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Abstract 
While the general purpose logic elements of the Field Program- 

mable Gate Array (FPGA) appear to be unlikely candidates for 
implementing the multiply-intensive operations of digital filtering, 
the application of Distributed Arithmetic (DA) techniques turns 
the FPGAinto a worthy contender. Indeed, in some important filter 
applications the Xilinx 4OOO family of FPGAs offers superior 
performance over the fastest fixed point DSP microprocessors. A 
brief description of DA processing is presented to provide some 
background for the filter design examples that are presented. A 
simple FIR filter will serve to establish the design concepts, and a 
two dimensional Sobel edge detector will serve to illustrate the 
performance capabilities of this approach. 

Introduction 
The DSP engineer currently has two design choices - the DSP 

microprocessor or the dedicated function-specific device. The first 
can be programmed to cover a wide range of applications often not 
an optimum solution but, certainly satisfactory judging from the 
popularity of both fixed and floating point DSP chips. The second 
choice includes algorithm-specific devices such as FIR filters with 
video bandwidth sample rates and high performance application 
specific devices such as image data compression chips. The look- 
up table SRAM based FPGA offers a third choice - an alternative 
to both the programmed and dedicated hardware solutions. The 
paper is organized in four sections as follows: 

1. A brief description of the Distributed Arithmetic (DA) 
techniques for implementing the weighted sum of products 
computations that underlie the filter and other important 
digital signal processes. 

2. An introduction to the Xilinx family of FPGAs whose gate 
architecture provides a good platform for DA computations 
- indeed superior to all other FPGA types. 

3. A simple, symmetrical FIR filter design is presented. This 
is a very direct application of the sum of products. A simple 
“trick” produces an efficient match to the FPGA circuits. 

4. A second example of a two dimensional spatial filter 
demonstrates the efficiency and flexibility of the DA 
approach. 

Distributed Arithmetic 
Distributed Arithmetic [ I ]  is a computational algorithm that 

affords efficient implementation of the weighted sum of products, 
or dot product, that defines important signal processing operators 
such as filters, frequency transformers, and artificial neural net- 
works. The dot product is a multiply intensive computation whose 
speed is limited by the multiplier circuit. The parallel array multi- 
plier found in all DSPchips and fourth generation microprocessors 
consumes many gates and is inappropriate for even the largest 
FF’GAs. However, for linear, time-invariant systems (which apply 

to the operators listed above) where one factor of each product term 
is a constant, the multiplier may be replaced by more economic 
scaling and adding circuits. This is reminiscent of the program- 
ming of multiplication as a sequence of shifts and adds - a serial 
approach that requires fewer gates but operates at lower speeds. 
DA is a bit serial computation process, however, it offers speeds 
approaching those of the full array multiplier. The DA implemen- 
tation of the dot product in FPGAs is detailed in reference [I] and 
some points to note are: 
-Each product tenn consists of a variable (signal) and a constant 
(coefficient) both in fixed point binary format but not necessarily 
of the same word length. 
- Rather than compute the product on a term by term basis, the 
partial products of all terms are computed simultaneously, and in 
the time it would take to compute a single partial product. This is 
achieved by precomputing all possible cumulative partial product 
outcomes and storing them in a look up table (LUT) which is 
addressed by the multiplier (variable) bits. All input variables are 
sequenced simultaneously, bit serial first to address the LUT. Each 
cumulative partial product is scaled up binarily and added to the 
accumulated partial products. When the most significant sign bits 
address the LUT, its outcome is subtracted from the accumulated 
partial products. 

The complete dot product computation takes R clocks where B 
is the number of input variable bits, and is independent of the 
number of input variables. 

The functional blocks of the DA data path are shown in figure 1; 
relatively few cover many applications. These blocks are com- 
prised of standard logic circuits which may be scaled to meet 
particular dynamic range and accuracy requirenrents. In lieu of a 
full array multiplier and double precision accumulator, and a 
means of accessing pairs of operands, there are the following 
simple circuits: 

I .  A set of serial shift registers that can be loaded bit parallel. 
2. A look up table (RAM or PROM) which is addressed by 

3. A single precision adderhubtractor with accumulator 
the serial outputs of the set of shift registers. 

register. The register contents are scaled down by 1/2 prior 
to adding to the LUT output. As the process repeats with 
successively higher order partial products, the discarded bit 
in the scaling process is passed on to an auxiliary shift 
register thereby retaining the double precision result. 
Subtraction occurs on the flnal accessing of the LUT by the 
multiplier sign bits. All these functions are gathered into a 
scaling- accurnulator block. 

