The Community for Technology Leaders
RSS Icon
Subscribe
Mar. 4, 2008 to Mar. 7, 2008
ISBN: 978-0-7695-3102-1
pp: 1044-1051
ABSTRACT
Spam is considered an invasion of privacy. Its changeable structures and variability raise the need for new spam classification techniques. The present study proposes using Bayesian Additive Regression Trees (BART) for spam classification and evaluates its performance against other classification methods, including Logistic Regression, Support Vector Machines, Classification and Regression Trees, Neural Networks, Random Forests, and Naive Bayes. BART in its original form is not designed for such problems, hence we modify BART and make it applicable to classification problems. We evaluate the classifiers using three spam datasets; Ling-Spam, PU1, and Spambase to determine the predictive accuracy and the false positive rate.
INDEX TERMS
BART, CART, classification, logistic regression, NNet, random forests, spam, SVM
CITATION
Saeed Abu-Nimeh, Dario Nappa, Xinlei Wang, Suku Nair, "Bayesian Additive Regression Trees-Based Spam Detection for Enhanced Email Privacy", ARES, 2008, 2012 Seventh International Conference on Availability, Reliability and Security, 2012 Seventh International Conference on Availability, Reliability and Security 2008, pp. 1044-1051, doi:10.1109/ARES.2008.136
13 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool