Dynamic Reconfiguration For Fault Tolerance For
Critical, Real-Time Processor Arrays

M. D. Derk, School of Computer Science

L. S. DeBrunner, School of Electrical Enginnering

University of Oklahoma, Norman, Oklahoma 73019
(405) 325-4852 FAX: (405) 325-7066

Abstract

Real-time digital signal processing for critical
applications demands that rapid, successful reconfiguration
techniques be employed to increase fauit tolerance. To meet
this need, we introduce and demonstrate a local area
reconfiguration algorithm for a rectangular processor array
that is very efficient, does not require a host processor, and
will successfully reconfigure for a fault anywhere in the
local area if there is an available spare. Further, if all the
spares in a local area are used, areas can be combined in a
software controlled process, preventing a system failure.

1. Introduction.

Digital signal processing algorithms, such as Discrete
Fourier ~ Transform, matrix inversion, and L-U
decomposition, are frequently implemented using systolic or
wavefront arrays. More general array structures may also be
used for DSP applications. Fault tolerance in arrays of
processors can be achieved by reconfiguration, a process by
which spare processors are substituted for faulty ones [1-15].
Reconfiguration for yield 1s applied to correct manufacturing
faults, while reconfiguration for reliability (dynamic
reconfiguration) is applied to correct "on-the-fly" for
processors that become faulty during operation.

Real-time applications, like speech processing and radar,
requirc that dynamic reconfiguration must be as rapid as
possible, bearing in mind that the processor array may have
alrecady been reconfigured for wvield. Ideally, dynamic
reconfiguration should be self-reconfiguration, not requiring
a host processor. Also, for a critical application, or for an
application environment for which repair is difficult or
mmpossible, reconfiguration must be successful as long as
there is an available spare.

The algorithm presented here meets these criteria. It is
extremely efficient (O(N) time complexity), does not require
a host processor for implementation, and can be applied to
an array already reconfigured for yield by another method.

The algonthm is designed to work within a specified local
area of any size, the only constraint being that there is a
column of spares on the right edge. This area couid be the
entire array, and the algorithm will use any and all spares for

1058-6393/95 $4.00 © 1995 IEEE

1058

any arrangement of faults in the arca, as long as the number
of faults is less than or equal to the number of spares. Other
algorithms utilize the local area approach [5-7]; however,
our algorithm is unique in the property that there is a
companion algorithm than can combine vertically adjacent
local arcas, making spares in both arcas available for faults
in both areas.

The paper is organized as follows: After a
presentation of definitions and assumptions, the
rcconfiguration algorithm is presented. Then,

implementation and time complexity is discussed, after
which the algorithm to combing local areas 1s presented.
Finally, the algorithm is analyzed and compared, and
conclusions are drawn.

2. Definition of terms and assumptions.

Processor state, as indicated by the letter "a", "b", "¢",
"d" or "s". indicates the state as it relates to the
reconfiguration algorithm, and not to the state of the
computations being performed by the processor. Each
non-failed processor knows its own state, and failed
processors have no state.

Compensation path is the term used for the series of
logical coordinate changes that start ai the faulty
processor and end at the point that a spare processor is
used. Compensation paths are found in "fault-stcaling"
reconfiguration techniques, such as presented in [2).

Fault Model. We shall assume that faults occur one at
a time (within a local area), randomly and independently,
Lo processors that are in use, and that the reconfiguration
algonithm completes for one failure before the next
testing cycle. We also assume that interconnections and
switches are fault-free, and that spares are not faulty
before they are used, though they may become faulty after
they are included in the logical array.

The reconfiguration algorithm does not require the
presence of a host processor for implementation. but a
host processor is needed to implement the algorithm to
combine local areas. Local areas may be any size, but
must be rectangular with one column of spares on the
right, and must be vertically adjacent to be combined.

3. Local area reconfiguration algorithm.

This algorithm has two phases. Phasc 1 is always
used, as it performs the actual reconfiguration along with
some state changes. Phase 11 is invoked in only some
cases, and completes the necessary state changes. In the
figures for the following example, boxes indicate
processors and lines indicate activated communication
lines. An "X" in a box indicates a failed processor.

