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Abstract 

In this paper,  we investigate optimal channel equal- 
ization techniques that incorporate a priori statistical 
information about multipath fading channels for mo- 
bile radio. We use a transformation from a physical ray 
model to  a discrete-iime finite impulse response model, 
along with statistical assumptions about the ray paths, 
t o  obtain a state-space model of the time evolution of 
the channel impulse response. This model is used with 
the Kalman filter to develop optimal channel estima- 
tors. We also implemented these estimators in a blind 
equalization scheme, based on MAP symbol-by-symbol 
detector. We present simulation results that character- 
ize  the performance of  the proposed channel estimator 
and blind equalizer. 

1 Introduction 

We address the problem of estimation of multipath 
fading channels using a linear, time-varying channel 
model in which the channel is represented by a discrete- 
time finite impulse response filter. Currently, equaliza- 
tion algorithms based on this type of channel model 
use RLS or LMS filters as channel estimators, [l]; 
in the cases when a Kalman filter is used, a simple 
state-variable model of the channel dynamics, which 
does not reflect known statistical characteristics of real 
channels, is usually assumed. In this paper, we incor- 
porate a priori knowledge of the channel statistics into 
a state variable model of the correlation structure and 
time dynamics of the channel impulse response; we use 
this state variable model to develop Kalman filter chan- 
nel estimators. These estimators are included into a 
blind equalization scheme based on the MAP symbol- 
by-symbol detector [2], in which a bank of Kalman 
filters maintains channel estimates conditioned on all 
possible transmitted sequences. In Section 2 we de- 
scribe the connection between a physical ray model of 
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the mobile multipath fading channel, and a discrete 
time linear FIR channel model. In Section 3 we de- 
velop an AR model for the time evolution of the dis- 
crete channel coefficients. From this model we derive 
the state variable equations used in the Kalman filters. 
In Section 4 we briefly describe the blind equalization 
scheme of [2], which we use in conjunction with the 
state space model derived in 3. Computer simulations 
for both known and unknown data and conclusions fol- 
low in Sections 5 and 6, respectively. 

2 Connection Between Physical Ray 
and Discrete Channel Model 

In this section we derive the discrete model for a 
time varying channel, including the transmitter and 
receiver filter, which is then used in the MAP symbol- 
by-symbol detector. The transmitter filter has an im- 
pulse response g ( t ) ,  and the receiver filter has a fixed 
impulse response gr ( t ) ;  the equivalent impulse response 
g e  = g kg, .  meets the first Nyquist criterion. The data 
signal is given by 

I ( t )  = d ( n ) 6 ( t  - nT) (1) 
n 

where d(n) is a sequence from a complex signal set 
of size S .  This data signal is transmitted through a 
dispersive medium, which is also time variant. The 
impulse response of the physical linear dispersive fading 
channel is expressed as the sum of A4 delayed Dirac 
pulses with time-varying complex path weights cm(t)  

M 

c ( 0 )  = c cm(t)6(r  - .rm(t)) (2) 
m=l 

The equivalent channel impulse response is 
M 

h(7; t )  = C m ( t ) s ( T  - %(t ) )  (3) 
m=l  

1443 
1058-6393/95 $4.00 0 1995 IEEE 



The signal at  the output of the receiver filter is 

~ ( t )  = ~ ( t )  * g l - ( t )  = d ( n ) h e ( r  - n ~ , t )  + u(t)  (4) 
n 

where he = h * gr, and u( t )  IS the response of the noise 
at the output of the receiver filter. 

Next, we assume that the delays r,(t) correspond- 
ing to tap weights, cm( t )  are short term stationary, i.e. 
~ ~ ( t )  = r,. Following the approach in [3] we ob- 
tain an optimal MSE approximation &(T; t )  of the time 
varying channel impulse response h(r;  t ) :  

03 

t )  = q L I ( M 7 -  - P) (5) 
p = - w  

where 
as 

q , ( t )  = / h(r;  I ) g ( r  - p T ) d r  = 
-w 

M 

m = l  

cx, 
and 

7d.I = 1, dQ - r)g(a)da (7 )  

