, in practice, the manual preparation of such test
programs is labor-intensive, and test efficiency and test
quality are difficult to achieve.

In September of 2002, MEI and the Institute of Soft-
ware, Chinese Academy of Sciences (ISCAS) initiated
a joint project for developing a testing tool to test Uni-
Phier automatically. We have achieved significant im-
provement in testing UniPhier, and delivered an auto-
mated tool named JTT (Jade Testing Tool, where Jade
Hotel is the location launching this project).

By setting several flexible parameters in a domain-
oriented script, JTT can generate any required num-
ber of programs described by the parameters automati-
cally. The script in JTT is designed to specify test engi-
neers’ requirements for test programs in detail. It pro-
vides test engineers with flexibility to produce arbitrary
legal programs. In contrast, performance benchmarks,
public test suites and some grammar-based generation
approaches [2, 11, 8, 10, 4] can only provide fixed types
of programs.

The process of test program generation in JTT is
driven by a script that includes two levels: High Level
Script (HLS) and Middle Level Script (MLS). HLS is
a simple and abstract specification for parameters of
the desired programs, such as compiler optimization
under test, data types to be used, etc. MLS is a tem-
plate containing some abstract statements in desired
program and their relationships. HLS is mainly for
test engineers, while MLS is an intermediate format
used to support both translating from HLS to test pro-

AST’09, May 18-19, 2009, Vancouver, Canada
978-1-4244-3711-5/09/$25.00 © 2009 IEEE ICSE’09 Workshop36



grams and writing test programs for special test re-
quirements. Test requirements are specified in HLS,
which are then translated automatically by JTT into
test programs. Final programs are produced according
to the template in the MLS, and therefore obey the
specification in the HLS.

A compiler optimization can be specified as a name
in HLS, and the transformation process from a name
to a program template in MLS is based on temporal
logic. A temporal logic formula is used to describe
action and prerequisites of optimizations, which help
construct test programs automatically. The correct-
ness of optimization specification by temporal logic is
discussed in [9]. We chose CTL [9] to formally spec-
ify optimizations. Based on the formalization, we con-
struct a Node Control Graph (NCG) which represents
the semantics of the specification. A NCG is com-
posed of nodes labeled with temporal logic formulas
and edges labeled with data constraints. By expand-
ing the formulas and satisfying the data constraints, a
NCG is converted into a program template specified in
MLS. Also, we propose an approach to produce loop-
independent and loop-carried data dependence within
loop nests, which are necessary for loop optimizations.
The formal specification of compiler optimizations and
the derived generation process are transparent to HLS
and MLS scripts.

JTT has succeeded in testing UniPhier. Before us-
ing JTT, UniPhier had been tested using some pop-
ular benchmark, test suites and manually coded test
programs. Even so, JTT still found six new serious
defects, and improved average statement coverage of
seven important optimizing modules in UniPhier from
37% to 72%.

This paper is organized as follows. Section 2 pro-
vides an overview of test program generation process
in JTT. Then we discuss a temporal logic based test
program generation approach for both scalar optimiza-
tions and loop optimizations in section 3. Section 4
reports experiences in testing UniPhier. Concluding
remarks are made in section 5.

2 Automated Test Program Genera-

tion in JTT

JTT is composed of five components: test program
generation, test data management, test execution, test
result analysis, and system configuration. Test execu-
tion and test program generation are two key compo-
nents of JTT. Test execution compiles test programs
using the compiler under test and a trusted reference
compiler (such as GCC). If both are successful then
execute the binary code respectively and compare out-

puts. Test failure is reported when one of the compi-
lations fails or the outputs are not same. This method
is easy to automate and quite efficient. In this paper
we focus on test program generation, which involves
special techniques.

To generate test programs automatically, we design
two levels of script languages: HLS and MLS. The for-
mer is provided to test engineers to specify test pro-
grams and the latter is used as an intermediate rep-
resentation in the process of test program generation.
Figure 1 shows the two-phase of test program gener-
ation: generation of MLS scripts according to HLS
scripts and generation of test programs according to
MLS scripts. The two phases are accomplished by two
translators, H2M (HLS to MLS) and M2P (MLS to
Program) respectively .

