Coding/decoding for data compression and error control on data links using digital computers

by H. M. GATES

Braddock, Dunn and McDonald, Inc.
Albuquerque, New Mexico

and

R. B. BLIZARD

Martin Marietta Corporation
Denver, Colorado

INTRODUCTION

Data compression and error control have, over the years, been treated as two separate disciplines. Data compression can substantially reduce the loading of communication channels and error control using coding methodology, can reduce the amount of errors in the messages being transmitted, or allow the system to operate with less power for a comparable uncoded information rate. This paper demonstrates that both functions can be combined into one operation by applying sequential decoding developed for error control to data compression. Because the same general method can be used to solve both problems, data compression and error control can be united in a single system and held accountable for the required theorems in information theory.

The principal incentive for the use of sequential decoding for both compression and error control is that it permits the use of the source redundancy with extremely simple encoding equipment. Higher speed computing systems and larger available memories make it more feasible to use various redundancy schemes. In photographs, for example, line-to-line redundancy can successfully be used.

The proposed process of combining data compression and error control in a sequential decoder is reversible because the original data is recovered intact with no compromising or loss of information and resolution. This is attributed to the sequential decoding process itself. Uncertainty about data modification and missing data does not exist. If the capacity of the channel is exceeded because of increased noise or information activity beyond the design of the system, the data output from the decoding process stops and delivers no further information until the channel improves. The transmitted data delivered to the user is thus creditable.

The combined process does not require two separate systems; one for compression and one for error control. Data compression designers rely heavily on error free channels and error control factions assume purely random information into their system and data link. Naturally, neither is completely true.

In simulating data channels, error control designers expend a great amount of effort in generating a pure random number sequence to test their system. Yet, the data compression specialist expends his time trying to identify patterns in what is sometimes the most obscure material. There should be little doubt that the two processes are very closely related.

Background

The means for decoding convolutional codes first became practical when R. M. Fano in 1963 introduced his now famous sequential decoding algorithm. I. M. Jacobs recently discussed sequential decoding as it applies to retrieving data from a space probe. He points out that this is a particularly good application because fading is relatively unimportant, channel noise is nearly Gaussian, and the information rate is limited by the available signal strength rather than by the bandwidth. Significant developments in the implementation of sequential decoders have occurred in the Pioneer IX space program; at the MIT Lincoln Laboratory; and by the Codex Corporation; and new algorithms for decoding convolutional codes are being disclosed annually.
The possibility of applying error control coding to data compression was first pointed out by Weiss\(^8\) who showed that block codes work fairly well for compressing data streams consisting of a few 1's scattered at random among many 0's. However, this type of source can be very efficiently and easily encoded with a run-length encoder. More interesting sources are those in which the redundancy is of a more complicated type and is not easily utilized by a block decoder. Sequential decoding is ideally suited to this type of problem.

With block codes such as the orthogonal and BCH codes, the entire block is ordinarily decoded as a unit by computing correlations or by solving certain algebraic equations. Sequential decoding starts at the beginning of a message block and works toward the end by a trial-and-error process. A running account is kept of the reasonableness of the decoded message on the basis of received signal. If a wrong decision is made because of noise, the subsequent decoded message soon becomes unreasonable, and the decoder then searches back over its earlier choices until the correct message is found. It is relatively simple, in concept at least, to use what is known about the message probabilities to improve the likelihood criterion. This allows more data to be transmitted over a given link and accomplishes data compression.

Convolutional Codes

Figure 1a shows a convolutional encoder with a binary message source, \(M \), assumed for the time being to be random information, and an error source, \(N \), representing channel noise. Messages from the source \(S \) may be shifted in one or more bits at a time denoted as \(n \). After each shift, \(v \) mod-2 adders (in this case three mod-2 adders) are sampled or commutated and the resultant bits passed into the transmitter equipment of the data channel. If four bits are shifted in before the encoder output is commutated, a convolutional data compression process occurs at rate \(\frac{4}{n} \). The decoder must then use the a posteriori probability of the source \(S \) in defining the decoding parameters of the Fano algorithm. Normally, rates of \(\frac{2}{3} \), \(\frac{3}{4} \), and even \(\frac{4}{4} \) are used in error control. That is, for each bit shift in, from two to four mod-2 adders are sampled. The number of mod-2 adders normally is fixed or hardwired for a particular mission or channel requirement. The connections from these mod-2 adders to the shift register, \(G \), represents the codes themselves and a great deal has been written about this subject particularly if the shift register length, called the constraint length, \(k \), is below 12 to 15 bits. Random selection of these codes for large constraint lengths produces adequate, if not completely satisfactory, results.\(^9\) Two rates of 2/1 and 6/4 are demonstrated here. Constraint lengths of 60 bits are used as well.