3.1 Example.

This example takes a 4 x 4 local area through several
faults that occur dynamically, and the response of the
reconfiguration algorithm to each of them. Each local
area begins as a fault-free rectangular grid, as shown in
Figure 1. There is one column of sparcs on the right.
Initially, each non-spare processor is assigned a state of
‘a". The row and column indicators are logical
coordinates, and may or may not be physical coordinates
also, since the array may have been previously
reconfigured for yicld.

al ell aJ | S I
1.1 1.2 1.3

E 3 a I s I
2.1 2.2 2.3

! a a | 3 |
3.1 3.2 3.3

] a a I 3 l_
4.1 42 4.3

I I !
Figure 1. Initial Array.

Assumec that the processor at logical coordinate 2,3
fails. Since the processors in row 2 have a state of "a",
indicating an initial statc, then the closcst spare is the
one at the end of row 2. Reconfiguration occurs as
shown by Figure 2. making use of the spare. Also, the
state of each non-faulty processor in row 2 has been
changed to “b". indicating that the spare in that row has
been used. Figure 3 shows the reconfiguration that occurs
should the processor in coordinates 3,1 fail, using the
spare at the end of row 3, and changing the states of the
processors in row 3 to "b".

If the processor at logical coordinate 3,2 should fail at
this point, there is no spare in row 3 to usc. Therefore,
the processors of logical column 2 are shifted down one
logical position in rows 3 and 4. Row 4 processors are

1059

—1a a a
41 42 43
I l |
Figure 2. Array after one fault.
| I l —
_1a a a S
1 1.2 1.3
T g I v B | e
2.1 2.2 X 23

3. 3.2 3.3
_Ja a a 3
4.1 4.2 43
I I !

Figure 3. Array after two faults.

| I | =L

_Ia d a
1.1 1.2 13
B : =l
21 22 X 23
L___I
I X l b b
3.1 X 33
|
|
b b b D
41 3.2 4.2 43
| = |

Figure 4. Array after Phase |, third fault.
shifted to the right one logical position between column 2
and the spare, freeing up a processor for use by column
2.The result is in Figure 4. Note that the algorithm has

also changed the states of the processor in logical row 4
to "b", indicating that the spare in row 4 has been used.
Phase 1I is invoked if the processors in the bottom row
have a state of "b" or "c". Since the processors in the
lowest row now have a state of "b", this invokes Phase II,
which alters the states of the processors in rows 2
through 4 to "c", as shown in Figure 5, indicating that all
spares in row twoand the rows below have been used.

al 31 al I [3 L

i 1.2 1.3
lc C | X l C I
21 2.2 23
L
X 3.1 X 33
I |
—
-_— C C [C
4.1 32 42 43
[I !

Figure 5. Array after Phase ii, third fault.

We now suppose that a failure occurs at coordinates
2.1. Column ong¢ is shifted up one logical row. Row one
is shifted to the right by one place. Figure 6 shows the
state of the array after Phase 1. Since the bottom row has
a state of "c". Phase Il is invoked, which extends the state
of "c" to every non-failed processor in the local arca.
Since the processors in the top row have a state of "¢". we
know that all spares in the local area have been used.
Phase II therefore sweeps each column again, changing
the states of all non-failed processors to "d", as shown in
Figure 7.

3.2 Phase I.

The first phase 1s always execcuted when a fault is
detected.

Statc "a": If a processor with a state of "a" fails, the
processors in that row between the failed processor and
the spare on the right edge of that row, inclusive, change
their logical coordinates so that each one substitutes for
the processor io the left. That is, the processor with
logical coordinates i,j assumes new logical coordinates
i,j-1. Also, all processors in that logical row change their
state to "b". The failed processor is excluded from the
logical row, and has no state.

1060

2.1 1. 1.2 1.3
| _Jr——l
e [l
X 2.2 X 23 [
L
I=1 L= T
X 3] x 3.3
I |
I 1
—c [| ¢ c c
4.1 3.2 4.2 43
| L l I

= A 1 :

2.1 1.1 1.2 .3
L = 1
d l—l_ d |
X 2.2 X 2.3
L
Il _rw 3
31 X 3.3 —
I |
=
—da d d d
4.1 3.2 4.2 43
[— I

Figure 7. Array after Phase {i, fourth fauit.

