The Community for Technology Leaders
2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM) (2018)
Barcelona, Spain
Aug. 28, 2018 to Aug. 31, 2018
ISSN: 2473-9928
ISBN: 978-1-5386-6052-2
pp: 767-773
Mikel Joaristi , Boise State University, Computer Science Dept.
Edoardo Serra , Boise State University, Computer Science Dept.
Francesca Spezzano , Boise State University, Computer Science Dept.
ABSTRACT
The Panama Papers represent a large set of relationships between people, companies, and organizations that had affairs with the Panamanian offshore law firm Mossack Fonseca, often due to money laundering. In this paper, we address for the first time the problem of searching the Panama Papers for people and companies that may be involved in illegal acts. We use a collection of international blacklists of sanctioned people and organizations as ground truth for bad entities. We propose a new ranking algorithm, named Suspiciousness Rank Back and Forth (SRBF), that leverages this ground truth to assign a degree of suspiciousness to each entity in the Panama Papers. We experimentally show that our algorithm achieves an AUROC of 0.85 and an Area Under the Recall Curve of 0.87 and outperforms existing techniques.
INDEX TERMS
CITATION

M. Joaristi, E. Serra and F. Spezzano, "Inferring Bad Entities Through the Panama Papers Network," 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), Barcelona, Spain, 2018, pp. 767-773.
doi:10.1109/ASONAM.2018.8508497
172 ms
(Ver 3.3 (11022016))