DYSTAL: nonnumeric applications of FORTRAN

by JAMES M. SAKODA
Brown University
Providence, Rhode Island

ABSTRACT

This paper presents an explanation of how FORTRAN was used to write a list-processing language, DYSTAL, which uses linear arrays rather than linked word lists. Three basic features are dynamic storage allocation, integer array names as pointers, and a seven-word head for each array.
INTRODUCTION

I was in the Psychology Department of the University of Connecticut when IBM set up a computation center at MIT for use by New England colleges and universities. I attended the first summer institute offered at MIT in 1956, believe, and struggled through the assembly language programming course. At the end of the session a young man, who I believe was Sheldon Best, got up and announced that they were working on an automatic programming system called FORTRAN. The following year when FORTRAN was made available, I attended a short course on it in Boston. As a research associate to the MIT Computation Center I began to work on statistical programs in FORTRAN, and since then it has been the only language in which I have programmed.

My encounter with nonnumeric programming came in 1963 when I attended a summer institute on the use of IPL-V for simulation at the Rand Corporation. The session was organized by Bert Green. I found that IPL-V provided dynamic storage allocation, list-processing operations, such as insertion and deletion, and list-structures and procedures for handling them which could not be normally performed in FORTRAN. On the other hand, data handling was almost nonexistent, input-output was difficult, and even a simple device like a checkerboard could not be easily represented by linked-word lists. Moves on a checkerboard could not be specified by incrementing two subscripts as one could in FORTRAN, but instead lists of possible moves were utilized. Furthermore, programs written in IPL-V were reputed to be slow, and I attributed this to the linked-word list which required sequential rather than direct access to the middle of a list.

LINKED-WORD LISTS VS. LINEAR ARRAYS

Before the institute was half over I decided to write a list-processing language using FORTRAN subroutines and functions. I was not aware of Gelernter's FLPL. Joseph Weizenbaum's SLIP had just been announced, and to me it appeared to be IPL-V operations written as a series of FORTRAN subprograms, with a few primitives written in machine language. I decided that in order to preserve many of FORTRAN's efficient features lists should not consist of linked words but a linear string of words. My task was to find ways of providing dynamic storage allocation at runtime, list-processing operations and creation and operation of arrays connected into tree structures. I was able to provide all of these using procedures written as FORTRAN functions. I then proceeded to add string-processing routines, sorting operations and statistical and matrix operations, aiming for a general purpose language. The first DYSTAL Manual was completed in 1956. After the 1967 IFIP Working Conference on Symbol Manipulation Languages, I decided to make arrays relocatable, using a directory to hold the names of arrays and allowing arrays to move to a disk file as room in memory was depleted. A manual incorporating this improvement was put together in 1970.

My approach was that of an amateur, unaware of the niceties of computer language design, doing what appeared to be necessary to achieve features which FORTRAN did not normally provide. Much of this would not even be of historical significance, since DYSTAL was not widely used. But some of it is pertinent to the present-day effort to provide a more general-purpose language via FORTRAN. The X3J3 FORTRAN Committee is discussing setting up a core FORTRAN and extensions into different application areas. It is my belief that the core should be relatively flexible to allow for a variety of extensions. I would like to point out how I was able to make use of FORTRAN IV to accomplish unFORTRAN-like operations, while integrating numeric and nonnumeric procedures.

ESSENTIAL FEATURES

Three features were important to my effort to provide list-processing and list-structuring operations in FORTRAN. The first was dynamic storage allocation. The second was the name of an array which was separate from its content. In FORTRAN a variable, whether subscripted or not, referred to its content or value. To create tree structures or to chain arrays it was necessary to be able to use names of arrays as pointers. This called for a new data type—array name—which was different from integer and real variables. The third feature was required to provide the flexibility inherent in linked-word lists. I found this in the five-word head, which I later increased to seven words. These features were not independent of one another. I began with dynamic storage allocation, which brought into play the need to keep track of the location of an array and its features.

DYNAMIC STORAGE ALLOCATION

To implement dynamic storage allocation of linear arrays a single storage area was created and from it all arrays were allocated at runtime. To accomplish this three variables were dimensioned a maximum amount and made equivalent to one another and stored in COMMON. Later a disk file was added when arrays were made relocatable:

\[
\text{DIMENSION LOT (5000), FLOT (5000), GLOT (5000) EQUIVALENCE (LOT, FLOT, GLOT) COMMON GLOT DEFINE FILE 4 (1000, 80, U, JFI)}
\]
The equivalencing of the three arrays made it possible to cut out any type of array from the same storage area and even to store different types of variables on the same array. The EQUIVALENCE statement therefore played a central role in providing a flexible dynamic allocation system. The use of COMMON allowed each function to have access to the entire dynamic storage area without need to enter LOT or FLOT as arguments each time. GLOT was placed in COMMON to fool the compiler into believing that LOT and FLOT in COMMON were not being modified by a FORTRAN function. This rigid requirement was encountered in Basic FORTRAN when working with the IBM 1130 computer, and I would deem that as overprotection of the user. He is better served by permissiveness to change values in COMMON as needed.

ARRAY NAME

It was the development of dynamic storage allocation that permitted and also required a name separate from the content of the array. It was necessary to keep track of the position within LOT or FLOT where the next array was to start. This location was returned and used as the name of the array. If LOCA was the name of an array, LOT (LOCA + 1) or FLOT (LOCA + 1) referred to the value of the first word of that array. Thus LOT and FLOT came to mean "the content of" a word at a given location within the dynamic storage area. In the meantime, it was possible to use LOCA as a pointer to the array and store it on other arrays, making possible chains of arrays or tree structures. Below is shown a simple tree structure with an array called NAME holding the names of three arrays, LSTA, LSTB, LSTC. These in turn hold character strings, which have been read into created arrays:

```plaintext
NAME: LSTA, LSTB, LSTC
LSTA: D, O, G
LSTB: C, A, T
LSTC: H, O, R, S, E
```

It was a great day when I realized that to create a tree structure it did not matter where the arrays were stored. All that was necessary was to be able to store array names on the same name array.

Arrays were later made relocatable and an array called MAP served as the directory.

LSTA = MAPL (3, 10)

created an array named LSTA for real numbers of length 10. The name of the array was then the location on the directory. The directory in turn held the current location of the array.

THE HEAD OF AN ARRAY

I learned the use of the attached head of an array from IPL-V. Instead of a limited amount of information, I stored the length of the array, the count of items stored on it, the mode of the array (1-7), the node to be used to store pointers in creating chains of arrays or alternatively as the row size of a matrix, an alphabetic identification, a reference count, and the directory address. The head was positioned just before the array itself so that it could be accessed by means of a zero or negative subscript. LOT (LOCA) referred to the array counter, LOT (LOCA-1) to its length and LOT (LOCA-2) to its mode—i.e. the data type stored on the array. To a considerable extent list-processing type of operations were performed with the aid of information stored in the head of an array. LOAD (WD, LSTA) could be used to store a word at the end of the line and the counter increased by one. ITEM (– 9, LSTA) was used to take off the last word on the list. If the capacity of the array was exceeded when using LOAD, the array was moved automatically to a new location and enlarged by 20 percent and the routine continued. Routines for insertion and deletion required that words be moved to make room or eliminate an empty position.