Under the assumption of a Nyquist root-raised-cosine 
transmitter filtering there is no IS1 under flat fading 
conditions: 

where p is the bandwidth expansion factor. The co- 
efficients q P ( t )  are Rayleigh (complex Gaussian) dis- 
tributed random processes since they result from a lin- 
ear combination of Rayleigh distributed tap weights 
cm(t). Using ( 5) in ( 4) we get: 

n P 

By sampling this signal at the symbol rate, we get: 

n LI 

(10) 
By using the change of variables k - 7t -+ n and the 
Nyquist property of the equivalent filter g e  we can write 

y ( k T )  = C d ( k  - .)qn(kT) + u ( k T )  (11) 

The noise samples u ( k T )  are uncorrelated, because of 
the cosine-shaped receiver filtcr. 

11 

Assuming that the channel coefficients qn(kT) have 
significant power only for values of n from -L-  to L+ 
and dropping the T from the formulas above, we arrive 
at  the equivalent discrete model of the coinmunication 
system with a dispersive fading channel and fixed re- 
ceiver filter] matched to the transmitter filter: 

L+ 
y(k) = qn(k )d (k  - n)  + U I k )  (12) 

n=-L- 

A similar expression is derived in [4]. By introducing 
a proper delay we can describe the received signal by 
the following equation 

.Y- 1 

y(L) = b, (k)d(k  - TI )  + ~ ( k )  = d(k )b (k )  + u(k) 
71=0 

(13) 
where N - 1 = L- + L+, b , ( k )  = q , - ~ -  (k), h(k) = 
[ b o ( k ) ,  b l ( k ) ,  ..., b ~ - l ( k ) ] '  is a columnvector of complex 
channel coefficients] and d(k) = [ d ( k ) ,  d ( k  -l), ..., d(L- 
N + l)] is a row vector of data. 

3 AR Model for Channel Impulse Re- 
sponse Variation 

In this section we derive a state space model for the 
variation of the channel coefficient,s b(k), which can be 
used by the Kalman filters for the purpose of chan- 
nel estimation in the optimum MAP detector. The 
statistical behavior of the physical channel c ( r ; t )  is 
known from measurements or widely accepted speci- 
fications. In particular, we assume that p m ,  the aver- 
age path power, and r,, the path delay, are known for 
the M paths. Short-term channel variations may dif- 
fer for each ray and are characterized by the WSSUS 
(wide-sense stationary uncorrelated scattering) scat,ter- 
ing function 

M 

s(7; f d )  = s m ( f d ) 6 ( 7  - T ~ L )  (14) 
m=l 

i.e., the collection of Doppler spectra of individual 
path fading processes cm( t ) .  The Fourier transform of 
S ( r ; f d )  with respect to fd yields the autocorrelation 
function 

R(7; At)  = B[c(r; t  + At)c+(r;  t ) ]  
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where R,(At) = E[c,(t + At)ch(t)] is the tap auto- 
correlation function, and pm = Rm(0) is the average 
tap power. For the mobile communication channel, 
the spectra Sm(fd) are modelled by the so-called Jakes 
spectrum 

Then the tap autocorrelation function is given by 
R,(At) = p m J 0 ( 2 ~ f , j , , , A t ) ,  where fd is the maxi- 
mum frequency in the Doppler spectrum, obtained as 
fd,,, = v,,,/cfc, fc being the carrier frequency, v,,, 
the maximum speed of the vehicle and c the speed of 
light. For the discrete model, the sampled autocorre- 
lation is R,(l) = pnLJ0(27r1fn) where fn = fd,,,/fJ 

is the maximum Doppler frequency normalized by the 
symbol rate fs .  The kmporal cross correlation between 
any two processes b , ( k )  and b,(k) is 

R,,,(d) = E{b,,(k + I ) b : ( k ) }  = 

M 

R m ( l ) v ( ~ m  - ( P  - ~ ) - ) T ) v ( T ~  - (U - L-)T) (17) 

and these are the entries in the correlation matrix 
R(1) = E[b(k + l)bH(k)]. Notice i,hat the matrices 
R(1) are scaled versions of R(0) with a scaling factor 
equal to J 0 ( 2 r l f n ) .  The matrix R(0) depends only on 
the pm and r,, 1 5 m 5 A4, obtained from measure- 
ments. 