The basic channel

The channel is important in both error control and compression since it represents the sole source of noise and thus errors into the system, that is, receiver front-end noise, electronic noise in the lines, and so forth, are combined into one noise error source. By definition then, the channel referred to here contains the system modulator, amplifiers, transmitters, antennas or cables, repeaters, receivers, and demodulators. The noise of this channel is assumed to be Gaussian or white noise. The channel is assumed to be stationary in the sense that its properties do not change with time. And the channel is assumed to be memoryless. The channel is described as binary antipodal in which the transmitted waveforms in the absence of noise are a sequence of 180 degree, phase-modulated waveforms, or binary data represented by plus and minus voltages for ones and zeros respectively.

The restrictions imposed on the channel are to this point, fairly realistic, depending of course on the method of transmission. In passing, if the received
binary sequence is quantized into say four or eight levels for each bit received, the compression and error control performance can be increased. This is a well known fact in information theory. This quantization does not change the basic operation of this system or any of the convolutional decoders that this author is aware of.

The decoder

Convolutional codes generated by the encoder shown in Figure 1a can be decoded in one of several ways. The oldest practical method is the use of the Fano Algorithm which is well described in several references. The Fano Algorithm sequentially decodes the data stream as it is received and thus the reference to sequential decoding. Actually, there are several new algorithms for decoding convolutional codes which are extremely clever and add promise to the combination of error control and data compression.

Without going into great detail, a sequential decoding process will be described next. Any code produced by the convolutional encoder may be represented by a binary tree. The encoder input \(M = M_1, M_2, \ldots \), corresponds to an infinite path through the tree, and labels on the branches indicate the encoder output. Figure 1b demonstrates this point for a given convolutional encoder. Since more bits are being generated than received in the encoder, i.e., \(n < v \), redundancy is introduced to give the code error detecting and correcting capabilities. The received infinite sequence for the channel must similarly be compared with a receiver encoder replica to find the path which maximizes the conditional probability of received sequence versus the absolute values of the code tree. Each move from one node to another represents a bit shift of information. Sequential decoding is then based on searching the most probable branches of a code tree. Whenever this path becomes too unlikely, a search is initiated for a better path. The sequential decoder is able to determine the correct path while examining only a fraction of the absolute values of the code tree. The means of scoring which branch or path is best is referred to as the branch metric which is based on the conditional probabilities of the received versus the transmitted signal.

THE COMPUTATIONAL LIMIT

This section contains a discussion of the limits of performance that can be expected for data compression with sequential decoding.

If the convolutional code is fairly long, a sequential decoder has a very small probability of making an undetected error. Instead, when the signal-to-noise ratio gets too high, it runs out of computational capacity and gives up until a new block is started by filling the encoder shift register with zeros. The amount of computation required for each node of the decoding tree is measured by the average number of branches that must be tried before the decoder can advance to the next node. It is easily seen that, as the signal gets noisier (or, if compression is used, as the data become more active), the decoder will make the wrong choice more often, and more trials must be made before the right path is found.

At a certain point, called the computational limit, the average number of trials per node becomes infinite, and the decoder is bound to break down at least occasionally. Work can progress beyond this limit if some losses in the message can be accepted—e.g., when it is possible to obtain a repetition of the parts that were lost. In general, however, the computational limit is a good criterion for the capacity of a channel using sequential decoding. Operation is very good to within a few percent of the limit, and is poor when the limit is exceeded.