To create and operate list structures names of arrays were placed on arrays with the data type of 1 (names of arrays), which distinguished them from integer arrays with a data type of 2. This distinction was desirable in writing a routine to walk through the list structure. Each of the seven modes was associated with an input-output format so that it was possible to print out an array with the simple instruction IDUMP (LSTA) or to print out all of the arrays in dynamic storage with the instruction CALL KDUMP. Thus, when creating an array its mode and dimensions were declared numerically and retained in the head of each array. In matrix operations, such as matrix multiplication, it was not necessary to specify the row and column sizes, since these could be calculated from information in the head of the arrays involved. The head was made possible by implementation of dynamic storage allocation and by use of the EQUIVALENCE statement.

The role of EQUIVALENCE is crucial in adding the head to each array. The information in the head could be handled as integer variables using LOT. The head could be attached to any array, whether they held integer, real or literal words. In developing DYSTAL for the IBM 1130 using Basic FORTRAN, I managed to equivalence two-byte integers with four-byte real words. I did not get around to adding double-precision words as data types, but that could have been managed. The ability to equivalence different data types and the addition of a head to each array greatly contributed to relieving the programmer of many bookkeeping chores.

RECURSION

FORTRAN subroutines are not recursive—i.e. they are not allowed to call themselves. Recursive routines are desirable in symbolic manipulation of formulas and in tracing through list structures. Recursion can be simulated in DYSTAL using the approach used by IPL-V. Within a procedure dynamic storage allocation can be used to provide a pushdown stack to store intermediate information. The necessary operations can then be performed in reverse order using information in the pushdown stack. At the end of the procedure the pushdown stack can be erased. Here it is dynamic storage allocation which permits an unFORTRAN-like operation.
VIRTUAL MEMORY

Virtual memory, if it exists, is generally provided by the computer system rather than by a compiler for a particular language. For smaller machines, however, virtual memory is generally not available, and using FORTRAN to provide it greatly adds to the flexibility of writing and running large programs. The implementation of virtual memory required the setting up of a directory as an array to hold the current location of each array. This could be in memory or on a disk file. Three types of arrays were distinguished: permanent arrays, which remained in memory at the low end of the storage area, temporary arrays which were created at the upper end, and semi-permanent ones which began where the permanent ones ended. When the free space reached the end of the storage space, it was allowed to wrap around to the beginning of the semipermanent arrays. Thus it was possible to move whole arrays each time to the disk file without fragmenting the storage space. Virtual memory also neatly solved the problem of garbage collection, since it was possible to allow unwanted arrays to move to the disk file and remain there.

ACCESS TO ARRAY ELEMENTS

Creating a name of an array required adding its location to the subscript for LOT or FLOT. Making the arrays relocatable further complicated the problem of access. When an array was created its name was saved in a FORTRAN variable or placed on an array:

\[LSTA = MAPL (3, 10) \]

To get its location, the function LOCAL was called:

\[LOCA = LOCAL (LSTA) \]

LOCA could then be used in the subscript of LOT to access the Ith element of LSTA: LOT (LOCA + I).

Retrieval was made simpler, but not efficient, by using retrieval functions ITEM (I, LSTA) and FITEM (I, LSTA). For storage the function IPUT (X, I, LSTA) was developed. Here X is the word to be stored in the Ith position of LSTA. FORTRAN, in spite of its rule that real and dummy arguments have to agree in number, order and type, allowed me to use IPUT for storing either integers or real words. There were further complications when arrays were made relocatable, since it was necessary to insure that accessing one array, which might be on the disk file, did not kick out another one that was needed in the same part of the program. One solution was to create such arrays early and declare them to be permanent. The other way to clear sufficient free space to make sure that there was sufficient free space for the required arrays. A routine called ICHEK (LSTA, LSTB, LOCA, LOCB) brings into memory LSTA and LSTB and provides their locations. Such procedures were most helpful at the beginning of subroutines to insure that both were in memory at the same time.

My general approach was to write frequently-used subprograms as efficiently as possible by subscripting LOT and FLOT. Retrieval functions, on the other hand, were used initially to write application programs. There was discussion fairly early in the game of the desirability of a precompiler which would take the less efficient functions and replace them with direct subscripts.

STRING PROCESSING

DYSTAL’s string processing operations could be applied to arrays of single characters or to words. It was hampered by the lack of literal constants, and it generally had to be assumed that character strings were read into dynamically-created arrays. It was possible to perform the basic operations of hunting for a character or a string of characters and to remove a substring or replace it with another substring. For example,

\[LOC = MASK (LSTB, LSTA, 1) \]

searched for the location of LSTB within LSTA, beginning at the Ith position.

\[CALL ISWAP (LSTC, N, LSTA, LOC) \]

replaced with LSTC, the substring of N characters of LSTA beginning at LOC. Character strings stored on DYSTAL arrays had array names which could be placed on name arrays, thus making it possible to create list structures, which were needed in analyzing sentence structures. As with other data types character strings had heads, including the length of the array and the current number of characters on it. In DYSTAL single characters could be packed into a word or the word unpacked into single characters, using integer arithmetic.

FORTRAN 77 introduced the CHARACTER data type, which greatly aids string-processing in FORTRAN. The literal constant enclosed in quote marks can now be written directly into a program. But character strings can no longer be equivalence with other data types, and hence new ways must be found to provide character strings with more flexibility, including an integer name. One method of doing this is to provide a separate dynamic storage area for character strings in a CHARACTER data type named CHAR. A function, such as LOC (‘CAT’, CHAR) can be used to store ‘CAT’ in the next available position of CHAR and return as its value the beginning and end positions within CHAR, I and J. The two numbers can be packed and stored into a single integer word:

\[LCAT = I \times 1000 + J \]

This integer value, such as 1003, can be stored on arrays whose mode specifies names representing character strings. Names of such arrays in turn can be placed on name arrays to form list structures representing, for example, sentence structures. Knowing the name of the character string, such as 1003, it is possible to retrieve the characters through the substring reference provided in FORTRAN 77: CHAR (1:3) or its equivalent value CHAR (LCAT/1000 : MOD (LCAT,1000)). The MOD function returns the remainder term needed as the designation of the end of the substring. In sorting the strings of characters into alphabetic order, it is possible to compare
character strings, but move the positions of the names of the strings rather than the strings themselves. Here again dynamic storage allocation produces a reference to the position within the area which can be treated as an integer name.

PERMANENT FILE

A more recent addition to DYSTAL has been a save file and get file instructions to save the entire dynamic storage area on the disk file at the end of a run and to recall the same storage area at the beginning of another run. All of the important words in a program, including names of arrays, can be saved from one run of a program to another by equivalencing them to a public location in the first parameter array. In my cluster analysis-factor analysis program I can first run the clusters, examine them, and if satisfied run the program a second time beginning from the point where the clustering procedure ended. It is also possible to write a program to selectively print out any of the arrays in dynamic storage. This facility provides a means of periodically updating a complex data structure constructed as a tree structure or a chain of arrays. An error made during the course of a run may result in the file not being properly stored. By saving the previous copy of a file, it is possible to go back to an earlier version.

