The Community for Technology Leaders
Conference, International Asia-Pacific Web (2010)
Buscan, Korea
Apr. 6, 2010 to Apr. 8, 2010
ISBN: 978-0-7695-4012-2
pp: 61-67
ABSTRACT
Query term suggestion that interactively expands the queries is an indispensable technique to help users formulate high-quality queries and has attracted much attention in the community of web search. Existing methods usually suggest terms based on statistics in documents as well as query logs and external dictionaries, and they neglect the fact that the topic information is very crucial because it helps retrieve topically relevant documents. To give users gratification, we propose a novel term suggestion method: as the user types in queries letter by letter, we suggest the terms that are topically coherent with the query and could retrieve relevant documents instantly. For effectively suggesting highly relevant terms, we propose a generative model by incorporating the topical coherence of terms. The model learns the topics from the underlying documents based on Latent Dirichlet Allocation (LDA). For achieving the goal of instant query suggestion, we use a trie structure to index and access terms. We devise an efficient top-k algorithm to suggest terms as users type in queries. Experimental results show that our approach not only improves the effectiveness of term suggestion, but also achieves better efficiency and scalability.
INDEX TERMS
Query Term Suggestion, Topic Model, Top-k Search
CITATION

H. Wu, J. Fan, L. Zhou and G. Li, "Suggesting Topic-Based Query Terms as You Type," Conference, International Asia-Pacific Web(APWEB), Buscan, Korea, 2010, pp. 61-67.
doi:10.1109/APWeb.2010.13
81 ms
(Ver 3.3 (11022016))