The computational limit is also equal to the union bound on the exponential error parameter for block coding. Consider a code block that contains \(N \) successive transmitted signals. These may be biphase pulses, or they may be the tones of a frequency-shift-keying transmitter or any other discrete modulation scheme. This code block will be used to convey the information contained in \(N' \) successive message symbols. These may be the gray levels of \(N' \) picture elements, or perhaps \(N' \) letters of English text. It will be shown that there are codes (i.e., rules for mapping the \(N' \) symbols into the \(N \) signal elements) for which the probability of one or more errors in the block \(P_e \) is bounded by

\[
P_e \leq 2^{-N B_0(\rho, Q) + N' D(\rho)} \quad (1)
\]

where \(B(\rho, Q) \) is a function of the signal-to-noise ratio in the channel and \(D(\rho) \) depends on the message statistics. It is convenient to define \(R' = N'/N \) as the decoding rate. Equation (1) can be rewritten as

\[
P_e \leq 2^{-N \left[B_0(\rho, Q) + R' D(\rho) \right]} \quad (2)
\]

to show that for a fixed \(R' \), the probability of error decreases exponentially with increasing \(N \) so long as \(R' D(\rho) < B_0(\rho, Q) \). This defines the limiting rate \(R_c = \)
where the \(w_i \) are the probabilities, based on all knowledge available to the decoder, of the possible message symbols. For instance, if the message is English text, each \(w_i \) would be the probability that the next symbol is a particular letter or punctuation mark. The decoder could be programmed to take into account the part of the message already decoded, word frequencies, and the idiosyncrasies of the particular writer.

\(D \) is the number of bits that would have to be transmitted on an errorless channel to convey the information in each message symbol. In the following sections, \(D \) will be evaluated for various types of source statistics.

Equiprobable symbols

Evaluating \(D \) in Equation (3) is particularly simple when all the symbol probabilities are the same. For the binary case, \(w_0 = w_1 = \frac{1}{2} \) and \(D = 1 \), indicating that the units of \(D \) are bits.

With \(m \) equiprobable symbols, \(w_i = \frac{1}{m} \) for \(i = 1, 2, 3, \ldots, m \), and \(D = \log_2 m \). This is exactly equal to the entropy \(H \) for this case and indicates that the computational limit is the same as the Shannon bound for discrete noiseless systems. Of course, this is not a very interesting kind of source for data compression, but if \(m = 3 \), for instance, the message could be coded into about 1.6 bits/symbol instead of going to 2 bits as would be required for a strictly binary system. Blizard, et al., have shown interesting values for \(D \) based on some common distributions several of which are given in this paper.

A binary source with unequal probabilities

A binary source emits only two different symbols. These may be called one and zero. If the probability of one symbol is greater than that of the other, the data stream can be compressed.

If the probability of one symbol is \(p \), and that of the other \(1 - p \), Equation (3) becomes

\[
D = \log_2 \left(\frac{1}{2} \left(p^{1/2} + (1-p)^{1/2} \right)^2 \right)
= \log_2 \left(1 + 2 \left(p(1-p) \right)^{1/2} \right).
\]

The corresponding expression for the entropy is

\[
-H = -p \log_2 p + (1-p) \log_2 (1-p).
\]

Figure 2 shows the amount of compression, in dB, that can be accomplished with sequential decoding and also the theoretical limit based on the entropy \(H \). It is seen that sequential decoding will give slightly more than half the available improvement measured in dB.

A line drawing is an example of a binary source. In this case, there is a large amount of redundancy in the two-dimensional picture that is available by extrapolating...
Note: Normal Distribution, quantum interval = 1.0, standard deviation = \(\sigma\)

Figure 3—H and D for normal distribution

- Integrating the picture lines from the part of the image that has already been decoded into the region that is being decoded. The probability of “black” for an image element will strongly depend on its position relative to lines in the part of the image that has already been decoded.

Normal distribution

The prevalence of the normal (or Gaussian) distribution in nature is generally exaggerated, but it is mathematically tractable and is a reasonable approximation in many practical cases.

Suppose that the message consists of successive values of a variable \(v\). At any point in the decoding, the next value of \(v\) can be predicted on the basis of past values and any other pertinent information. Assume that the actual value differs from the predicted by an amount that is normally distributed with rms deviation equal to \(\sigma\). For simplicity in the notation, let the quantizing interval be 1. At each sampling time, the expected value of \(v\) is \(v_0(t)\) based on a knowledge of all the previous values of \(v\). The actual value of \(v\) is

\[v(t) = v_0(t) + x(t), \]

where \(x\) is the difference between the true value and the predicted value.