FORM OF THE DYSTAL LANGUAGE

A language written as FORTRAN subprograms might be imagined as a series of explicit calls to subroutines. Early in the development of DYSTAL, I realized the advantage of using functions rather than subroutines. Practically every DYSTAL routine uses the name of at least one array and it was possible to allow the name of one of the arrays to be the returned value for most of them, except those retrieving values from an array. This permitted the nesting of functions within a line of the program. This gave DYSTAL a function form of specifying a series of procedures. For example, to create an array, read 10 words into it and print it out one could write:

LSTA = IDUMP (LRD (NRD, 1, 10, (MAPL (3, 10)))

The matrix operation

T' (T T')⁻¹ = T⁻¹

can be written in DYSTAL as

MATN = IDUMP (MPTRA (MTRAN (ICOPY (MATT)),
 MINV (MPTRA (MATT, MATT, 0», 0»)

MPTRA performs matrix multiplication of the first array by the transpose of the second and stores the resulting matrix in a newly created array and returns the name of this array. Although the function form is somewhat confusing because of the many parentheses, it does allow the stringing together of several routines on a single line. One can easily see that this ability is dependent upon the use of an integer name for an array. The nesting of functions makes the one-line arithmetic function quite useful. When the returned value of a function is not needed FORTRAN allows the use of the explicit CALL. For example, one can write CALL IDUMP (LSTA) even though IDUMP is a function with a returned value.

CONCLUDING REMARKS

DYSTAL used linear arrays in place of linked words and was therefore better able to take advantage of FORTRAN's desirable features—flexible input-output operations, use of subscripts, use of two-dimensional arrays, and arithmetic capabilities. The development of DYSTAL as a general purpose language encompassing nonnumerical procedures was dependent upon dynamic storage allocation, an integer name for arrays, the provision of an ample head for each created array. To develop these features there was heavy reliance on flexibilities in FORTRAN IV, especially the equivalencing of different data types. The X3J3 FORTRAN standards committee is proposing a core FORTRAN to be combined with modules in different application areas. According to its minutes, it hopes to eliminate EQUIVALENCE and COMMON from core FORTRAN. I think that this would be a serious mistake if the core is meant to serve as a basis for a series of more specialized languages. The core should remain as flexible as possible, and EQUIVALENCE and COMMON promote flexibility in an important way. Those not desiring the flexibility can always avoid the use of these features.

REFERENCES

1982 National Computer Conference Committees

Program Committee

<table>
<thead>
<tr>
<th>Role</th>
<th>Name</th>
<th>Company/Institution</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chairman</td>
<td>Howard L. Morgan</td>
<td>The Wharton School</td>
<td>Philadelphia, PA</td>
</tr>
<tr>
<td>Vice-Chairman</td>
<td>Eric K. Clemons</td>
<td>The Wharton School</td>
<td>Philadelphia, PA</td>
</tr>
<tr>
<td>Members</td>
<td>Gene P. Altshuler</td>
<td>Peat, Marwick, Mitchell & Co.</td>
<td>New York, NY</td>
</tr>
<tr>
<td></td>
<td>O. Peter Buneman</td>
<td>The Moore School</td>
<td>Philadelphia, PA</td>
</tr>
<tr>
<td></td>
<td>James E. Emery</td>
<td>The Wharton School</td>
<td>Philadelphia, PA</td>
</tr>
<tr>
<td></td>
<td>Dennis Frailey</td>
<td>Texas Instruments</td>
<td>Austin, TX</td>
</tr>
<tr>
<td></td>
<td>Robert Frankston</td>
<td>Software Arts, Inc.</td>
<td>Cambridge, MA</td>
</tr>
<tr>
<td></td>
<td>Randall Jensen</td>
<td>Hughes Aircraft Co.</td>
<td>Los Angeles, CA</td>
</tr>
<tr>
<td></td>
<td>Beverly K. Kahn</td>
<td>Boston University</td>
<td>Boston, MA</td>
</tr>
<tr>
<td></td>
<td>Alan N. Smith</td>
<td>Atlantic Richfield Co.</td>
<td>Los Angeles, CA</td>
</tr>
<tr>
<td></td>
<td>Amy D. Wohl</td>
<td>Advanced Office Concepts</td>
<td>Bala Cynwyd, PA</td>
</tr>
<tr>
<td></td>
<td>AFIPS Liaison</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sam Lippman</td>
<td>AFIPS</td>
<td>Arlington, VA</td>
</tr>
</tbody>
</table>

Conference Steering Committee

<table>
<thead>
<tr>
<th>Role</th>
<th>Name</th>
<th>Company/Institution</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conference Chairman</td>
<td>Russell K. Brown</td>
<td>Brown and Associates, Ltd.</td>
<td>Houston, TX</td>
</tr>
<tr>
<td>Registration Chairman</td>
<td>Mr. Lynn Hobson</td>
<td>Houston Lighting & Power</td>
<td>Houston, TX</td>
</tr>
<tr>
<td>Exhibits Chairman</td>
<td>Dave Nelson</td>
<td>IBM Corporation</td>
<td>Houston, TX</td>
</tr>
<tr>
<td>NCC Liaison Program</td>
<td>Harvey L. Garner</td>
<td>The Moore School</td>
<td>Philadelphia, PA</td>
</tr>
<tr>
<td>Executive Director of AFIPS</td>
<td>Paul Raisig</td>
<td>AFIPS</td>
<td>Arlington, VA</td>
</tr>
<tr>
<td>Vice-Chairman, Promotion</td>
<td>Robert J. Gemignani</td>
<td>Vallen Corporation</td>
<td>Houston, TX</td>
</tr>
<tr>
<td>Plenary Coordinator</td>
<td>Susan L. Rosenbaum</td>
<td>AT&T</td>
<td>New Brunswick, NJ</td>
</tr>
<tr>
<td>Film Forum Chairman</td>
<td>Eddie Truncellito</td>
<td>Schlumberger Well Services</td>
<td></td>
</tr>
<tr>
<td>Operations Chairman</td>
<td>Gene Giblin</td>
<td>Southwest Bancshares</td>
<td>Houston, TX</td>
</tr>
<tr>
<td>NCC Liaison—Operations/Promotion</td>
<td>W. H. Sitter</td>
<td>Tenneco, Inc.</td>
<td>Houston, TX</td>
</tr>
<tr>
<td>Handicapped Facilities Chairperson</td>
<td>Ms. Kerry A. Baer</td>
<td>IBM Corporation</td>
<td>Houston, TX</td>
</tr>
<tr>
<td>Transportation Chairman</td>
<td>Bob Griffin</td>
<td>Houston Transit Consultants</td>
<td>Houston, TX</td>
</tr>
<tr>
<td>Society Liaison</td>
<td>Carey H. Snyder</td>
<td>Texaco, Inc.</td>
<td>Houston, TX</td>
</tr>
</tbody>
</table>