We assume that the channel coefficients evolve ac- 
cording to the following vector p-th order autoregres- 
sive model 

m = l  

P 

b(k) = @.ib(k - i )  + ~ ( k )  (18) 
i=l 

where w(k) is the process noise with covariance ma- 
trix Q = E[w(k)wH(k)]. The matrices @ I ~ . . . , @ ~  can 
be determined from R(0)lR(l),...,R(p) by solving the 
system of matrix Yule-Walker equations [6]: 

P 

R(I - i p f  = R(I),  for I = 1 , 2 ,  ..., p .  (19) 
i= l  

Once the @i are determined, Q can be obtained as 

Q = R(0) - R(-I)@. 
i=l 

Next we transform the p-th order autoregressive model 
into a state space model 

B ( k  + 1) = FB(k) + Gw(k) (21) 

where the state vector is B(k) = [b(k)‘, ..., b(k - p)’]‘. 
It can be shown that N p  x N p  matrix F and N p  x N 
matrix G are given by 

1 0  0 . .  I O J  

and G = (I1 0,  ..., O)’, I and 0 being N x N matrices. 
The measurement equation now becomes 

Y(k) = H,(k)B(k)+ u ( k )  (23) 

where Hp(k) = [d(k), 0, ..., 01 is 1 x N p  row vector. For 
the purpose of the fading simulator and Kalman filters 
we can decorrelate the processes b(k), using a unitary 
transformation U, such that 

R(I) = E[b(k + I ) b H ( k ) ]  = UA(l)U’ (24) 

The decorrelated processes are p(k) = U’b(k), 
and each p , ( k )  has power A,, where A(0) = 
diag[Al, . . . AN].  We have shown that matrices @i and 
Q can be diagonalized in the same fashion 

@i = U@Z,U’ Q = UQdU’ (25) 

where @id = a i 1  and ai is the ith coefficient in the 
scalar AR-p model for the processes p m ( k ) .  Q d  = 
pdiag[AI, . . . A,], where p is the noise variance for the 
scalar AR-p process with unit power. ai,i = 1 , . . . l P  

and p are obtained from J o ( 2 r l f n ) ,  for I = 0,1,  . . . lp .  
Now, we transform the state equation ( 21) as 

X(k + 1) = FdX(k) + v(k) (26 ) 

where v ( k )  = Uj,Gw(k), X ( k )  = U;B(k), and Fd is 
obtained from E’ by setting all @i to @ i d .  U, is a block 
diagonal matrix with the matrices U on the diagonal 
and is a unitary matrix. The covariance matrix of v(k) 
is a N p x  N p  block matrix with the only non-zero block 
in the left uppu  corner equal to Q d .  We denote this 
matrix by S .  The measurement equation ( 23) becomes 

y ( k )  = H ( k ) X ( k )  + u ( k )  (27) 

with H(k) = H,(k)U, = [d(k)U, 0,. . . , O ] .  

4 Blind Equalization Algorithm 

In this section, we briefly describe the blind de- 
convolution algorithm proposed by Iltis et al [2], 
where we also include the model of the multipath fad- 
ing channel described in the previous sections. The 
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cumulative measurements y k  represent the samples 
{y(k), y(k - l), . . . , y(0)). Denote the i-th of SN pos- 
sible data subsequences comprising the data symbols 
associated with the channel coefficient vector b(k) by 

lowing the approach in [2], the conditional probability 
density function of the transformed channel coefficient 
vector, X ( k )  is approximated as complex Gaussian 

p ( X ( k ) l d f ' N - ' ,  y k - ' )  = N ( X ( k ) ;  Xi(klk-l), Pi(klk-1)) 

where N ( r ,  2 ,  P )  represents a circular multivariate 
Gaussian density with mean vector x and covariance 
matrix P .  The conditional pdf of the subsequence 
d;kIN-' given the measurements, is given by: 

dF,N-l - - { d i ( k ) ,  di(k - l), . . . , di(k - N + 1)). Fol- 

(28) 

j 
- 1. N - 1 E d k  , N - 1 

where c is a normalization constant. The notation 
E di"-' means that the first N - 1 symbols 

equal the last N - 1 sym- in subsequence djk-'lN-' 
bols in d f P N - ' .  Furthermore, under the approximation 
( 28), the likelihood p(y(k)ldf"-', yk-') is Gaussian: 