Let \(x\) have a normal distribution:

\[p(x) = \left[\frac{1}{\sigma(2\pi)}\right]^{1/2} \exp\left(-x^2/2\sigma^2\right). \]

With unity as the quantization interval, the probabilities of the output symbols are

\[w_i = \int_{i-1/2}^{i+1/2} p(x) \, dx. \]

The entropy per symbol is

\[H[w_i] = \sum w_i \log_2 w_i. \]

This equation can be evaluated directly for any values of \(\sigma\) and \(v_0\), but it is more convenient to obtain a lower bound as follows. Note that \(w_i\) is the average value of \(p(x)\) over the unit interval from \(i-v_0\) to \(i+1-v_0\). \(H[w_i]\) is then the entropy function of this average value. If the function is performed within the integral, this provides the average of \(H[p(x)]\). Since the entropy function \(H[w_i]\) is concave down, the average of the function is never greater than the function of the average. When the summation is performed over all \(i\), the integral is extended over all \(x\), and the inequality can be written as

\[H[w_i] \geq \int_{-\infty}^{\infty} p(x) \log_2 p(x) \, dx. \] \hspace{1cm} (4)

Similarly, for the lower bound on required channel capacity with sequential decoding,

\[D[w_i] \geq 2 \int_{-\infty}^{\infty} [p(x)]^{1/2} \, dx. \] \hspace{1cm} (5)

Integrating Equation (4) provides

\[H \geq \log_2 \left[\sigma(2\pi)^{1/2}\right] = 2.05 + \log_2 \sigma; \] \hspace{1cm} (6)

and from Equation (5),

\[D \geq \log_2 \sigma(8\pi)^{1/2} = 2.33 + \log_2 \sigma. \] \hspace{1cm} (7)

The above bounds are good approximations for large \(\sigma\). Exact results for \(\sigma=1\) and \(1/2\) are tabulated in Table 1 with the expected value in the center of a quantum interval (A) and the expected value on the boundary between two quantum intervals (b).

TABLE I—The Compression and Entropy Values for a Normal Distribution with \(\sigma=1\) and \(1/2\)

<table>
<thead>
<tr>
<th>(\sigma)</th>
<th>A</th>
<th>B</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.11</td>
<td>2.09</td>
<td>1.24</td>
<td>1.36</td>
</tr>
<tr>
<td>1/2</td>
<td>2.38</td>
<td>2.37</td>
<td>1.43</td>
<td>1.50</td>
</tr>
</tbody>
</table>
The deviations from the bounds are small for \(u = 1 \) and less than 0.31 bit for \(u = \frac{1}{2} \).

Figure 3 shows the bounds, which are good approximations for \(u > 1 \), and also the behavior for small \(u \) when the quantization boundary falls exactly on the expected value of \(v \).

\(D \) is the number of bits of channel capacity required to transmit each message element. Equations (6) and (7) are derived with the assumption that there is no limit on the range of \(v \). Thus an infinite number of quantization levels are spaced at unit intervals. The amount of compression available at the computational limit depends on the actual number of quantization levels used. For example, suppose a picture is quantized to 64 gray levels (6 bits) and \(u = 0.8 \). From Figure 3, \(D = 2.0 \) and \(H = 1.8 \). The compression ratio for sequential decoding is \(6/2 = 3.0 \), and the maximum available is \(6/1.8 = 3.3 \).

MODELING A SIMPLE SYSTEM

A system example that used the \textit{a posteriori} probabilities of the source is discussed. Despite the fact that this example is a simple system, it exemplifies all the problems and features of more complex codes and channels, if the nonstationary sources be excluded.

System description

Consider a rate 2/1 data compressor so the source encoding is binary and memoryless with probability of a binary one occurring as \(p = p[1] = 1/32 \). Source encoding consists of shifting in two bits at a time into a shift register and forming a parity check per unit time; source decoding consists of sequential decoding the resulting tree with the Fano algorithm. Figure 4 illustrates the system.

