The Community for Technology Leaders
Proceedings of 1994 28th Asilomar Conference on Signals, Systems and Computers (1994)
Pacific Grove, CA, USA
Oct. 31, 1994 to Nov. 2, 1994
ISSN: 1058-6393
ISBN: 0-8186-6405-3
pp: 1483-1487
B. Hassibi , Inf. Syst. Lab., Stanford Univ., CA, USA
T. Kailath , Inf. Syst. Lab., Stanford Univ., CA, USA
ABSTRACT
H/sup /spl infin// optimal estimators guarantee the smallest possible estimation error energy over all possible disturbances of fixed energy, and are therefore robust with respect to model uncertainties and lack of statistical information on the exogenous signals. We have previously shown that if the prediction error is considered, then the celebrated LMS adaptive filtering algorithm is H/sup /spl infin// optimal. In this paper we consider prediction of the filter weight vector itself, and for the purpose of coping with time-variations, exponentially weighted, finite-memory and time-varying adaptive filtering. This results in some new adaptive filtering algorithms that may be useful in uncertain and non-stationary environment. Simulation results are given to demonstrate the feasibility of the algorithm and to compare them with well-known H/sup 2/ (or least-squares based) adaptive filters.<>
INDEX TERMS
adaptive filters, adaptive signal processing, error analysis, prediction theory, least mean squares methods, H/sup /spl infin// optimisation, optimisation
CITATION

B. Hassibi and T. Kailath, "Adaptive filtering with a H/sup /spl infin// criterion," Proceedings of 1994 28th Asilomar Conference on Signals, Systems and Computers(ACSSC), Pacific Grove, CA, USA, 1995, pp. 1483-1487.
doi:10.1109/ACSSC.1994.471704
92 ms
(Ver 3.3 (11022016))