From the collection of the Computer History Museum (www.computerhistory.org)
<table>
<thead>
<tr>
<th>Role</th>
<th>Name</th>
<th>Company/Institution</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Special Activities Chairperson</td>
<td>Linda Vermillion</td>
<td>Hydril Company</td>
<td>Houston, TX</td>
</tr>
<tr>
<td>Fiscal Officer</td>
<td>Jesse B. Tutor</td>
<td>Arthur Anderson & Company</td>
<td>Houston, TX</td>
</tr>
<tr>
<td>Conference Coordinator</td>
<td>Fred Boecker</td>
<td>Tenneco, Inc.</td>
<td>Houston, TX</td>
</tr>
<tr>
<td>Printing Chairman</td>
<td>J. W. Burchfield</td>
<td>Moore Paper Companies, Inc.</td>
<td>Houston, TX</td>
</tr>
<tr>
<td>Professional Development Seminar Chairman</td>
<td>Joseph S. Campisi</td>
<td>Aetna Life and Casualty</td>
<td>Hartford, CT</td>
</tr>
<tr>
<td>Protocol Chairman</td>
<td>Albert K. Hawkes</td>
<td>Sargent & Lundy Engineers</td>
<td>Chicago, IL</td>
</tr>
<tr>
<td>National Promotion Chairman</td>
<td>Alex Hoffman</td>
<td>Consultant</td>
<td>Fort Worth, TX</td>
</tr>
<tr>
<td>Pioneer Day Chairman</td>
<td>J. A. N. Lee</td>
<td>Virginia Polytechnic Institute & State University</td>
<td>Blacksburg, VA</td>
</tr>
<tr>
<td>AFIPS Liaison</td>
<td>Sam Lippman</td>
<td>AFIPS</td>
<td>Arlington, VA</td>
</tr>
<tr>
<td>Implementation Plan Chairman</td>
<td>Bill Carlisle</td>
<td>Southwestern Bell Telephone Company</td>
<td>Houston, TX</td>
</tr>
<tr>
<td>Vice-Chairman, Operations</td>
<td>Bob Coker</td>
<td>Houston, TX</td>
<td></td>
</tr>
<tr>
<td>Local Promotion Chairman</td>
<td>Walter Ulrich</td>
<td>Houston, TX</td>
<td></td>
</tr>
<tr>
<td>FILM FORUM COMMITTEE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chairman</td>
<td>Eddie Truncellito</td>
<td>Schlumberger Well Services</td>
<td>Houston, TX</td>
</tr>
<tr>
<td>Members</td>
<td>Cheryl Culifer</td>
<td>DELTAK, Inc.</td>
<td>Houston, TX</td>
</tr>
<tr>
<td>Jennifer Sample</td>
<td>Schlumberger Well Services</td>
<td>Houston, TX</td>
<td></td>
</tr>
<tr>
<td>Joe Van Hook</td>
<td>OXY Systems</td>
<td>Houston, TX</td>
<td></td>
</tr>
<tr>
<td>OPERATIONS COMMITTEE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chairman</td>
<td>Gene Giblin</td>
<td>First City East</td>
<td>Houston, TX</td>
</tr>
<tr>
<td>Members</td>
<td>Sigman Byrd</td>
<td>Allied Bank of Texas</td>
<td>Houston, TX</td>
</tr>
<tr>
<td>Bob Michael</td>
<td>First City East</td>
<td>Houston, TX</td>
<td></td>
</tr>
<tr>
<td>Keitha Tullos</td>
<td>First City East</td>
<td>Houston, TX</td>
<td></td>
</tr>
<tr>
<td>Craig Sherrill</td>
<td>Allied Bank of Texas</td>
<td>Houston, TX</td>
<td></td>
</tr>
<tr>
<td>Bob Voelker</td>
<td>First International Bank</td>
<td>Houston, TX</td>
<td></td>
</tr>
<tr>
<td>Tom Houston</td>
<td>First City East</td>
<td>Houston, TX</td>
<td></td>
</tr>
<tr>
<td>Jerry Swan</td>
<td>First City East</td>
<td>Houston, TX</td>
<td></td>
</tr>
<tr>
<td>Tom Taylor</td>
<td>First City East</td>
<td>Houston, TX</td>
<td></td>
</tr>
</tbody>
</table>
PIONEER DAY COMMITTEE

Chairman
J. A. N. Lee
Virginia Polytechnic Institute and State University
Blacksburg, VA

Members
William Aspray
Williams College
Williamstown, MA

Walter Brainerd
University of New Mexico
Los Alamos, NM

Scott Guthrie
Schlumberger Well Services
Houston, TX

Daniel Leeson
IBM Corporation
San Jose, CA

Jack Palmer
IBM Technical History Project
Yorktown Heights, NY

Steven J. Shepherd
Tenneco Oil Co.
Houston, TX

Henry Tropp
Humboldt State University
Arcata, CA

Jerrold L. Wagener
Amoco Production Research
Tulsa, OK

Thomas C. Wesselkamper
Hunter College
New York, NY

Richard L. Wexelblat
Sperry-Univac
Blue Bell, PA

PROFESSIONAL DEVELOPMENT SEMINAR COMMITTEE

Chairman
Joseph S. Campisi
Aetna Life & Casualty
Hartford, CT

Members
Richard K. Edwards
Aetna Life & Casualty
Hartford, CT

Lowry McKee
Link Division, Singer
Houston, TX

Philip Palermo
Connecticut General Insurance
Company
Hartford, CT

Robert J. Garabedian
Aetna Life & Casualty
Hartford, CT

Jean M. Smith
Aetna Life & Casualty
Hartford, CT

George R. Eggert
DCASR, Department of Defense
Chicago, IL

PROMOTIONS COMMITTEE

Promotions Committee Vice-Chairman
Robert J. Gemignani
Vallen Corporation
Houston, TX

Local Promotion Chairman
Walter Ulrich
Walter E. Ulrich Consulting
Houston, TX

Carey H. Snyder
Texaco Inc.
Houston, TX

Members—Promotions Committee
Bob Griffin
Houston Transit Consultants
Houston, TX

Susan Tourtellot
Houston Convention Bureau
Houston, TX

Alex Hoffman
Consultant
Fort Worth, TX

Albert K. Hawkes
Sargent & Lundy Engineers
Chicago, IL

John di Targiana
Gillette Co.
Boston, MA

From the collection of the Computer History Museum (www.computerhistory.org)
James V. M. Hale
Coca-Cola USA
Atlanta, GA

John Hamblen
National Bureau of Standards
Washington, DC

Phillip R. Jones
General Dynamics Corporation
Clayton, MO

Kyu Y. Lee
Seattle University
Seattle, WA

Beverly McMurrey
Consultant
Houston, TX

E. Z. Million
Million Associates
Norman, OK

Bill Rieken
Consultant
San Mateo, CA

Members—Local Promotions Committee
Bob Brejcha
Houston Natural Gas Corporation
Houston, TX

Linda Caruso
Management Systems
Houston, TX

Oscar Dugey
American National Insurance
Galveston, TX

PLENARY COMMITTEE

Chairperson
Susan Rosenbaum
AT&T
Piscataway, NJ

Members
Mary Charles Blakebrough
IBM
Poughkeepsie, NY

William A. Ritchie
AT&T
Piscataway, NJ

PROTOCOL COMMITTEE

Chairman
Albert K. Hawkes
Sargent & Lundy Engineers
Chicago, IL

Members
Glenn B. Burkhardt
Texas Instruments
Dallas, TX

Stephen S. Yau
Northwestern University Technological Institute
Evanston, IL

SPECIAL ACTIVITIES COMMITTEE

Chairman
Linda U. Vermillion
Hydril Company
Houston, TX

Members
Claudia Bryan
Fluor Ocean Services, Inc.
Houston, TX

Lucille Franks
Lucille Franks & Associates
Houston, TX

Marsha M. Kaan
IBM Corporation
Houston, TX

Jo T. Kennedy
Fayez, Sarofim & Company
Houston, TX

Barbara Green
Office of the City Comptroller
Houston, TX

Connie Harris
Corporate Associates
Houston, TX

Sholeh Huber
City of Houston Health Department
Houston, TX

Mark Kellermeyer
The Cameron Group
Houston, TX

Ernie Logan
Vallen Corporation
Houston, TX

Ocie M. Gamble
Sun Gas Co.
Dallas, TX

Hans Puehse
Fireman’s Fund Insurance Companies
San Rafael, CA

Linda Swift
Houston Lighting & Power Co.
Houston, TX

834

From the collection of the Computer History Museum (www.computerhistory.org)
NCC '82 SESSION LEADERS