Since the probabilities of two symbols forming the input elements are unequal, the actual information content (entropy) is less than 1 bit/symbol and some compression of the data is possible. As was shown in (3), the compression term may be found as

\[
D = \log_2 \left((w_1)^{1/2} + (w_2)^{1/2} \right)^2 = 0.425.
\]

The ratio of input to output symbols is \(1/D = 2.36 \), and for this example a ratio of 2 was used.

Consider a second example pertaining to channel coding rather than source coding pointed out by G. D. Forney. Let the encoder use a nonsystematic rate \(\frac{1}{2} \) binary constraint length code shown in Figure 5. The channel is a binary symmetric channel with error probability \(p \). Syndromes that contain all information about the errors and are independent of data are formed at the decoder so that all-zero data can be assumed. A syndrome sequential decoder decodes the syndromes and determines the error locations; the error locations are used to make corrections on the data. It is clear that the syndrome form of Figure 5 corresponds to the encoder of Figure 4, and that the behavior of the Fano algorithm sequential decoder is identical in the two cases. In particular, since \(R_{\text{comp}} < \frac{1}{2} \) for \(p < 4.6 \) percent, it can be seen that computation is bounded for \(p < 4.6 \) percent and can be determined for all \(p \).

Simulated channel

The system described in Figure 4 was programmed on the CDC 6400 computer in ascent. The system test consisted of the Fano algorithm decoder, encoder, and random number generator, which generated the binary information stream so there would be control over the number of binary ones. The system performs 12,000 calculations per second. The CDC 6400 has a 60-bit word, which represents the maximum constraint length possible for this system.

Simulations for this system were obtained for 8- and
48-bit constraint lengths at rate 2/1 convolutional
codes and sequential decoding 300-bit blocks with a
12-bit tail. The decoder uses hard decision \((Q=2)\) in-
put. The code, in octal, used for \(k=8\) is 716 as shown in
Figure 4 and 7162610413051275 for \(k=48\). The com-
puter simulations were made for information content
\(P(w_0) = 4\) percent, 4.6 percent, 5 percent, and 5.5 per-
cent where the theoretical \(R_{\text{comp}}\) is at 4.6 percent. The
results of this simulation are shown in Figure 6, where
\(P_r(C \geq L)\) is the probability that the number of com-
putations \(C\) is greater than the number of computations
per bit \(L\) when moving through a single branch.
Theoretically,
\[
P_r(C \geq L) = KL^{-\alpha}
\]
where \(K\) is a constant and \(\alpha\) the Pareto exponent. As
the constraint length approaches 8 of this system, which
is equivalent to 4 for the conventional convolutional
code, the results approach those of J. Hiller\(^7\) with a
slight loss going from rate \(\frac{2}{1}\) to rate \(\frac{1}{2}\).

APPLICATION OF THE SYSTEM TO A
PRACTICAL PROBLEM

One obvious application of convolutional data com-
pression is to work with picture data, say from a space
probe. Statistics of the source can be applied to the
sequential decoding operation. As an example of this
technique, seven digitized pictures have been studied
to determine how much compression can be theoreti-
cally achieved. The digitized pictures were supplied
by R. Rice from JPL.\(^{12}\) These pictures vary in activity
from typical flyby data, which generally are inactive,
to pictures taken from landers, which are quite detailed
and very active, i.e., difficult to compress. Three typical
photos are shown in Figure 7, which represent the
data of pictures 1, 3, and 7 respectively. Once these
theoretical values are established, the decoder can be
implemented to decode similar data.

Gathering source statistics from picture data

The picture elements under study are quantized to
6-bit messages (64 array levels). They vary in activity
from an entropy 1.9 to 4.67 bits/picture element on a
first difference calculation of one picture element to
the element immediately behind it. Each picture has a
field of 684 X 600 elements. Picture data are summarized
in Table II.

