
Digital Filtering in FPGAs
Les Mintzer

Momentum Data Systems
Costa Mesa, California

Abstract
While the general purpose logic elements of the Field Program-

mable Gate Array (FPGA) appear to be unlikely candidates for
implementing the multiply-intensive operations of digital filtering,
the application of Distributed Arithmetic (DA) techniques turns
the FPGAinto a worthy contender. Indeed, in some important filter
applications the Xilinx 4OOO family of FPGAs offers superior
performance over the fastest fixed point DSP microprocessors. A
brief description of DA processing is presented to provide some
background for the filter design examples that are presented. A
simple FIR filter will serve to establish the design concepts, and a
two dimensional Sobel edge detector will serve to illustrate the
performance capabilities of this approach.

Introduction
The DSP engineer currently has two design choices - the DSP

microprocessor or the dedicated function-specific device. The first
can be programmed to cover a wide range of applications often not
an optimum solution but, certainly satisfactory judging from the
popularity of both fixed and floating point DSP chips. The second
choice includes algorithm-specific devices such as FIR filters with
video bandwidth sample rates and high performance application
specific devices such as image data compression chips. The look-
up table SRAM based FPGA offers a third choice - an alternative
to both the programmed and dedicated hardware solutions. The
paper is organized in four sections as follows:

1. A brief description of the Distributed Arithmetic (DA)
techniques for implementing the weighted sum of products
computations that underlie the filter and other important
digital signal processes.

2. An introduction to the Xilinx family of FPGAs whose gate
architecture provides a good platform for DA computations
- indeed superior to all other FPGA types.

3. A simple, symmetrical FIR filter design is presented. This
is a very direct application of the sum of products. A simple
“trick” produces an efficient match to the FPGA circuits.

4. A second example of a two dimensional spatial filter
demonstrates the efficiency and flexibility of the DA
approach.

Distributed Arithmetic
Distributed Arithmetic [I] is a computational algorithm that

affords efficient implementation of the weighted sum of products,
or dot product, that defines important signal processing operators
such as filters, frequency transformers, and artificial neural net-
works. The dot product is a multiply intensive computation whose
speed is limited by the multiplier circuit. The parallel array multi-
plier found in all DSPchips and fourth generation microprocessors
consumes many gates and is inappropriate for even the largest
FF’GAs. However, for linear, time-invariant systems (which apply

to the operators listed above) where one factor of each product term
is a constant, the multiplier may be replaced by more economic
scaling and adding circuits. This is reminiscent of the program-
ming of multiplication as a sequence of shifts and adds - a serial
approach that requires fewer gates but operates at lower speeds.
DA is a bit serial computation process, however, it offers speeds
approaching those of the full array multiplier. The DA implemen-
tation of the dot product in FPGAs is detailed in reference [I] and
some points to note are:
-Each product tenn consists of a variable (signal) and a constant
(coefficient) both in fixed point binary format but not necessarily
of the same word length.
- Rather than compute the product on a term by term basis, the
partial products of all terms are computed simultaneously, and in
the time it would take to compute a single partial product. This is
achieved by precomputing all possible cumulative partial product
outcomes and storing them in a look up table (LUT) which is
addressed by the multiplier (variable) bits. All input variables are
sequenced simultaneously, bit serial first to address the LUT. Each
cumulative partial product is scaled up binarily and added to the
accumulated partial products. When the most significant sign bits
address the LUT, its outcome is subtracted from the accumulated
partial products.

The complete dot product computation takes R clocks where B
is the number of input variable bits, and is independent of the
number of input variables.

The functional blocks of the DA data path are shown in figure 1;
relatively few cover many applications. These blocks are com-
prised of standard logic circuits which may be scaled to meet
particular dynamic range and accuracy requirenrents. In lieu of a
full array multiplier and double precision accumulator, and a
means of accessing pairs of operands, there are the following
simple circuits:

I . A set of serial shift registers that can be loaded bit parallel.
2. A look up table (RAM or PROM) which is addressed by

3. A single precision adderhubtractor with accumulator
the serial outputs of the set of shift registers.

register. The register contents are scaled down by 1/2 prior
to adding to the LUT output. As the process repeats with
successively higher order partial products, the discarded bit
in the scaling process is passed on to an auxiliary shift
register thereby retaining the double precision result.
Subtraction occurs on the flnal accessing of the LUT by the
multiplier sign bits. All these functions are gathered into a
scaling- accurnulator block.

The basic DA path prevails over a wide range of applications.
Thus with a fixed set of blocks the frequency response of a digital
filter can be changed by simply changing the contents of the LUT.
Similarly, the controls for the data path are very simple and remain
fixed for many applications.