The basic DA path prevails over a wide range of applications. 
Thus with a fixed set of blocks the frequency response of a digital 
filter can be changed by simply changing the contents of the LUT. 
Similarly, the controls for the data path are very simple and remain 
fixed for many applications. 

1373 
1058-6393/95 $4.00 0 1995 IEEE 



The Xilinx FPGA 
Among the several FPGA manufacturers Xilinx was the first to 

use look up tables for constructing user logic. These logic truth 
tables are embedded in configurable logic blocks (CLBs) that also 
include a pair of D flip flops and clock enable and control circuits. 
Literally underlying the CLB is an SRAM (static random access 
memory) which stores the bit patterns that define the CLB logic 
functions and the paths linking them. The SRAM bit pattems are 
loaded in a variety of configuration modes, and, as with any RAM, 
can be reloaded or written into an unlimited number of times. Thus 
a design may be corrected or modified through programmatic 
configurations with no change in hardware. Configuration data 
may be downloaded from a host computer or may be transferred 
from local PROM automatically on power on. 

The Xilinx XC4ooo family [2] features a two dimensional 
matrix of CLB elements interconnected by a hierarchy of routing 
resources -all enclosed within a perimeter of programmableInput/ 
Output Blocks (IOBs). The IOB has a tri-state port which can be 
dynamically configured to function as either a source or sink with 
internal registers to capture input data, or deliver stable, clocked 
output data. The smallest family member (XC4002) has an 8x8 
CLB matrix and 64 IOBs while the largest device (XC4025) has a 
32x32 CLB matrix and 256 10Bs. 

The XC4000 family is supportedhy a wide range of software 
design tools developed by Xilinx and third-party providers such as 
Synopsys. Design entry maybe via the schematic capture of a logic 
diagram using one of the industry standard CAE tools such as 
Viewdraw. After schematic or equation-based entry the design is 
automatically converted to the Xilinx Netlist Format. Next, the 
Xilinx XACT software partitions the design intologic blocks, then 
finds a near-optimal placement for each block, and, finally, selects 
the interconnect routing. All these partitioning, placement, and 
routing routines run automatically, but the designer may intervene 
by setting specific constraints or by editing critical portions of the 

design. The completed design is documented in a configuration 
data base file. 

As these FPGA products mature, a library of proven, optimally 
designed macros have been developed to facilitate the designer’s 
task. Thus one finds counters, shift registers, parallel adders and 
accumulators, RAMS, FIFOs, etc, which can be compiled or scaled 
to the desired dimensions to satisfy design requirements The DA 
circuits can be configured largely from blocks or macros already in 
the design library. These blocks are now being assembled into 
higher order signal processing macros such as the 8 tap FIR filter 
which will be. described in the next section. 

The Distributed Arithmetic FIR Filter 
The FIR filter is a simple application of the DA technique. In the 

N tap filter of figure 2a the input variables are the outputs of the 
individual taps i.e.; delayed input samples. Thus once the input 
sample is converted from parallel to serial form a chain of serial 
shift registers provides the tap delays and the bit serial addressing 
of the LUT. The resulting DA circuit is shown in figure 2b. During 
each input sample period there are at least B shift clock periods. 

Memory rapidly becomes a limiting factor in FJR DA designs. 
A 20-tap filter for example requires 2exp(20) words. Fortunately 
very significant memory reduction can be achieved for symmetric 
FIR filters. The number of addresses can be halved by first adding 
bit serial the outputs of symmetrical tap pairs. The resulting 
memory size of 2exp (10) represents a lo00 to 1 reduction. This is 
achieved at a cost of 10 serial full adder circuits and an additional 
shift clock to process the overflow of the serial adder. 

An &tap FIR filler design example is first offercd since it maps 
readily into the 16 word logic LUT of the Xilinx CLB. The data 
path design utilizing CLB components is shown in figure 3. Design 
details are offered in (21. The entire FIR filter including input and 
output pads was placed and routed in a Xilinx 3042 FPGA. The 
original estimate of 54 CLBs was increased by four to minimize 
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Figure 1. Distributed Arithmetic Processor 
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path delays. Initial delay analysis indicated a reliable system clock 
of 12.5 MHz. The long pole is the carry propagate path of the adder/ 
subtractor. Further layout refinements could probably extend the 
clock to IS MHz. A recent redesign with the XC4000 family 
yielded a lower CLB count by mechanizing the shift registers with 
random access memory rather that flip flops. Fast look ahead carry 
embedded in the adder circuits boosted performance to 25 MHz. 

