The Community for Technology Leaders
Conference, International Asia-Pacific Web (2010)
Buscan, Korea
Apr. 6, 2010 to Apr. 8, 2010
ISBN: 978-0-7695-4012-2
pp: 260-266
Online video steam data is surging to an unprecedented level. Massive video publishing and sharing impose heavy demands on continuous video near-duplicate detection for many novel video applications. This paper presents an accurate and accelerated system for video near-duplicate detection over continuous video streams. We propose to transform a high-dimensional video stream into a one-dimensional Video Trend Stream (VTS) to monitor the continuous luminance changes of consecutive frames, based on which video similarity is derived. In order to do fast comparison and effective early pruning, a compact auxiliary signature named CutSig is proposed to approximate the video structure. CutSig explores cut distribution feature of the video structure and contributes to filter candidates quickly. To scan along a video stream in a rapid way, shot cuts with local maximum AI (average information) in a query video are used as reference cuts, and a skipping approach based on reference cut alignment is embedded for efficient acceleration. Extensive experimental results on detecting diverse near-duplicates in real video streams show the effectiveness and efficiency of our method.

X. Zhou, C. Pang, Z. Huang, Q. Xie and H. T. Shen, "Efficient and Continuous Near-duplicate Video Detection," Conference, International Asia-Pacific Web(APWEB), Buscan, Korea, 2010, pp. 260-266.
86 ms
(Ver 3.3 (11022016))