Figure 1. The Process of Test Program Gen-

eration in JTT

HLS provides parameters for users to customize and
specify test programs, and many parameters have mul-
tiple possible values. Test engineers can specify values
of these parameters through a GUI editor and the GUI
editor will automatically produce HLS scripts (see Fig-
ure 2).

Figure 2. An Example HLS Script

HLS contains three parts: Element, Structure, and
Content. Element part specifies basic elements of a
test program such as variable types and operators that
should be used. Variable types include both primitive
types of the source language such as int and char, and
compound types such as array and pointer.

Structure parts specify how many branch structures
and loop structures are used in test programs. Content

37



part specifies contents related to optimizations. There
are two kinds of optimizations to be tested: scalar op-
timizations that do no involve nested loops, and loop
optimizations that involve nest loops. Besides these
general optimizations, UniPhier also introduces a spe-
cial set of optimizations directed by optimization direc-
tives (pragma directives). To test an optimization, test
engineers only need to list its name in a HLS script.

A MLS script contains same parts as a HLS script
except that the Structure part of a MLS script con-
tains more details on test programs. The Structure
part can specify how the desired branch statements and
loop statements are arranged in test programs. For ex-
ample, the parameter Times of LOOP of the example
script in Figure 3 specifies the number of iterations
in a loop. These parameters are transparent to test
engineers, and are used to generate test programs for
optimizations.

Figure 3. An Example MLS Script

MLS scripts can be generated automatically by the
translator H2M according to HLS scripts. H2M im-
plements the following functions: 1) generating global
control structures according to parameters in HLS
scripts; 2) generating special local control structures,
such as perfect nested loops, for optimizations, and in-
serting the local structures into the global structures;
3) copying all undetermined parameters of Element and
Content parts of the HLS script into the corresponding
parts of MLS scripts.

M2P generates test programs from MLS scripts. In-
side M2P, quite a few fundamental functions for con-
structing a complete test program are implemented.
All these functions fall into the following categories: 1)
generating symbolic variables and maintaining the vari-
able list; 2) generating various expressions and state-
ments; 3) conducting some necessary pre-computation
to ensure the generated programs can be executed
without errors such as infinite loops; 4) generating and
maintaining internal representations of test programs;

5) translating the test program’s internal representa-
tions into real test programs.

Based on the above functions, M2P can generate
complete test programs, but this is not enough for test-
ing compiler optimizations. To test various optimiza-
tions, complicated statements need to be generated.
For the optimizations directed by pragma directives, it
is relatively straightforward, because relations among
the statements to be generated are simple. For general
optimizations, including scalar optimizations and loop
optimizations, it is more difficult. We will discuss this
in section 3.

3 Model-based Test Program Genera-

tion for Optimizing Modules

Model-based testing is “a kind of software testing in
which test cases are derived in whole or in part from a
model that describes the system under test” [3]. Mod-
eling a large complex system, like an optimizing com-
piler, can be difficult. But modeling key components
in such a large system, like optimizing modules in a
compiler, is easier and more practical. In this section
we show how to model compiler optimizations using
temporal logic and how to produce test programs for
both scalar and loop optimizations.

Effectively testing an optimization requires the exe-
cution of the corresponding optimizing modules when
a test program is compiled. So the test programs
must have the elements that an optimization manip-
ulates and the prerequisites that the optimization can
be safely applied. We call such programs focused ones
for an optimization because they can guarantee the ex-
ecution of the optimization module during compilation.
Notably, the requirements for focused programs include
both program structure and expression in statements.
We use temporal logic to formalize such requirements
and produce focused test programs based on the formal
specifications.

Temporal-logic-based test program generation can
be automated using the algorithms illustrated in this
section. Moreover, it allows us to produce test pro-
grams that are hard to enumerate by hand. For in-
stance, Dead Code Elimination (see section 3.1) in-
volves an assignment to a variable x, another assign-
ment to the same variable, and a reference to x. Each
of the 2 or 3 statements can be located in a sequence
block, a branch block, a loop block and even in an
expression. Enumerating all possible combinations of
different locations of the 2 or 3 statements by hand is
difficult and some combinations may be omitted. But
with the aid of model-based test program generation, it
is easy to enumerate all combinations, which improves

38



test efficiency further.
The specification and derived generation process are

transparent to HLS and MLS scripts. A test engineer
only needs to specify the name of the optimization they
would like to test in HLS with some necessary param-
eters, without considering any details of test program
generation.