Jeanne Adams
Chair, ANSI X3J3
Boulder, CO

Jeoffrey S. Augenstein
University of Miami Medical School
Miami, FL

John Backus
IBM Corporation
San Francisco, CA

Roger E. Billings
Billings Computers
Independence, MO

Naomi Lee Bloom
American Management Systems, Inc.
New York, NY

Barry W. Boehm
TRW Systems, Inc.
Redondo Beach, CA

Grady Booch
Department of Computer Science
USAF Academy, CO

Alex Borgida
Rutgers University
New Brunswick, NJ

John W. Brackett
Softech Microsystems
San Diego, CA

Dave Brandin
SRI International
Menlo Park, CA

A. Winsor Brown
Volition Systems
Delmar, CA

J. C. Browne
University of Texas at Austin
Austin, TX

K. M. Chandy
University of Texas at Austin
Austin, TX

Ned Chapin
InfoSci Inc.
Menlo Park, CA

Scott Davidson
Western Electric Company
Princeton, NJ

Carl Davis
Ballistic Missile Defense Advanced Technology Center
Huntsville, AL

Michael S. Deutsch
Hughes Aircraft Company
Los Angeles, CA

Henry Dreifus
The Wharton School
Philadelphia, PA

Martha Evens
Illinois Institute of Technology
Chicago, IL

Robert Fenchel
Xerox Corporation
El Segundo, CA

Robert E. Filman
Hewlett Packard
Palo Alto, CA

Dennis Frailey
Texas Instruments
Austin, TX

Robert C. Gammill
North Dakota University
Fargo, ND

C. F. Gibson
Index Systems Inc.
Cambridge, MA

Sakunthala Gnanamgari
Siemens Corporation
Cherry Hill, NJ

Paul Gray
Southern Methodist University
Dallas, TX

Jerrold M. Grochow
American Management Systems, Inc.
Arlington, VA

Paul Heckel
Interactive Systems Consultants
Los Altos, CA

Alex Hoffman
Consultant
Fort Worth, TX

Lance Hoffman
George Washington University
Washington, DC

Mark A. Holthouse
The Analytic Sciences Corporation
Reading, MA

Portia Isaacsen
Future Computing, Inc.
Richardson, TX

Tom H. Johnson
Nolan, Norton and Co.
Lexington, MA

Michael A. Kahn
Honeywell Information Systems, Inc.
Billerica, MA

Steven Kartashev
DCA, Inc.
Lincoln, NB

Svetlana Kartashev
University of Nebraska
Lincoln, NB

Peter G. W. Keen
MIT/Sloan School of Management
Cambridge, MA

Tom Kehler
Texas Instruments
Dallas, TX

Steve E. Kolodney
Search Group Inc.
Sacramento, CA

Ken Kristie
Motorola, Inc.
Austin, TX

Dale Kutnick
The Yankee Group
Cambridge, MA

835

From the collection of the Computer History Museum (www.computerhistory.org)
NCC '82 REFEREES

Althuler, Gene
Ariav, Gad
Astrahan, Morton
Bartol, Ray
Beller, Aaron
Buneman, Peter
Chang, Mike
Chapin, Ned
Clemons, Eric
Couger, Dan
Dreifus, Henry
Emery, James
Evens, Martha
Frailey, Dennis
Frankston, Bob
Franta, William
Gerritsen, Rob
Ginsberg, Ralph
Gnanamgari, Sakunthala
Greenfield, Arnold
Hanks, Steve
Hsiao, David
Hoffman, Lance
Jaramillo, P.
Jensen, Randall
Kahn, Beverly
Kartashev, Steven I.
Kartashev, Svetlana P.
Kuck, D.
Levin, Dan
Miller, Kip
Morgan, Howard
Prywes, Noah
Root, David
Shneiderman, Ben
Smith, Alan
Smith, D.
Webber, Bonnie
Wohl, Amy
Yianalos, Peter
NCC '82 SPEAKERS AND PANELISTS