State "b": If a processor with a state of "b" fails, the
processors in its logical column between the failed
processor and the first processor in that logical column
BELOW it with a state of "a" changc their logical
coordinates so that a processor with logical coordinates
i,j has new coordinates of i-1,j. This means they are
effectively in one logical row above the one in which they
were previously. Therefore. if the first processor in the
logical column below the fault with a statc of "a" has
logical coordinates of x.y, then, that processor will
assume new logical coordinates of x-1.y. The processors
on Jogical row "x" from logical column y+1 rightward to
the sparc change their logical coordinates from x,j to x j-
1, effectively shifting them onc place to the right to make
room for the downward shiftcd column. Then, all the
processors in logical row "x" change their statcs to "b".

State "c": If a processor with a state of "¢" fails, then
a procedure analogous to the one described for state "b"
takes place, except that the column is shificd up rather

than down, and all the processors in the logical row that
shifted to the right change their states to "c".

State "d": If a processor with a state of "d" fails, then
there are no spares available to use to compensate. We
must combine local areas or declare a fatal system
failure.

3.3 Phase I1.

The second phase is exccuted only if processors on the
bottom row of a local area have state "b" or "¢".

If a processor is on the bottom row of a local area and
its state is "b" or "c", it first changes its own state to "c"
(if it is not already in state "c"). Then, it initiates a
signal that propagates up through its own logical column.
This signal, when received by a processor with a state of
"b". results in that processor changing its state to "c¢" and
propagating the signal. If it is received by a processor
with a state of "a", there is no action, and the signal does
not propagatc further. This ensures that if a processor
has state “c", then all spares in that row and all rows
below have been used and all the availablc spares are in
rows above.

If a processor is on the top row of a local area, and it
changes its state to "c”, then all spares in the top row and
below have been used, i.c.. all the spares in the local arca
have been used. Therefore, it changes its own state to
"d". and initiates a signal down its own logical column to
the bottom row, which results in all non-faulty processors
changing their states to "d", indicating no available

spares
;I. Ta logical i-1.j
Working
proccssar
—& Failed processor at lagical

To at lagical coordinates
!‘291"’” coordinates i,j ij+1
ij-

t Ta logical i+1.j

Figure 8. Implementation.
4. Implementation,

A processor failure is detected by its nearest logical
horizontal neighbor. Testing by a logical neighbor rather
than a physical neighbor guarantees that this neighbor
will be a working proccssor. The fault detection and
reconfiguration initiation must bc performed by a
horizontal neighbor rather than a vertical neighbor,
because the horizontal neighbor will have the same state

1061

as the processor that failed. This state must be correct for
the proper reconfiguration signals to be sent.

To start reconfiguration, the processor that detects the
fault sends a signal through the normal communication
line that is active because it is a logical neighbor, through
bypass circuitry, to the other logical neighbors, as shown
by the heavy lines in Figure 8.

5. Time complexity of algorithm.

Within an N x M (N rows and M columns) local area,
the reconfiguration signal travels through at most only
one logical row and onc logical column, which is N+M
processors. Each processor signaled cxecutes code only
for its particular state and type of signal received. In
each case, the signal is first propagated, so most other
activity is overlapped with signal propagation. Thus, the
total time complexity for the production is M + N + K,
where K 1s a constant amount. This initial production
may trigger a second wave of state changes, depending
on the fault pattern. However, each logical column
performs these state changes in parallel. For the first
through N-1st processor failure, the state changes
propagate upwards from the bottom, changing fewer than
N rows of processors. After the Nth failure a second
wave propagates upwards through all N rows, then down
through all N rows again. Therefore, the most steps it
will take is 2N, making the maximum total steps 3N+M
plus a constant, which is O(N+M).

6. Global algorithm to combine local areas.

All rows and columns referred to in this description
are logical rows and columns.

First, the algorithm scans the leftmost column of the
proposed new, larger local arca. If there is at least one
processor in this column with a state of "a", then there is
at least one unused spare, and area combination will be
productive. Otherwise, the algorithm halts.