The key to the data compression decoding problem,
whether using sequential decoding or block decoding,
is to predict with some accuracy what a picture element
value should be given the values of its surrounding
neighbors. More explicitly, as the decoder moves
through the picture from left to right and from

<table>
<thead>
<tr>
<th>Picture</th>
<th>Entropy</th>
<th>Average Gray Level</th>
<th>Standard Deviation</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.90</td>
<td>50.3</td>
<td>2.48</td>
<td>2.3</td>
</tr>
<tr>
<td>2</td>
<td>2.60</td>
<td>54.9</td>
<td>9.22</td>
<td>2.85</td>
</tr>
<tr>
<td>3</td>
<td>3.06</td>
<td>34.8</td>
<td>9.84</td>
<td>3.4</td>
</tr>
<tr>
<td>4</td>
<td>3.33</td>
<td>50.8</td>
<td>12.45</td>
<td>3.65</td>
</tr>
<tr>
<td>5</td>
<td>3.65</td>
<td>41.5</td>
<td>10.05</td>
<td>3.9</td>
</tr>
<tr>
<td>6</td>
<td>4.00</td>
<td>48.5</td>
<td>11.79</td>
<td>4.35</td>
</tr>
<tr>
<td>7</td>
<td>4.67</td>
<td>41.2</td>
<td>11.61</td>
<td>4.95</td>
</tr>
</tbody>
</table>

Note: (1) Picture fields are 684 elements/line and no less than
598 lines/frame.
(2) Each pixel (picture element) is 6 bits.

<table>
<thead>
<tr>
<th>Source Activity</th>
<th>Errors at k=8</th>
</tr>
</thead>
<tbody>
<tr>
<td>▽</td>
<td>5.5%</td>
</tr>
<tr>
<td>△</td>
<td>5.0%</td>
</tr>
<tr>
<td>○</td>
<td>4.5%</td>
</tr>
<tr>
<td>□</td>
<td>4.0%</td>
</tr>
</tbody>
</table>

Figure 6—Simulation of convolutional data compression for binary symmetric channel.
top to bottom, we ask what is the value of the next picture element.

The correlation value determined for given base pixel \(x \) and pixel \(x_i \), located at coordinates \((u, v) \) from \(x \) is given by

\[
c(u, v) = 1 - \left[\frac{(x_i - x)^2}{2\sigma^2} \right]
\]

Figure 8 shows an enlargement of a set of picture elements to be correlated with the base pixel. Distance from base pixel, \(d = \sqrt{u^2 + v^2} \).
elements. The base pixel is correlated with each of the \(x_i \) elements within the pattern shown in the figure. When considering a pattern of more than one element, such as Figure 8, correlation becomes a function of distance, \(u \) and \(v \), between the two pixels being correlated, where \(u \) is the horizontal distance and \(v \) the vertical distance. For the correlation pattern shown in Figure 8, 25 correlation values will be bound for one base pixel as a function of \(u \) and \(v \).

After completing the 25 calculations, the base pixel is moved one unit to the right along the picture line and 25 more correlation coefficients are recomputed. These new results are averaged into the past results. Once the correlation calculations have been computed for one line, the base pixel is moved down by one line and the data again computed and averaged with all the previous work. This procedure was accomplished on a CDC 6400 digital computer.

The correlation pattern was subdivided into four regions, as indicated in Figure 8, to investigate directional variation. Samples of the results of our correlation computations are shown in Figures 9 and 10 for two pictures. Each of the four symbols represents one of the four regions. The probability density functions are also shown for regions in which correlation data were established.

If the analyst wants to apply the correlation data to an efficient prediction program, he must evaluate the results of Figure 8 using a mean square estimation technique to determine how effective the correlation coefficients are in predicting results as a function of various patterns. The correlation patterns must be selected on the basis of which appears to be the most
efficient. The pattern shown in Figure 8 was used to
gather data rather than trying to determine an efficient
pattern. These results are then applied to the sequential
coder algorithm.

Eleven pixel patterns were tested. These patterns,
along with their performance, are shown in Figure 11.
The base pixel to be predicted is noted with an X.

The vertical axis of this figure is the rms deviation
from the mean of the base pixel to the surrounding
values. High rms deviations represent large errors in
estimating the base pixel values. The horizontal axis
represents the number of elements used to evaluate
the gray levels of the base pixels. The correlation coeffi­
cients were used for low, average, and highly correlated
pictures. Thus, the top curve represents the rms devia­
tion from mean for low correlated pictures using the
different pattern structures shown. The middle curve
and the bottom curve represent the average and highly
 correlated rms deviations from mean, respectively.