1373
1058-6393/95 $4.00 0 1995 IEEE

The Xilinx FPGA
Among the several FPGA manufacturers Xilinx was the first to

use look up tables for constructing user logic. These logic truth
tables are embedded in configurable logic blocks (CLBs) that also
include a pair of D flip flops and clock enable and control circuits.
Literally underlying the CLB is an SRAM (static random access
memory) which stores the bit patterns that define the CLB logic
functions and the paths linking them. The SRAM bit pattems are
loaded in a variety of configuration modes, and, as with any RAM,
can be reloaded or written into an unlimited number of times. Thus
a design may be corrected or modified through programmatic
configurations with no change in hardware. Configuration data
may be downloaded from a host computer or may be transferred
from local PROM automatically on power on.

The Xilinx XC4ooo family [2] features a two dimensional
matrix of CLB elements interconnected by a hierarchy of routing
resources -all enclosed within a perimeter of programmableInput/
Output Blocks (IOBs). The IOB has a tri-state port which can be
dynamically configured to function as either a source or sink with
internal registers to capture input data, or deliver stable, clocked
output data. The smallest family member (XC4002) has an 8x8
CLB matrix and 64 IOBs while the largest device (XC4025) has a
32x32 CLB matrix and 256 10Bs.

The XC4000 family is supportedhy a wide range of software
design tools developed by Xilinx and third-party providers such as
Synopsys. Design entry maybe via the schematic capture of a logic
diagram using one of the industry standard CAE tools such as
Viewdraw. After schematic or equation-based entry the design is
automatically converted to the Xilinx Netlist Format. Next, the
Xilinx XACT software partitions the design intologic blocks, then
finds a near-optimal placement for each block, and, finally, selects
the interconnect routing. All these partitioning, placement, and
routing routines run automatically, but the designer may intervene
by setting specific constraints or by editing critical portions of the

design. The completed design is documented in a configuration
data base file.

As these FPGA products mature, a library of proven, optimally
designed macros have been developed to facilitate the designer’s
task. Thus one finds counters, shift registers, parallel adders and
accumulators, RAMS, FIFOs, etc, which can be compiled or scaled
to the desired dimensions to satisfy design requirements The DA
circuits can be configured largely from blocks or macros already in
the design library. These blocks are now being assembled into
higher order signal processing macros such as the 8 tap FIR filter
which will be. described in the next section.

The Distributed Arithmetic FIR Filter
The FIR filter is a simple application of the DA technique. In the

N tap filter of figure 2a the input variables are the outputs of the
individual taps i.e.; delayed input samples. Thus once the input
sample is converted from parallel to serial form a chain of serial
shift registers provides the tap delays and the bit serial addressing
of the LUT. The resulting DA circuit is shown in figure 2b. During
each input sample period there are at least B shift clock periods.

Memory rapidly becomes a limiting factor in FJR DA designs.
A 20-tap filter for example requires 2exp(20) words. Fortunately
very significant memory reduction can be achieved for symmetric
FIR filters. The number of addresses can be halved by first adding
bit serial the outputs of symmetrical tap pairs. The resulting
memory size of 2exp (10) represents a lo00 to 1 reduction. This is
achieved at a cost of 10 serial full adder circuits and an additional
shift clock to process the overflow of the serial adder.

An &tap FIR filler design example is first offercd since it maps
readily into the 16 word logic LUT of the Xilinx CLB. The data
path design utilizing CLB components is shown in figure 3. Design
details are offered in (21. The entire FIR filter including input and
output pads was placed and routed in a Xilinx 3042 FPGA. The
original estimate of 54 CLBs was increased by four to minimize

xk 7

Look Up
Table

3AM/ROM

2k Words

PSR = Parallel to Serial
Register

I f- Scaling Accumulator 4 I
x5609

Figure 1. Distributed Arithmetic Processor

1374

path delays. Initial delay analysis indicated a reliable system clock
of 12.5 MHz. The long pole is the carry propagate path of the adder/
subtractor. Further layout refinements could probably extend the
clock to IS MHz. A recent redesign with the XC4000 family
yielded a lower CLB count by mechanizing the shift registers with
random access memory rather that flip flops. Fast look ahead carry
embedded in the adder circuits boosted performance to 25 MHz.