Image Edge Detectors 
Image edge detectors such as the Sobel and Prewitt operators are 

two dimensional extensions of the basic FIR filter. The coefficients 
of these spatial filters are single integers with symmetries that can 
be exploited as in the example above. Furthermore the use of 
hardware shift registers (or RAM for the 4OOO family) and the 
interconnect flexibility of the FPGA facilitates the acquisition and 
alignment of data for the filter processing. Both detector operators 
feature a 3x3 pixel template whose coefficient map as follows: 

a l l  a12 a13 
a21 a22 a23 
a31 a32 a33 

and for the Sobel templates: 
-1 0 1 1 2 1  

verticaledge -2 0 2 horizontaledge 0 0 0 
-1 0 1 -1 -2 - 1  

These templates are applied to a two dimensional image to 
determine if the central pixel of a 3x3 array is on a vertical or 
horizontal edge of the image. The pixel array has its incremental 
row/column coordinates as shown: 

XI1 XI2 X13 
X21 X22 X23 
X31 X32 X33 

The central pixel will be set to indicate a detected edge. The dot 
product computations are basically that of a pair of 9 tap FIR filter 
which are defined by the following equations: 
Y v =  XI 1(-1)+X12(0)+X13(1)+X21(-2)+X22(O)+X23(2)+ 

X3 I(-])  + X32(0) +X33(1) 

Yh=XI  l ( l )+X12(2)+X13(1)+X21(0)+X22(O)+X23(0)+ 
X31(-1) + X32(-2) + X33(-1) 

2-1 = One sample period delay 
$. Ak = Multiply by Ak 

I = Summing node x5610 

Figure 2a. Flow Diagram of FIR Filter 

2N Words 
PSR = Parallel to serial register 
SR = Serial shift register 

X 5 6 M  

Figure 2b. N Tap FIR Filter With Distributed Arithmetic 
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Figure 3. Distributed Arithmetic FIR Filter 

The presence of an edge is determined by the magnitude of the 
resultant: 

Y = SQRT[Yv**2 + Yh**2] 

And, finally, a threshold is applied to Y to establish the presence 
of an edge pixel. For video image processing these computations arc 
performed at HxVx 30 pixeldsec, where H and V denote the raster 
dimensions. A TV standard 30 frame/sec rate is assumed. Pixel 
processing rate grows with the fineness of image granularity. For a 
moderately fine grain image (1024x1024) the edge detection com- 
putations indicated above are made at a 3 1.46 mega-pixeldsec. This 
load exceeds the capability of the fastest DSP microprocessors, and 
cannot be partitioned gracefully even among several of them. Ac- 
cordingly several chip manufacturers have designed dedicated 3x3 
image filters to meet this need. One example is the Hams HSP48901 
which can handle &bit data and coefficient values and can compute 
only one of the dot products at a maximum rate of 30 megapixels/sec. 

Again exploiting symmetry (impossible in the standard DSP 
microprocessor) a significant hardware reduction is realized. The 
terms of the sum-of product equations above can be reduced by 
grouping pixel variables with the same coefficient values as sum or 
difference terms in the following way: 

YV = (XI3 -XIl)(l) + (X23 -X21)(2) + (X33 -X31)( I )  

the LUT address lines are similarly reduced to 3. For &bit pixel data 
9 serial shift clocks are required to include the final borrow bit. Thus 
the DA circuit black diagram for the Sobel filter data path can be 
developed in similar fashion as shown in figure 4 An initial hardware 
sizing indicates that 37 CLBs are required to compute Yv and Yh. 
The circuit for computing the magnitude of the resultant is not 
shown; however, a simple approximating algorithm can be imple- 
mented with 13 CLBs. Each color requires 50 CLBs and 150 CLBs 
for the three primary colors. Control circuits estimated to be less than 
20 CLBs - are shared by the three color channels. With a modest 40 
MHz system clock, the pixel processing rate is 40/9 or 4.444... 
megapixelslsec which can support a coarse (256x256) grained 
raster. By increasing the system clock to 60 MHz and by replicating 
the filter circuits to compute 5 contiguous edge pixels simulta- 
neously, it now becomes possible to provide fine grained, three color 
edge detection in a single XC4025 FPGA. 
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Further consolidation of terms with the factor “ I ”  is also possible 
but would not yield further circuit savings. With 3 serial subtractors 
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Figure 4a. Signal Data Flow Diagram of Sobel 2D Filter 
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