From this set of curves, it can be seen that after
four or five picture elements there is little need for the
additional data supplied by more picture elements to
estimate the value of the base picture element.

Extending the model

The example of the preceding section may be ex­
tended to handle the picture data discussed here.
Knowledge of the picture statistics aids in the deCoding
process just as it did for the binary case. The only
difference in the source is the complexity of the data.
For this simulation, use was made of the statistics as­
sociated with Picture 2 (Table II), which are highly
correlated. The standard deviation of the base pixels
of this picture with their adjacent elements was com­
piled at the same time the correlation data were col­
lected. These deviations are shown in their respective
locations associated with the base pixel in Figure 12.
These values represent an average over all base pixels
in Picture 2 and are measured in terms of gray levels.
The base pixel was predicted to within $\sigma=2$ or so using
the results of Reference 8, which were programmed on
a digital computer. The term D from Reference 7 was
solved for a Gaussian distribution, which is a function
of σ. This calculation yields $D=2.33+\log_2 \sigma=3.4$ if
$\sigma=2$. The system is designed to run at rate $\frac{3}{2}$.
The simulation used a convolution encoder with a 6-bit
input shift, 4 mod-2 adder outputs, and a constraint
length of 60 bits.

The branch metric for the Fano algorithm is selected
according to the distance the decoded message was
from the guess as a function of σ and the Gaussian
distribution with mean of the distribution at \hat{z}. A
branch metric lookup table may be computed before
the decoding operation is started so

$$B_M = \log_2 P = \log_2 f(y)$$

where

$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{(x-x)^2}{2\sigma^2}}.$$
lookup table, Fano algorithm sequential decoder, comparator, and the appropriate control algorithms. The block diagram is shown in Figure 13. The pattern used for prediction is pattern 4 of Figure 11 with the appropriate coefficients. To avoid startup problems, the first line and first column of each picture was read in and assumed to have been correctly decoded. This, in fact, identifies the single largest problem of systems like this one. It can be overcome, however, as discussed later.

Again the system was programmed on the CDC 6400, which provided sufficient core storage to store the data fields required to make proper evaluation of the base pixel. Searching time, however, is slow (100 searches per second) due in part to the evaluation of the branch metrics. The results of the simulation are shown in Figure 14 when the average number of searches per line is shown as a function of first difference picture entropy. Each picture contains 684 elements per line and 683 coded elements are being simulated. The programs have been limited to 40,000 searching operations. An attempt was made to decode Picture 6, first difference entropy = 4.00, with some interesting results. The system started decoding properly, but after 50 or so lines the maximum number of searches was exceeded and an erasure occurred. The decoding of successive lines deteriorated rapidly where erasures occurred sooner on each line than the line before. Complete erasures occurred 7 to 8 lines after the first erasure was detected.

The system was forced to restart halfway down, and the same phenomena occurred after several lines. The decoder simulation of Picture 7 would exceed the 40,000 calculation limit with every line. Only a small portion of Picture 7 was simulated because of the long run times encountered.

The results imply that once an entropy of a value in the neighborhood of 3.65 is exceeded, then R_{comp} is exceeded. From Figure 3, it can be seen that for $H = 3.65$, $\sigma = 3$. For $\sigma = 3$, $D = 3.9$, which is very near the output value of the convolutional encoder of 4. Theoretically, at least, activity any higher than $H = 3.6$ or so should be difficult to decode. This was verified by Pictures 6 and 7. The simulation uses a pattern of 5 elements but the entropy was computed on two patterns (first differences between the preceding element and the base pixel). Thus, some information should be decoded above the first difference entropy of 3.65.

SPECIAL PROBLEMS

Certain anticipated problems and some possible solutions are discussed next.

Variable activity

Any data compression scheme (such as this one) that maintains a constant rate in terms of data points per unit time must be designed to operate with the most active data expected; consequently, it will achieve substantially less compression than is possible in the dull regions. If the regions of high activity are considered to be analogous to bursts of noise, the analyst immediately thinks of interleaving as a way to even out the data statistics. In interleaving, the encoder would be equivalent to j separate convolutional encoders, each accepting one out of every j consecutive data points.