3.1 Overview of Temporal Logic based
Generation

Computation Tree Logic (CTL) is a logic to describe
a transition system. David Lacey first used CTL to
formally specify scalar optimizations [9]. We have ex-
tended CTL to describe loop optimizations [15].

A transformation is denoted by a conditional rewrit-
ing rule I ⇒ I ′ if Φ, where I is a set of CTL formulas
about instructions derived directly from the original
program, I ′ is the transformed version of I after opti-
mization, and Φ is called a side condition which is a
CTL formula that explains why the optimization can
be safely applied. For example, Dead Code Elimination
(DCE) can be denote by follows:

n : (x := e)⇒ rm stmt(n)

if n |= ¬EX(E(¬def(x) U use(x) ∧ ¬node(n)))

Where n is the label of a statement, rm stmt() removes
a statement from the original program. The above
formula uses several logic quantifiers in CTL: E is a
path quantifier, and X and U are temporal quantifiers.
It specifies that DCE removes assignment statements
that assign a never used value if there does not exist
a path that can go through a node that uses x with-
out a different instruction re-assigning to x first. More
specifications of optimizations can be found in [9].

The specifications can be mapped to nodes in the
control flow graph and edges labeled with formulas con-
necting them. These nodes and edges together show a
simplified control flow graph that is a template for all
desired programs. In the rest of this paper we name it
Node Control Graph (NCG) for convenience. By sat-
isfying the formulas at edges, NCG can be converted
into a program template in MLS. The process is illus-
trated in Figure 4.

In Figure 4, normalization of side condition trans-
forms the original side condition equivalently for conve-
nience of the construction of the NCG; construction of
NCG generates key nodes and edges; construction of
CFG enriches the complexity in resulting code by con-
structing a CFG according to NCG; expansion of tem-
poral quantifiers expands formulas on nodes in CFG

to all possible nodes along some computational paths
according to the requirements of path quantifiers and

Normalization of 

Side Conditions

Construction

 of NCG

Construction

of CFG
Satisfactions of

Data Constraints
Expansion of

Temporal Quantifiers

Formal Specification

of Optimizations

Program

Template in MLS

Figure 4. Process of Translating a CTL For-
mula to Program Template

state quantifiers; satisfaction of data constraints gener-
ates necessary expressions and places them in nodes to
produce a program template. Figure 5 shows a step-by-
step process for DCE from CTL formula to a program
template in MLS.

Loop optimizations involve data dependence within
loop nests, but the data dependence is related to the
relative execution order of statements in loop nests,
rather than the sequential order in a static CFG. There-
fore, generating data dependence requires a special
technique. Except for that, the techniques of gener-
ation test programs for scalar optimization and loop
optimization is the same. We discuss test program gen-
eration for scalar optimizations in 3.2, and propose a
special technique for generation of data dependencies
in loop nests in 3.3.

Not only test programs for an optimizing module
applies an optimization can be generated by this tech-
nology, but that for it does not apply an optimization
can be generated by the same technology. In this pa-
per, we focus on the former.

3.2 Test Program Generation For Scalar
Optimizations

In the above steps, construction of the CFG and sat-
isfaction of data constraints are quite straightforward.
The remaining steps are discussed below.

3.2.1 Normalization of Side Conditions

It is difficult to generate test programs based on the
original side conditions directly, for two reasons: 1)
the ¬ operator prevents the generation since we cannot
construct an object that does not “exist”; 2) multiple
possibilities exist in some formulas which makes gen-
eration more complicated. Before the generation, we
transform the original side conditions to simplify the
generation.

