The Community for Technology Leaders
Proceedings IEEE Workshop on Applications of Computer Vision (1992)
Palm Springs, CA, USA
Nov. 30, 1992 to Dec. 2, 1992
ISBN: 0-8186-2840-5
pp: 74-81
Y. Wong , Dept. of Electr. Eng., California Inst. of Technol., Pasadena, CA, USA
E.C. Posner , Dept. of Electr. Eng., California Inst. of Technol., Pasadena, CA, USA
ABSTRACT
Describes application of scale-space clustering to the classification of a multispectral and polarimetric SAR image of an agricultural site. After polarimetric and radiometric calibration and noise cancellation, the authors extracted a 12-dimensional feature vector for each pixel from the scattering matrix. The algorithm was able to partition without supervision a set of unlabeled vectors from 13 selected sites, each site corresponding to a distinct crop, into 13 clusters. The cluster parameters were then used to classify the whole image. The classification map is much less noisy and more accurate than those obtained by hierarchical rules. The algorithm can handle variabilities in cluster densities, cluster sizes and ellipsoidal shapes.<>
INDEX TERMS
agriculture, image recognition, remote sensing by radar, synthetic aperture radar
CITATION

Y. Wong and E. Posner, "Scale-space clustering and classification of SAR images with numerous attributes and classes," Proceedings IEEE Workshop on Applications of Computer Vision(ACV), Palm Springs, CA, USA, , pp. 74-81.
doi:10.1109/ACV.1992.240325
82 ms
(Ver 3.3 (11022016))