<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alford, Mack</td>
<td></td>
</tr>
<tr>
<td>Allen, Cheryl C.</td>
<td></td>
</tr>
<tr>
<td>Allen, Dan</td>
<td></td>
</tr>
<tr>
<td>Amaratone, Marco</td>
<td></td>
</tr>
<tr>
<td>Aronofsky, Julius</td>
<td></td>
</tr>
<tr>
<td>Augenstein, J.</td>
<td></td>
</tr>
<tr>
<td>Backus, John</td>
<td></td>
</tr>
<tr>
<td>Bandy, Jim</td>
<td></td>
</tr>
<tr>
<td>Bair, James</td>
<td></td>
</tr>
<tr>
<td>Balzer, Bob</td>
<td></td>
</tr>
<tr>
<td>Barr, Avron</td>
<td></td>
</tr>
<tr>
<td>Bartlett, Joel</td>
<td></td>
</tr>
<tr>
<td>Belady, Les</td>
<td></td>
</tr>
<tr>
<td>Bemmu, Robert</td>
<td></td>
</tr>
<tr>
<td>Blank, George</td>
<td></td>
</tr>
<tr>
<td>Block, Dennis</td>
<td></td>
</tr>
<tr>
<td>Bode, Mishe</td>
<td></td>
</tr>
<tr>
<td>Boehm, Barry</td>
<td></td>
</tr>
<tr>
<td>Bowles, Kenneth</td>
<td></td>
</tr>
<tr>
<td>Brandin, D.</td>
<td></td>
</tr>
<tr>
<td>Bridge, Ed</td>
<td></td>
</tr>
<tr>
<td>Brinklin, Dan</td>
<td></td>
</tr>
<tr>
<td>Bronsema, Gloria</td>
<td></td>
</tr>
<tr>
<td>Brosogl, Benjamin M.</td>
<td></td>
</tr>
<tr>
<td>Buchanan, Bruce</td>
<td></td>
</tr>
<tr>
<td>Burr, Bill</td>
<td></td>
</tr>
<tr>
<td>Cheatham, Thomas E.</td>
<td></td>
</tr>
<tr>
<td>Cheng, Ray</td>
<td></td>
</tr>
<tr>
<td>Clippinger, Richard</td>
<td></td>
</tr>
<tr>
<td>Colburn, Don</td>
<td></td>
</tr>
<tr>
<td>Condon, Maureen</td>
<td></td>
</tr>
<tr>
<td>Couger, Daniel J.</td>
<td></td>
</tr>
<tr>
<td>Currie, Edward</td>
<td></td>
</tr>
<tr>
<td>Davis, Carl</td>
<td></td>
</tr>
<tr>
<td>Davidson, Charles</td>
<td></td>
</tr>
<tr>
<td>Davidson, John</td>
<td></td>
</tr>
<tr>
<td>Denning, Peter</td>
<td></td>
</tr>
<tr>
<td>Deutsch, Don</td>
<td></td>
</tr>
<tr>
<td>Diesem, John</td>
<td></td>
</tr>
<tr>
<td>Doelling, Arthur</td>
<td></td>
</tr>
<tr>
<td>Dowlin, Ken</td>
<td></td>
</tr>
<tr>
<td>Driscoll, James</td>
<td></td>
</tr>
<tr>
<td>Eckert, J. Presper</td>
<td></td>
</tr>
<tr>
<td>Estridge, William O.</td>
<td></td>
</tr>
<tr>
<td>Everest, Gordon</td>
<td></td>
</tr>
<tr>
<td>Fain, Robert L.</td>
<td></td>
</tr>
<tr>
<td>Farber, Dave</td>
<td></td>
</tr>
<tr>
<td>Fisher, Gerald</td>
<td></td>
</tr>
<tr>
<td>Fisher, Paul</td>
<td></td>
</tr>
<tr>
<td>Finin, Tim</td>
<td></td>
</tr>
<tr>
<td>Fox, Mark</td>
<td></td>
</tr>
<tr>
<td>Freed, Roy</td>
<td></td>
</tr>
<tr>
<td>Gaggle, Michael</td>
<td></td>
</tr>
<tr>
<td>Galitz, Wilbert O.</td>
<td></td>
</tr>
<tr>
<td>Gambino, Thomas</td>
<td></td>
</tr>
<tr>
<td>Gibbons, Fred M.</td>
<td></td>
</tr>
<tr>
<td>Girishpatrikh, Mr.</td>
<td></td>
</tr>
<tr>
<td>Goldberg, Richard</td>
<td></td>
</tr>
<tr>
<td>Goldstein, David K.</td>
<td></td>
</tr>
<tr>
<td>Goldstone, Herman H.</td>
<td></td>
</tr>
<tr>
<td>Gottlieb, Alan</td>
<td></td>
</tr>
<tr>
<td>Grabinke, K.</td>
<td></td>
</tr>
<tr>
<td>Graven, Art</td>
<td></td>
</tr>
<tr>
<td>Greenfield, Martin</td>
<td></td>
</tr>
<tr>
<td>Grey, Paul</td>
<td></td>
</tr>
<tr>
<td>Greyndaels, Elbert B.</td>
<td></td>
</tr>
<tr>
<td>Grochow, Jerrold M.</td>
<td></td>
</tr>
<tr>
<td>Hardgrave, Terry</td>
<td></td>
</tr>
<tr>
<td>Harper, Thomas</td>
<td></td>
</tr>
<tr>
<td>Harris, Kim</td>
<td></td>
</tr>
<tr>
<td>Harris, Larry</td>
<td></td>
</tr>
<tr>
<td>Harris, Richard D.</td>
<td></td>
</tr>
<tr>
<td>Heckel, Paul</td>
<td></td>
</tr>
<tr>
<td>Heimbigner, Dennis</td>
<td></td>
</tr>
<tr>
<td>Heising, William</td>
<td></td>
</tr>
<tr>
<td>Henry, Glen</td>
<td></td>
</tr>
<tr>
<td>Hughes, Robert</td>
<td></td>
</tr>
<tr>
<td>Huston, Bill</td>
<td></td>
</tr>
<tr>
<td>Ignizio, James P.</td>
<td></td>
</tr>
<tr>
<td>Januelaps, Victor</td>
<td></td>
</tr>
<tr>
<td>Jaworski, Joe</td>
<td></td>
</tr>
<tr>
<td>Johnson, Dave</td>
<td></td>
</tr>
<tr>
<td>Julius, Egil</td>
<td></td>
</tr>
<tr>
<td>Kaczowa, Peter</td>
<td></td>
</tr>
<tr>
<td>Kemeny, Iris</td>
<td></td>
</tr>
<tr>
<td>Kane, Gerald R.</td>
<td></td>
</tr>
<tr>
<td>Kay, Marin</td>
<td></td>
</tr>
<tr>
<td>Keplinger, Mike</td>
<td></td>
</tr>
<tr>
<td>Kim, K.</td>
<td></td>
</tr>
<tr>
<td>King, John</td>
<td></td>
</tr>
<tr>
<td>Koskinson, Joyce</td>
<td></td>
</tr>
<tr>
<td>Krieger, Mark</td>
<td></td>
</tr>
<tr>
<td>Laffitte, David S.</td>
<td></td>
</tr>
<tr>
<td>Landau, Herb</td>
<td></td>
</tr>
<tr>
<td>Lee, Kyu Y.</td>
<td></td>
</tr>
<tr>
<td>Lin, Peter</td>
<td></td>
</tr>
<tr>
<td>Lomuto, Nico</td>
<td></td>
</tr>
<tr>
<td>Lowenthal, Eugene</td>
<td></td>
</tr>
<tr>
<td>Maples, Michael J.</td>
<td></td>
</tr>
<tr>
<td>Marcellino, James J.</td>
<td></td>
</tr>
<tr>
<td>Maresca, Gerry</td>
<td></td>
</tr>
<tr>
<td>Markkula, Mike</td>
<td></td>
</tr>
<tr>
<td>Maryanski, Fred</td>
<td></td>
</tr>
<tr>
<td>Mathis, Robert</td>
<td></td>
</tr>
<tr>
<td>Mayfield, Anne M.</td>
<td></td>
</tr>
<tr>
<td>McCracken, Daniel</td>
<td></td>
</tr>
<tr>
<td>McDonald, Walter R.</td>
<td></td>
</tr>
<tr>
<td>McKenney, James J.</td>
<td></td>
</tr>
<tr>
<td>McLeod, Dennis</td>
<td></td>
</tr>
<tr>
<td>McPherson, John</td>
<td></td>
</tr>
<tr>
<td>Meserve, Bill</td>
<td></td>
</tr>
<tr>
<td>Millar, Jim</td>
<td></td>
</tr>
<tr>
<td>Miller, Ed</td>
<td></td>
</tr>
<tr>
<td>Miller, Mark</td>
<td></td>
</tr>
<tr>
<td>Millet, Mark A.</td>
<td></td>
</tr>
<tr>
<td>Mills, Dick</td>
<td></td>
</tr>
<tr>
<td>Mills, Nancy R.</td>
<td></td>
</tr>
<tr>
<td>Morgan, David</td>
<td></td>
</tr>
<tr>
<td>Morse, John E.</td>
<td></td>
</tr>
<tr>
<td>Moss, Sam</td>
<td></td>
</tr>
<tr>
<td>Motro, Amihai</td>
<td></td>
</tr>
<tr>
<td>Munson, John A.</td>
<td></td>
</tr>
<tr>
<td>Murphy, Catherine M.</td>
<td></td>
</tr>
<tr>
<td>Myer, Theodore H.</td>
<td></td>
</tr>
<tr>
<td>Nageshwar, Srinia</td>
<td></td>
</tr>
<tr>
<td>Nelson, Dave</td>
<td></td>
</tr>
<tr>
<td>Novotny, Eric</td>
<td></td>
</tr>
<tr>
<td>Nutt, Roy</td>
<td></td>
</tr>
<tr>
<td>O'Connor, Rob</td>
<td></td>
</tr>
<tr>
<td>Overgaard, Mark</td>
<td></td>
</tr>
<tr>
<td>Palmer, David F.</td>
<td></td>
</tr>
<tr>
<td>Parker, D.</td>
<td></td>
</tr>
<tr>
<td>Paul, Charles</td>
<td></td>
</tr>
<tr>
<td>Payne, John</td>
<td></td>
</tr>
<tr>
<td>Pearson, Allen L.</td>
<td></td>
</tr>
<tr>
<td>Peatrowsky, Ed</td>
<td></td>
</tr>
<tr>
<td>Peddecord, Tom</td>
<td></td>
</tr>
<tr>
<td>Perkins, Thomas E.</td>
<td></td>
</tr>
<tr>
<td>Perry, Rich</td>
<td></td>
</tr>
<tr>
<td>Peterson, Robert W.</td>
<td></td>
</tr>
<tr>
<td>Pogran, Zen</td>
<td></td>
</tr>
<tr>
<td>Phillips, Betty A.</td>
<td></td>
</tr>
<tr>
<td>Price, Lynne</td>
<td></td>
</tr>
<tr>
<td>Purtell, John</td>
<td></td>
</tr>
<tr>
<td>Quantz, Paul</td>
<td></td>
</tr>
<tr>
<td>Ramamootry, C. V.</td>
<td></td>
</tr>
<tr>
<td>Rattner, Justin</td>
<td></td>
</tr>
<tr>
<td>Ray, Clifton V.</td>
<td></td>
</tr>
<tr>
<td>Reggia, James</td>
<td></td>
</tr>
<tr>
<td>Reiser, Dick</td>
<td></td>
</tr>
<tr>
<td>Rolander, Tom</td>
<td></td>
</tr>
<tr>
<td>Rosenblatt, Bruce</td>
<td></td>
</tr>
<tr>
<td>Rosen, Benjamin M.</td>
<td></td>
</tr>
<tr>
<td>Ryan, Hugh</td>
<td></td>
</tr>
</tbody>
</table>