We use 10 rules for equivalence transformations [15].
The rules can be iteratively employed to eliminate the

39



n
:
(x

:=
e
)
⇒

r
e
m

o
v
e

s
ta

te
m

e
n
t

n

if
n
|=

¬
E

X
(E

(¬
d
e
f
(x

)
U

u
s
e
(x

)
∧
¬
n
o
d
e
(n

))
)

(a) DCE
Formula

entry stmt(nop)

exit stmt(nop)

n stmt(x:=e)

n' ( ( ) ( ))AG use x node n¬ ∨

(true, all)

(true, all)

(true, all)

(b) NCG of A Possible
DCE Instance

n2

n3

n5

n4 n6

n7

n8

n12

n10

n13

n9

n11entry

stmt(nop)

exit

n0 n1

( ( ) ( ))AG use x node n¬ ∨

stmt(nop)

stmt(x:=e)

(c) CFG Labeled with Temporal-
Logic Formula

n2

n3

n5

n4 n6

n7

n8

n12

n10

n13

n9

n11entry

stmt(nop)

exit

n0 n1

( ) ( )use x node n¬ ∨stmt(x:=e)

( ) ( )use x node n¬ ∨

( ) ( )use x node n¬ ∨

( ) ( )use x node n¬ ∨

( ) ( )use x node n¬ ∨( ) ( )use x node n¬ ∨

( ) ( )use x node n¬ ∨

( ) ( )use x node n¬ ∨(
)

(
)

u
se

x
n
o
d
e

n
¬

∨

( ( ) ( )) ( )use x node n stmt nop¬ ∨ ∧

(d) Program Template

Figure 5. Example Generation for DCE

above cases. Generally these rules should be applied
in the following order: X operator, operator merge, ¬
operator, and then W operator.

There are some ∨ operators in the original side con-
ditions specified as CTL formulas, which mean the con-
ditions can be met when any sub-condition holds. After
the equivalence transformation, some extra ∨ operators
may be introduced. It is clear that multiple possibili-
ties will make test program generation more difficult.
We divide these sub-conditions into a set of single ones
of which a single condition meets a single case by the
rules in [15].

3.2.2 Construction of Node Control Graph

The following are some formal definitions about NCGs.
Definition 1 A critical node is defined as

cn = (id, type, vp) where id is a unique name in
the basic block, type denotes node type with type ∈
{Entry, Seq, PreLoop, LoopHead, LoopBreak, LoopTail,

OutLoop, Branch, EndBranch, Exit, Undefined},
and vp is a CTL formula associated with cn. All cn

nodes make a set CN .
Definition 2 A property for a critical edge is de-

fined as P = (F ,Q) where F is a CTL formula that
should be met by nodes along a computational path.
Q ∈ {ALL, EXIST}. If Q = ALL, all nodes along all
paths must meet F . If Q = EXIST, all nodes along at
least one path must meet F .

Definition 3 A critical edge is defined as ce =
(i, j, isreal,P), where i is the source node and j is the
destination node of the edge, and P is defined as above,
and isreal ∈ {TRUE, FALSE}. If isreal = TRUE,
this edge is called a realedge. It cannot be replaced

by another edge and P does not play any role in this
case. Otherwise, this edge is called a virtualedge and
can be replaced by one or more real edges. In other
words, there may be more than one node between the
source node and the destination node of a virtual edge.
All ce edges make up a set CE.

Definition 4 A node control graph NCG is defined
as a directed graph NCG = (CN, CE), where CN is
defined as Definition 1, CE as Definition 3.

According to Definition 4, a NCG includes a set of
critical nodes and a set of critical edges. We start the
construction with an initialization for CE and CN .

Initially, CE and CN are empty. Two critical nodes,
Entry denoted by (entry, Entry, stmt(skip)) and Exit
denoted by (exit, Exit, stmt(skip)) are added to CN .
Then suppose there are k nodes to be modified, de-
note by n0, n1, ..., nk−1, and corresponding statements
stmt(si)(0 ≤ i < k). For any 0 ≤ i < k, a crit-
ical node of the form (ni, undefined, stmt(si)) is also
inserted into CN .

Side conditions fall into two categories according to
path quantifiers and state quantifiers. Without any
quantifier, construction of NCG is straightforward.
With path quantifiers or state quantifiers, a condition
involves at least two nodes in control flow graph. The
following algorithm is to construct NCG according to
such a formula.