If there is an interval of active data m data points long, the decoder will only have to search through m/j branch points to get over the active region. Furthermore, if the decoder fails on one of the j channels but succeeds on the preceding and following ones, it can interpolate between these adjacent data values to im-

![Figure 13](image-url)
prove the probabilities for the channel on which it failed, and thus may be able to decode it.

It is also possible to treat regions of high activity by leaving off one or two of the least significant bits in each data word. Other types of processing can also be added to increase the compression. The decision to incorporate them will depend on an evaluation of their cost in complexity, power, and weight, and on the gain in performance they offer.

Startup

When a two-dimensional image is transmitted, the decoder will utilize previously decoded lines to improve the probability estimates for the elements of the line being decoded. Because this information is obviously not available for the first line, some special technique must be used on the first line (and possibly a few more) of each frame.

Perhaps the simplest method is to round off the data in the first few lines by forcing one or more of the least significant bits to be zero. In the course of a few lines, the rounding off would be gradually reduced and finally eliminated. For instance, suppose that 64 gray levels are encoded into 6 bits. The first line might be rounded off to 4 bits and the second to 5. In the third line, every other picture element might be rounded to 5 bits with the alternate elements intact, and the fourth line could have complete data. This would result in a picture with less detail on the upper edge than elsewhere. If this degradation cannot be tolerated, the first line can be transmitted at a lower rate with each picture element being repeated. However, this latter method might seriously complicate the data gathering system.

A similar problem arises at the start and finish of each line because there are fewer neighboring picture elements available to help the prediction. It may be possible to solve this problem by making the ends of the coding blocks coincide with the ends of the lines. The decoder has an advantage at the start of a block because it never has to search back beyond the first node. Near the end of the block, it has a similar advantage because of the series of zeros that is injected to clear the encoding register.

CONCLUSIONS

If computation can be done cheaply at the transmitter, then conventional types of data compression are preferable. Large buffers at the transmitter can smooth out variations in data activity, and uninteresting data can be removed by editing before transmission.

The principal advantage of data compression using sequential decoding is that it requires no additional equipment at the transmitter. When transmitter costs are much greater than receiver cost, as in a space-to-earth or air-to-ground link or where there are many transmitters and a single receiver, this method is likely to be cost-effective and may be the only possible one.

For the space-to-earth link, the savings are in producing software for general-purpose computers on the ground rather than hardware in space. In addition to the obvious saving in reliability and in power and weight on the spacecraft, cost and development time can be saved by avoiding hardware design and qualification test. It is even possible to increase the information rate of vehicles already flying by modifying the decoding program to exploit data redundancy.

REFERENCES

1 R M FANO
 A heuristic discussion of probabilistic decoding
 IEEE Transactions on Information Theory Vol IT-9 pp 64-74 April 1963

2 J M WOZENCRAFT I M JACOBS
 Principles of communication engineering
 John Wiley and Sons Inc New York N Y pp 405-476 1965

3 I M JACOBS
 Sequential decoding for effective communication for deep space

4 D LUMB
 Test and preliminary flight results on the sequential decoding of convolutional encoded data from pioneer IX
 IEEE International Conference on Communications Boulder Colorado p 39-1 June 1969

5 I L LEBOW R G McHUGH
 A sequential decoding technique and its realizational in the Lincoln experimental terminal

6 G D FORNEY
 A high-speed sequential decoder for satellite communication
 IEEE International Conference on Communications Boulder Colorado p 39-9 June 1969

7 J A HELLER
 Sequential decoding: Short constraint length convolutional codes
 JPL Space Programs Summary 37-54 Vol III pp 171-177 1969

8 E WEISS
 Compression and coding
 IRE Transactions on Information Theory pp 256-257 April 1962

9 R G GALLAGER
 Information theory and reliable communication
 Wiley and Sons Inc New York 1968

10 J M WOZENCRAFT I M JACOBS
 Principles of communication engineering
 John Wiley and Sons Inc New York 1965

11 R BLIZARD H GATES J McKinney
 Convolutional coding for data compression
 Martin, Marietta Research Report R-69-17 Denver Colorado November 1969

12 R F RICE
 The code tree wiggle: TV data compression