838

From the collection of the Computer History Museum (www.computerhistory.org)
Sacerdotim, Earl
Sakoda, James
Sami, Maria Giovanna
Sanchez, James
Schklain, Nicholas
Scureman, M.
Shaw, Ward
Simonyi, Charles
Singh, Jitendra
Slater, Dan
Smith, Dave
Smith, John
Smith, Raoul N.
Smith, Robert
Smith, Steve
Soloway, Elliot
Spradlin, E.
Stallard, Jim
Stern, Sal
Stuewald, David C.

Sutherland, Duncan
Swanson, Burton E.

Tennant, Harry
Tesler, Larry
Thorley, Tom
Thorndyke, Perry
Tobes, Roselte
Turner, Byron

Urban, Joseph E.
Vick, Charles R.

Wagman, David S.
Wagner-Korne, Anne
Walter, Chris
Ware, W. H.
Ware, Willis
Warner, Silas

Weems, Joe
Wegner, Peter
Weingarten, Fred
Weinreb, Daniel
Weissman, Larry
Wensley, John H.
Wilk, Chuck
Wickes, Maurice
Williams, Robert D.
Wilson, Diane
Wong, Harry
Woteki, Tom H.

Yates, Jean
Yeh, Raymond T.
Yelowitz, Larry

Zeldin, Saybean
Ziehe, Theodore W.
Zloof, Moshe
AUTHOR INDEX

Agrawal, Dharma P., 135, 239
Alexander, William, 257
Allen, F. E., 805
Amamiya, Makoto, 143
Amsler, Robert A., 657
Annaratone, M., 117
Batcher, Kenneth E., 185
Beech, David, 493
Berner, R. W., 811
Berg, Helmut K., 3
Berra, P. Bruce, 125
Bhuyan, Laxmi N., 135
Blackman, Maurice, 785, 793
Bloom, Naomi Lee, 539
Bowles, Kenneth L., 327
Brice, Richard, 257
Browne, J. C., 217
Callender, E. David, 381
Cardenas, Alfonso F., 341
Chandy, K. M., 251
Cheng, Ray, 775
Choudhari, Ramesh, 501
Cox, David A., 555
Davidson, Edward, 639
Davis, Carl, 167
DeWitt, David J., 207
Dumse, Randy M., 73
Elwell, James F., 309
Estrin, Gerald, 369
Filman, Robert E., 671
Frank, G. A., 225
Franta, William R., 589
Friedland, D., 207
Friedman, Daniel P., 671
Fujino, Seiji, 767
Gammill, Robert, 759
Goodman, Aaron M., 359
Goyal, Ambuj, 153
Grafton, William P., 341
Greenawalt, E. M., 225
Greenfield, Martin N., 817
Grochow, Jerrold M., 389
Hargrave, W. Terry, 571
Harslem, Eric, 515
Hartsough, Christopher, 381
Hasegawa, Ryujo, 143
Hayes, Philip J., 469
Hicks, Anthony, 697
Hiromoto, Robert, 233
Hoffman, Lance J., 461
Honda, Masanori, 767
Hsu, Khi Li, 727
Hull, Jonathan J., 501
Huston, Bill, 19, 85
Hwang, C. Jinsong, 735
Jackson, James E., 549
Kamibayashi, Noriyuki, 605
Kartashev, Steven I., 103, 167
Kartashev, Svetlana P., 103, 167
Keller, Tom W., 649
Kimball, Ralph, 515
Kohn, Leslie, 199
Koll, Matthew B., 571
Kulkarni, A. V., 225
Kurose, James F., 273
Lakshmi, M. Seetha, 649
Le Mer, Eric, 263
Levin, K. Dan, 691
Lin, Ching-Fang, 727
Lipovski, G. Jack, 153
Liu, J. W. S., 775
Liuzzi, Raymond, 125
Luo, Dawei, 617
Lybrook, C. W., 415
MacNair, Edward A., 273
Malek, Miroslaw, 153
Mark, William, 475
Maryanski, Fred, 429
Mateosian, Richard, 53
McKelvey, Terrence R., 239
McMahon, Edith M., 319
Mikami, Hirohide, 143
Minami, Don M., 117
Misra, J., 251
Mooney, James D., 529
Morris, Richard V., 381
Mueller-Schloer, Christian, 487
Murphy, Catherine M., 193
Nakamura, Osamu, 143
Nance, Richard E., 293
Neugent, William, 441
Neuse, D., 251
Okawa, Yoshikuni, 713
Palmer, David F., 193
Pathak, Janak, 53
Peatrowsky, Ed, 67
Peterson, James L., 665
Plamondon, Réjean, 749
Potochnik, John R., 595
Rahimi, Said K., 589
Rao, Prakash, 3
Raymond, Janis G., 281
Rich, Elaine A., 481
Robillard, Pierre N., 749
Rosenberg, Saul, 287
Roth, Richard L., 351
Ryan, Hugh, 785, 793
Ryan, John, 393
Sakoda, James M., 825
Salazar, Sandra B., 571
Sami, M. G., 117
Santhanam, Viswanathan, 595
Sauer, Charles H., 273
Seo, Kazuo, 605
Shapiro, Michael, 95
Shneiderman, Ben, 579
Shriver, Bruce D., 3
Smith, C. U., 217
Smith, David Canfield, 515
Srihari, Sargur N., 501
Standish, Thomas A., 333
Stockton, John F., 29
Taute, Barbara J., 409
Thomas, Glenn, 579
Thorp, Lynn, 759
Tong, Fu, 627
Turn, Rein, 449
Vaskevitch, David, 509
Vinberg, Anders, 719
Vincent, David R., 37
Wagner, Neal R., 487
Wah, Benjamin W., 697
Waldrop, James H., 363
Warner, Walter P., 293
Winchester, James W., 369
Xia, Daozhong, 617
Yada, Koji, 767
Yamamoto, Yuzo, 381
Yao, S. Bing, 617, 627
Zhou, Chaochen, 679
Zingale, Tony, 59
Zvegintzov, Nicholas, 561