Algorithm 1 The variable c denotes a condi-
tion under processing, and the routine quant(c) gives
the quantifier specified in the condition, the routine
path (c) extracts the path quantifier where path (c) ∈

(A, E,
←−
A,
←−
E ), the routine state(c) extracts state

quantifier where state(ci) ∈ (G, F, none). Temporal

40



variable p denotes the formula before the U operator,
and q denotes the one just after the U operator.

if quant(c) = none then

cn(n) := (id(n), type(n), vp(n)∧p)
else

CN := CN ∪ (c, undefined, q)
if path(ci) = A then

e :=(n, c, false, (p,ALL))
elseif path(ci) = E then

e :=(n, c, false, (p,EXIST))

elseif path(ci) =
←−
A then

e :=(c, n, false, (p,ALL))

elseif path(ci) =
←−
E then

e :=(c, n, false, (p,EXIST))
endif

CE := CE ∪ {e}
endif

So far, all the necessary information about why a
given optimization can be safely applied is presented in
the NCG. To make NCG a strongly connected graph
like a CFG, we need to connect the Entry node to a
node whose incoming degree is 0, and connect the exit
node to a node whose outgoing degree is 0.

3.2.3 Expansion of Temporal Operators

So far, we have not covered the temporal logic formu-
las associated with nodes in the NCG. These formu-
las determine the property of more than one node in
the CFG, but are associated with only a single node.
So the formulas have to be expanded to accommodate
all possible nodes along some computational paths ac-
cording to the requirements of the path quantifiers and
state quantifiers.

To achieve this, we construct a computational path
from a node to the Exit node of the CFG. It is no-
table that a path of this kind differs from a computa-
tional path in CTL, which is a path of infinite length.
To avoid any confusion, a computation path from a
node to the Exit node is called Simple Computational
Path (SCP ). A SCP is defined as (n0, n1, ..., nk, exit),
where n0 is any node but the Exit node, and for any
0 ≤ i, j ≤ k, ni differs nj . The difference means that
for any cycle in CFG, nodes along this cycle appear
only once in a SCP .

According to this definition, we can easily extract
a SCP by traversing a CFG in depth-first order and
back-tracking when a node that is encountered a sec-
ond time. While visiting a node, we can distribute
the formula associated with it to all the nodes along a
SCP starting from it according to the path and tempo-
ral quantifiers. If path quantifiers and state quantifiers

are AG, we find all subsequent nodes and attaches the
required property to them. If the quantifiers are AF ,
EG or EF , a random strategy is used to determine
which paths and/or which nodes are selected to hold
the required property.

3.3 Data Dependence Generation in Loop
Nests

In UniPhier, many loop transformations have been
introduced to improve performance, similar to those
introduced in literature [7]. These loop transforma-
tions usually optimize nested loops based on data-
dependence analysis [1], and most of them requires spe-
cialized characteristics of data dependency within loop
nests.

There are three types of data dependence that af-
fect the validity of loop transformations: flow-, anti-,
and output- dependence [1], denoted by δf , δa, δo, re-
spectively. A data-dependence may also exist between
two execution instances of statements within a single
loop or nested loops. If the two instances are not inside
the same iteration of a loop, the dependence is called
a loop-carried dependence, otherwise it is called loop-
independent dependence. Loop-carried dependence is
usually represented by Dependence Distance Vector
(DDV) [1] and their three basic types are denote by
δV f , δV a, and δV o respectively in this paper.

To generate nested loops that satisfy specified data
dependence, we use the Process Graph [13] as a model
of nested loops. Process Graphs are suitable for repre-
senting program’s internal data-dependence, and they
are similar to the well-known model Program Depen-
dence Graph [6] except that Process Graphs exclude
programs containing unstructured jumps such as goto
statements. A Process Graph is a directed graph
G=(N, E), where N is the node set and E is the edge
set. In N there are two special nodes, the start node e
and the end node x. Other nodes in N represent com-
putation units, which can contain a single statement, a
boolean expression, or a single-entry-single-exit mod-
ule. Edges in E fall into two categories: solid edges
and dashed edges, representing control-dependence and
data-dependence respectively.

The generation process for loops with data-
dependence consists of three phases: 1) Construct con-
trol structure of the Process Graph of nested loops; 2)
Add valid data dependence relations between nodes in
the Process Graph; 3) Fill in the nodes of the Process
Graph with specific statements. Phase 2) and 3) are
the two key phases that generate the data-dependence.

In phase 2), before adding data dependence, a set of
valid DDVs that satisfy the formal specification in the

41



script should be generated. We implement it by an enu-
merative algorithm whose time complexity is high but
acceptable because the scale of the problem is small.

In phase 3), dependence construction includes con-
struction of loop-independent dependence and loop-
carried dependence. The process is as follows.