4 - - 

k , N - 1  k - 1  P(Y(k)lda 7 Y 1 = N(Y(k); 4(k), - 1)) 
(30) 

The mean and innovations covariance] & ( k )  and 
as(klk - l) ,  are determined as follows: 

i i ( k )  = HiX(klk - 1) (31) 

~:(kIk - 1) = H;(k)P;(klk - 1)H"k) + U: (32) 
where 

Hi(k) = [d;(k)U, 0,. . ., 01 (33) 
and 

di(k)  = [ d i ( k ) , d ; ( k  - l), . . . , d ; ( k  - N + l)] (34) 

At this point, one step in the recursion (29) can be 
completed. However, the approximate predicted mean 
k i ( k  + Ilk) and covariance P;(k + Ilk) must be com- 
puted for the next iteration. The predicted mean and 
covariance are completely determined by the mean vec- 
tor X , ( k ( h )  and covariance matrix Pi(klk). These 
quantities are given by the conventional Kalman fil- 
ter filtering equations. The new predicted estimate, 
X i ( k +  I lk) ,  can be computed in terms of the measure- 
ment update as follows: 

Xi(k + Ilk) = FdXj(k1k)x 
, d k , N - l  E d k + l , N - l  

3 I 

. . . . . .  

-,SI& 

Figure 1: 
(SNR= 15dB) 

Total coefficient error with known data 

The blind equalizer structure consists of a bank of SN 
conditional channel estimators. The symbol decisions 
are made using the MAP probability metrics: 

max 
d(k-N+2) d ( t )  

d ( k - N + 1 )  
d (k -N+1)  = 

5 Simulation Results 

We have simulated the performance of this approach 
using data for a typical urban channel for the GSM 
mobile communication system. This channel is repre- 
sented by 12 discrete but densely spaced physical rays. 
We start from the measured values of the power pm and 
delay r, of these coefficients, and then compute the 
correlation matrix R(O), from which we determine the 
matrices h(0) and U. The time evolution is described 
by the matrices @id and Q d ,  which can be obtained as 
described in Section 3. The values of parameters are 

The resulting FIR impulse response has four coeffi- 
cients. The modulation procedure employed is QPSK. 
We simulated estimators created using both first and 
second order auto-regressive models of the channel dy- 
namics. A Kalman filter was used as the estimator. 
Known and unknown data sequences were considered. 
Figure 1 shows the total magnitude squared error in the 
estimation of the channel coefficients for the estimators 
based on first and second order vector autoregressive 
models assuming that the channel coefficients are cor- 
related or uncorrelated. The coefficient error plots were 

,f3 = 0.5, f d , , , / f j  = 0.001. 
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Figure 2: Total coefficient error with unknown data 
(SNR= 15dB) 

Figure 3: Probability of symbol error for AR-1 MAP 
detector 

obtained by averaging over 10 independent runs. It can 
be seen that in the steady state, the estimator based on 
the second order model performs better than the esti- 
mator based on the first order model. Also, the estima- 
tor obtained using the correlation between coefficients 
in the channel impulse response shows better perfor- 
mance than the estimator based on the assumption of 
uncorrelated channel coefficients. We present the per- 
formance of the blind equalization scheme in Figure 2, 
in terms of the total error in the channel coefficients, 
and in terms of the probability of error in Figure 3, 
where AR-1 model is used. Because of the phase am- 
biguity for the blind equalization case, we used differ- 
entially encoded QPSK. Notice the difference of factor 
2 due to differential encoding. 

6 Conclusions 

The channel estimator performance is improved by 
incorporating a priori  statistical information about 
the channel coefficients into the estimator structure. 
Proper orthogonalization of the Kalman filter equa- 
tions enables utie of the correlation between coefficients 
for improved performance. Using a second order au- 
toregressive model for the time evolution of the chan- 
nel coefficients improves the steady state performance 
compared to t,he first order model. Proposed esti- 
mators can be incorporated in the blind equalization 
scheme based on the optimal MAP detector. Due to 
high complexity, we suggest the use of AR-1 model. 
We became aware of a related work [7, 81 during the 
course of our investigations. 
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