Image Edge Detectors
Image edge detectors such as the Sobel and Prewitt operators are

two dimensional extensions of the basic FIR filter. The coefficients
of these spatial filters are single integers with symmetries that can
be exploited as in the example above. Furthermore the use of
hardware shift registers (or RAM for the 4OOO family) and the
interconnect flexibility of the FPGA facilitates the acquisition and
alignment of data for the filter processing. Both detector operators
feature a 3x3 pixel template whose coefficient map as follows:

a l l a12 a13
a21 a22 a23
a31 a32 a33

and for the Sobel templates:
-1 0 1 1 2 1

verticaledge -2 0 2 horizontaledge 0 0 0
-1 0 1 -1 -2 - 1

These templates are applied to a two dimensional image to
determine if the central pixel of a 3x3 array is on a vertical or
horizontal edge of the image. The pixel array has its incremental
row/column coordinates as shown:

XI1 XI2 X13
X21 X22 X23
X31 X32 X33

The central pixel will be set to indicate a detected edge. The dot
product computations are basically that of a pair of 9 tap FIR filter
which are defined by the following equations:
Y v = XI 1(-1)+X12(0)+X13(1)+X21(-2)+X22(O)+X23(2)+

X3 I(-]) + X32(0) +X33(1)

Yh=XI l (l)+X12(2)+X13(1)+X21(0)+X22(O)+X23(0)+
X31(-1) + X32(-2) + X33(-1)

2-1 = One sample period delay
$. Ak = Multiply by Ak

I = Summing node x5610

Figure 2a. Flow Diagram of FIR Filter

2N Words
PSR = Parallel to serial register
SR = Serial shift register

X 5 6 M

Figure 2b. N Tap FIR Filter With Distributed Arithmetic

1375

Input

out

Timing and Controls Sample clock
50 MHz clock -

4 GLBs

54
Routing +4
Total 58
-__

Figure 3. Distributed Arithmetic FIR Filter

The presence of an edge is determined by the magnitude of the
resultant:

Y = SQRT[Yv**2 + Yh**2]

And, finally, a threshold is applied to Y to establish the presence
of an edge pixel. For video image processing these computations arc
performed at HxVx 30 pixeldsec, where H and V denote the raster
dimensions. A TV standard 30 frame/sec rate is assumed. Pixel
processing rate grows with the fineness of image granularity. For a
moderately fine grain image (1024x1024) the edge detection com-
putations indicated above are made at a 3 1.46 mega-pixeldsec. This
load exceeds the capability of the fastest DSP microprocessors, and
cannot be partitioned gracefully even among several of them. Ac-
cordingly several chip manufacturers have designed dedicated 3x3
image filters to meet this need. One example is the Hams HSP48901
which can handle &bit data and coefficient values and can compute
only one of the dot products at a maximum rate of 30 megapixels/sec.

Again exploiting symmetry (impossible in the standard DSP
microprocessor) a significant hardware reduction is realized. The
terms of the sum-of product equations above can be reduced by
grouping pixel variables with the same coefficient values as sum or
difference terms in the following way:

YV = (XI3 -XIl)(l) + (X23 -X21)(2) + (X33 -X31)(I)

the LUT address lines are similarly reduced to 3. For &bit pixel data
9 serial shift clocks are required to include the final borrow bit. Thus
the DA circuit black diagram for the Sobel filter data path can be
developed in similar fashion as shown in figure 4 An initial hardware
sizing indicates that 37 CLBs are required to compute Yv and Yh.
The circuit for computing the magnitude of the resultant is not
shown; however, a simple approximating algorithm can be imple-
mented with 13 CLBs. Each color requires 50 CLBs and 150 CLBs
for the three primary colors. Control circuits estimated to be less than
20 CLBs - are shared by the three color channels. With a modest 40
MHz system clock, the pixel processing rate is 40/9 or 4.444...
megapixelslsec which can support a coarse (256x256) grained
raster. By increasing the system clock to 60 MHz and by replicating
the filter circuits to compute 5 contiguous edge pixels simulta-
neously, it now becomes possible to provide fine grained, three color
edge detection in a single XC4025 FPGA.

References
[I] While, S.A. “Applications of Distributed Arithmetic to Digital
Signal Processing. A Tutorial Review.”
IEEE ASSP Magazine July 1989

[2] Mintzer L. “Fir Filters with the Xilinx FPGA’
First International ACWSIGDA Workshop on FPGAs

Yh=(X11 -X31) (1)+(X12-X32) (2)+(X13 - X33)(1) February 1992 pp129-134.

Further consolidation of terms with the factor “ I ” is also possible
but would not yield further circuit savings. With 3 serial subtractors

1376

I I

8

@
X22

I@
X23 PSR

YH

x5611

@
x21

SR

Figure 4a. Signal Data Flow Diagram of Sobel 2D Filter

@
SR X32

Subtractors 63
SR p- - @/ @

-
- 1

- 2

- 1

- - - LUT 3

- - 8 x 3 -

-

pp PSR

36 CLBs
Shown

Serial

"I 8 x 3

Scaling
Accumulator

Scaling
Accumulator Y

Figure 4b. DA Circuit Blocks of Sobel Filter

1377