(1) Determine the type of loop-carried dependence.
Assuming there exists relation a S1δ

V S2 between nodes
S1 and S2. If there exists a node S3 and relation S1δ

oS3

holds, then the relation δV between S1 and S2 should
be determined as δV a. If relation S3δ

oS2 holds, then
the relation δV should be δV f . Otherwise we randomly
determine the type of δV .

(2) Determine all definition variables of each state-
ment. If there exists a relation δo between two state-
ments, then the two definition variables should be the
same, otherwise should be different.

(3) Construct loop-independent dependence. Rela-
tion δo is considered but only δf and δa need to be
handled. Assuming that the definition variable of S1 is
x and definition variable of S2 is y, if S1δ

f S2, add x
to the reference list of S2, and if S1δ

a S2, add y to the
reference list of S1.

(4) Construct loop-carried dependence. Assuming
that there is a loop-carried dependence between S1 and
S2, the corresponding DDV is [v1,v2,,vn], and defini-
tion variable of S1 is A[a1i1+c1][a2i2+c2][anin+cn]. If
the dependence is a flow-dependence, then we deter-
mine one reference item A[b1i1+d1][ b2i2+d2][bnin+dn]
according to the equations ck = bkvk+dk; ak = bk;
(1 ≤ k ≤ n) and add the item to the reference list
of S2. If the dependence is an anti-dependence, then
we determine the reference item according to the equa-
tions dk = akvk+ck; ak= bk; (1 ≤ k ≤ n) and add
them to the reference list of S2.

(5) Determine the right-hand expression of each
statement. Put all variables in the reference list and
other variables or constants into an expression with op-
erators such as +, -, *.

4 Testing UniPhier with JTT

JTT has been successfully applied in testing Uni-
Phier. In this section, we report test experience on test-
ing seven key optimizing modules in UniPhier. Among
them, M1, M2, and M3 implement general-purpose op-
timizations, while M4, M5, M6, and M7 implement op-
timizations related to UniPhier architecture (the names
of the modules are hidden because of business secret).

We specified test requirements, including the name
of optimizations under test, data types, compiler di-
rectives, and so on, by using HLS in JTT. These HLS
files were converted into EC++ programs automati-

cally. Each EC++ program is compiled by UniPhier
with an option to turn the optimization under test
on and a reference compiler without any optimization
turned on respectively. During compilation, statement
coverage for UniPhier was recorded. If UniPhier failed
the compilation but the reference compiler succeeded,
a bug was detected. Then, the binaries were executed
and the outputs were compared. If the outputs were
not exactly the same, a bug was detected.

Before using JTT, UniPhier has been tested with
benchmarks (SPEC CPU benchmark [14], EEMBC [5])
and public test suites (GCC test suite in version 3.4.6
and a test suite developed by MEI) for C/C++ compil-
ers. Table 1 shows the statement coverage of the seven
optimization modules by using benchmark and public
test suite. From Table 1 we can see that, with JTT,
statement coverage of the seven modules have all in-
creased. Notably, the statement coverage of M4-M7 for
benchmarks and public test suites are almost 0 because
they are not aware any details about UniPhier archi-
tecture. The overall statement coverage of the seven
modules has been improved from 37% to 72%.

M1 M2 M3 M4 M5 M6 M7
Benchmark
& Public
Test Suite

85% 18% 79% 0% 0% 1% 1%

With JTT 88% 54% 80% 63% 49% 68% 56%

Table 1. Comparison of Statement Coverage

of Optimizing Modules in UniPhier Without
and With JTT

UniPhier is also tested by more than 1,000 test pro-
grams written by test engineers in MEI. These test
programs concern on modules M4-M7, and UniPhier-
specific features in M1-M3. But because of the inter-
leaving of the optimizations, data types, compiler di-
rectives and so on, these test programs are not enough
for comprehensive testing. Another 6,000+ test pro-
grams produced by JTT are used to test UniPhier.
These test programs cover most features of the seven
modules in UniPhier. Six serious bugs have been found
by such test programs produced by JTT. The num-
ber of all new bugs in the optimizing modules found
by JTT accounts for 21% of the total number of bugs
found during testing.

5 Concluding Remarks

In this paper, we report three major contributions
for automated test program generation for an industrial
optimizing compiler.