From the collection of the Computer History Museum (www.computerhistory.org)
AMERICAN FEDERATION OF INFORMATION PROCESSING SOCIETIES, INC. (AFIPS)

OFFICERS

President
J. Ralph Leatherman
Hughes Tool Company
Houston, TX

Vice President
Sylvia Charp
The School District of Philadelphia
Philadelphia, PA

Immediate Past President
Albert S. Hoagland
IBM Corporation
San Jose, CA

American Society for Information Science (ASIS)
James N. Cretsos
Merrell Dow Pharmaceuticals, Inc.
Cincinnati, OH

American Statistical Association (ASA)
George Minich
World Bank
Washington, DC

Association for Computational Linguistics (ACL)
Donald E. Walker
SRI International
Menlo Park, CA

Association for Computing Machinery (ACM)
Peter J. Denning
Purdue University
West Lafayette, IN

Aaron Finerman
University of Michigan
Ann Arbor, MI

Raymond E. Miller
Georgia Institute of Technology
Atlanta, GA

Treasurer
Walter A. Johnson
Consolidated Papers, Inc.
Wisconsin Rapids, WI

Secretary
Arthur C. Lumb
Procter & Gamble Company
Cincinnati, OH

Executive Director
Paul J. Raisig
AFIPS
Arlington, VA

BOARD OF DIRECTORS

Association for Educational Data Systems (AEDS)
John Hamblen
National Bureau of Standards
Washington, DC

Data Processing Management Association (DPMA)
P. Roger Fenwick
New York Telephone
New York, NY

Robert A. Finke
Cummins Engine Company
Columbus, IN

Robert J. Marrigan
Mail Communications, Inc.
Everett, MA

IEEE—Computer Society
Rolland B. Arndt
Sperry Univac
St. Paul, MN

Oscar N. Garcia
University of South Florida
Tampa, FL

Steven S. Yau
Northwestern University
Evanston, IL

Instrument Society of America (ISA)
Chun H. Cho
Fisher Controls Company
West Marshalltown, IA

Society for Computer Simulation (SCS)
Per Holst
The Foxboro Company
Foxboro, MA

Society for Industrial and Applied Mathematics (SIAM)
Donald K. Thomesen
SIAM Institute for Mathematics & Society
New Canaan, CT

Society for Information Display (SID)
Carlo Crocetti
Rome Air Development Center/XP
Griffis Air Force Base, NY

From the collection of the Computer History Museum (www.computerhistory.org)
NATIONAL COMPUTER CONFERENCE BOARD MEMBERS

<table>
<thead>
<tr>
<th>Position</th>
<th>Name</th>
<th>Organization</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chairman and ACM Representative</td>
<td>Seymour Wolfson</td>
<td>Wayne State University</td>
<td>Detroit, MI</td>
</tr>
<tr>
<td>Vice Chairman and SCS Representative</td>
<td>Carl Malstrom</td>
<td>North Carolina State University</td>
<td>Raleigh, NC</td>
</tr>
<tr>
<td>Small Societies Representative</td>
<td>George Minich</td>
<td>World Bank</td>
<td>Washington, DC</td>
</tr>
<tr>
<td>Treasurer and AFIPS Representative</td>
<td>Walter Johnson</td>
<td>Consolidated Papers, Inc.</td>
<td>Wisconsin Rapids, WI</td>
</tr>
<tr>
<td>AFIPS Representative</td>
<td>Sylvia Charp</td>
<td>The School District of Philadelphia</td>
<td>Philadelphia, PA</td>
</tr>
<tr>
<td>Secretary and DPMA Representative</td>
<td>George Eggert</td>
<td>Chicago DCASR</td>
<td>Chicago, IL</td>
</tr>
<tr>
<td>IEEE-CS Representative</td>
<td>Stanley Winkler</td>
<td>IBM Corporation</td>
<td>Armonk, NY</td>
</tr>
<tr>
<td>ACM President—Ex Officio</td>
<td>Peter J. Denning</td>
<td>Purdue University</td>
<td>West Lafayette, IN</td>
</tr>
<tr>
<td>IEEE-CS President—Ex Officio</td>
<td>Oscar N. Garcia</td>
<td>University of South Florida</td>
<td>Tampa, FL</td>
</tr>
</tbody>
</table>

NATIONAL COMPUTER CONFERENCE COMMITTEE OF THE NCC BOARD

<table>
<thead>
<tr>
<th>Position</th>
<th>Name</th>
<th>Organization</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chairman</td>
<td>Irwin J. Sitkin</td>
<td>Aetna Life & Casualty</td>
<td>Hartford, CT</td>
</tr>
<tr>
<td>Secretary</td>
<td>Floyd Harris</td>
<td>Life of Georgia</td>
<td>Atlanta, GA</td>
</tr>
<tr>
<td>Members</td>
<td>Morton M. Astrahan</td>
<td>IBM Research Laboratory</td>
<td>San Jose, CA</td>
</tr>
<tr>
<td></td>
<td>Harvey L. Garner</td>
<td>Moore School of Electrical Engineering</td>
<td>University of Pennsylvania, Philadelphia, PA</td>
</tr>
</tbody>
</table>

842
NATIONAL COMPUTER CONFERENCE BOARD INDUSTRY ADVISORY PANEL

Chairman
Dallas Talley
Qantel Corporation
Hayward, CA

Members
David Bowman
Roanoke, TX
Jack Davis
Harris Corporation
Melbourne, FL
Frederick M. Hoar
Fairchild Camera and Instrument Company
Mountain View, CA

S. A. Lanzarotta
Xerox Corporation
El Segundo, CA
William Lonergan
Xerox Development Corporation
Beverly Hills, CA
Richard Mau
Sperry Rand Corporation
New York, NY
Jack McMahon
IBM Corporation
Armonk, NY

AFIPS HEADQUARTERS STAFF

OFFICE OF EXECUTIVE DIRECTOR
Executive Director
Paul J. Raisig

Executive Secretary
Joan Tackett

Public Information Secretary
Marion Baskin

Secretary/Receptionist
Terry DiMurro

AFIPS PRESS
AFIPS Press Director
Christopher N. Hoelzel
Fulfillment Administrator
Olive Shilland

Secretary
Sharon Lee Conway

Director, Finance and Administration
Janis Miller

Accountant
Saryratha Thach

Bookkeeper
Carrol Reid

Administrative Manager
Mary A. Dix

Administrative Coordinator
Ken Fields

Analyst
Ramsey Harris

CONFERENCE DEPARTMENT
Director of Conferences
James H. Kroell

Secretary
Sharon Lee Conway

NCC Copy/Production Editor
Elizabeth G. Emanuel

Administrative Assistant
Sue Robinson

Manager, Conference Operations
Sam Lippman

Conference Coordinator
Margaret Dyer

843

CONFERENCE SECRETARY
Wendy Chin

Manager, Exhibit Operations
Larry Jennings

Exhibit Operations Secretary
Jill Newman

Exhibit Sales Manager,
Luenell Hoffman

Exhibit Sales Secretary
Dennis Smoot

Marketng Manager
Betty Lou Cooke

Marketing Coordinator
Debbie Kalbfleisch

Marketing Secretary
Lori Keller

COMMUNICATIONS DEPARTMENT
Director of Communications
John Gilbert

Research Associate
Ellen Law

Secretary
Patty Mayo

From the collection of the Computer History Museum (www.computerhistory.org)