42



The first contribution is script-driven test program
generation for a large system with complex input to
meet test requirements. A test engineer can write test
requirements in a simple script, and effective test pro-
grams are generated from these scripts. The script-
driven test case generation can improve test efficiency.

The second contribution is model-based test pro-
gram generation for optimizing modules. Model-based
testing of real applications has attracted much inter-
est. We also developed a model-based testing approach
to produce desired programs to activate specific opti-
mizations. The ability to generate specific test cases
according to a model is a requirement for our testing.

The third contribution is the application of formal
methods in a large complex system. Generally, mod-
eling a large complex system, like an optimizing com-
piler, is very difficult. This makes application of formal
methods in such a system impractical. In this paper,
we do not model an entire optimizing compiler, but
optimizations in this compiler, and gained much suc-
cess as a consequence. This provides an evidence that
the transition from entire systems to key components
in the system not only makes the application of for-
mal methods more easier and more practical, but also
improves the quality of the entire system.

Overall, JTT can generate appropriate and ade-
quate test programs for optimizing compilers with high
quality and high efficiency. Our efforts in JTT provide
a good example for testing a large complex system.

Acknowledgements

We wish to thank Shuichi Takayama, Akira
Tanaka, Hajime Ogawa, Taketo Heishi, Shohei Michi-
moto of Matsushita Electric Industrial Co., Ltd.

Zhao Chen would like to thank Dr. David Lacy for
his hosting in 2006 and for his discussion and comments
on parallel optimization specification.

References

[1] U. K. Banerjee. Dependence Analysis for Supercom-
puting. Kluwer Academic Publishers, Norwell, MA,
USA, 1988.

[2] F. Bazzichi and I. Spadafora. An automatic generator
for compiler testing. IEEE Transactions on Software
Engineering, 8(4):343–353, July 1982.

[3] A. Bertolino. Software testing research: Achieve-
ments, challenges, dreams. In FOSE ’07: 2007 Future
of Software Engineering, pages 85–103, Washington,
DC, USA, 2007. IEEE Computer Society.

[4] A. S. Boujarwah, K. Saleh, and J. Al-Dallal. Testing
syntax and semantic coverage of java language compil-
ers. Information & Software Technology, 41(1):15–28,
1999.

[5] The Embedded Microprocessor Benchmark Consor-
tium, http://www.eembc.org/about/. EEMBC.

[6] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The
program dependence graph and its use in optimiza-
tion. ACM Trans. Program. Lang. Syst., 9(3):319–349,
1987.

[7] K. Kennedy and J. R. Allen. Optimizing compil-
ers for modern architectures: a dependence-based ap-
proach. Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA, 2002.

[8] P. A. Z. S. Kossatchev, A.S. and S. Zelenova. Appli-
cation of model-based approach for automated testing
of optimizing compilers. In Proceedings of the Inter-
national Workshop on Program Understanding, pages
81–88, 2004.

[9] D. Lacey. Program transformation using temporal logic
specifications. PhD thesis, Balliel College, University
of Oxford, 2004.

[10] R. Lammel. Grammar testing. In FASE ’01: Pro-
ceedings of the 4th International Conference on Fun-
damental Approaches to Software Engineering, pages
201–216, London, UK, 2001. Springer-Verlag.

[11] H. Li, M. Jin, C. Liu, and Z. Gao. Test criteria for
context-free grammars. In COMPSAC ’04: Proceed-
ings of the 28th Annual International Computer Soft-
ware and Applications Conference (COMPSAC’04),
pages 300–305, Washington, DC, USA, 2004. IEEE
Computer Society.

[12] Matsushita Electric Industrial Co., Ltd.,
http://www.semicon.panasonic.co.jp/e-
micom/MicomFamily/uniphier/about.html. What is
UniPhier, 2008.

[13] T. Rus and E. V. Wyk. Using model checking in
a parallelizing compiler. Parallel Processing Letters,
8(4):459–471, 1998.

[14] Standard Performance Evaluation Corporation,
http://www.spec.org/cpu2006/. SPEC CPU Bench-
mark.

[15] Y. Xia. Loop optimization transformation using ctl
specifications, in chinese. Master’s thesis, Institute
of Software, the Chinese Academy of Sciences, June
2006.

43