To combine the areas, the algorithm clears all top and
bottom row indicators for rows that will be interior rows
of the new arca. Then, it scans the states of all
processors, changing the states of all processors with
states of "c" or "d" to "b". This is done for each logical
column in parallel. After that, it tests the state of the
processor in the leftmost column of the bottom row. If it
is "b". it initiatcs ecxecution of Phase H of the
reconfiguration algorithm so that the processors in the
rows below the lowest spare all have states of "c".

Two or more local areas that are adjacent vertically
may be combined as needed. Some arecas can be
combined while others are not; the entire array need not
be affected.

7. Comparisons to other algorithms.

This algorithm can make use of every spare in the
local area for any fault in the local area, until the number
of faults equals the number of spares. The algorithm is
efficient, with a time complexity of O(M+N), where M
and N are the dimensions of the local area of the array.
If a local area is square, of dimensions N X N, then the
time complexity is O(N). This reconfiguration algorithm
is the only one in the literature to combine high
cfliciency with high (nearly 100% or 100%) spare
utilization, as shown in the table below. (It must be noted
here that Kim and Efe [8} have recently published an
O(1) algorithm, but it requires a parallel host machinc
for implementation, and is designed for static, not
dynamic reconfiguration.)

Algorithm Time High Spare
Complexity Utilization?

Varvarigou, et al {6] O(N%)* Yes

FUSS [7] O(N?Y) Yes

Bruck, ct al [8] O(N?) Yes

Chen, et al [9] ON?) Yes

Dutt and Hayes [10] O(N% Yes

Fault-stealing |1} O(N) No

MORA {11} O(NlogN) No

Spanning Tree 112] O(NloglogN) No

*For the number of faults approximating the number of rows.
Table 1. Comparison to other algorithms.

8. Conclusions.

Wec have described an efficient algorithm for
reconfiguration for rcliability for rectangular processor
arrays. It will use every sparc in a local arca, and, should
every spare be used within a particular area, that arca can
be combined with a neighboring area to allow access to
additional spares.

This algorithm involves only a limited number of
processors, making it idcally suited for dynamic
reconfiguration. Since the algonthm works with logical
rather than physical addresses, it can be implemented on
an array that has already been reconfigured for yield
during production, by any reconfiguration method.

Several features of this reconfiguration method make
it possible for the processor array to self-reconfigurc
rather than relying on a host processor. By using
processor reconfiguration states, each processor knows
thc nature of the reconfiguration that has already
occurred in its immediate locality, and therefore the
"dircction” of the ncarcst sparc. Communications for

1062

implementation are limited to those processors in the
compensation path, and the algorithm is small enough to
be encoded in the array processors. Also. using logical
rows and columns, reconfiguration messages travel along
the data paths that have been established by previous
reconfigurations, either static or dynamic, which means
that the array processors use the same ports for
application = communications and reconfiguration
communications.

References

[1] Sami, M. and Stefanelli, R. Reconfigurable architectures of
VLSI processing arrays. Proceedings of the IELE, vol. 74, no.
5, May 1986, pp. 712-722.

[2] Singh, Adit D. Interstitial redundancy: an area eflicient
fault tolerance scheme for large area VLSI processor arrays.
{EEE Transactions on Computers, vol. 37, no. 11, Nov. 1988,
pp. 1398-1410.

{3] Wang, M., Culter, M. and Su, S.Y.H. Reconfiguration of
VLSI/WSI mesh array processors with two-level redundancy.
[EEE Transactions on Computers, vol. 38, no. 4, April 1989,
pp. 547-554.

{4] Tsuda, Nobuo. Hierarchical redundancy for orthogonal
arrays. Proceedings. International Conference on Waler Scale
Integration, Jan. 22-24. 1992, pp. 220-229.

[S] Kim, Jung H. and Efe, Kemal. A parallel reconfiguration
algorithm for WSI/VLSI processor arrays. Microprocessors and
Microsystems, vol. 17, no. 6, July-Aug. 1993, pp. 353-360.

{6] Varvarigon, Theodora A., Roychowdhury, Vwani P., and
Kailath, Thomas. A polynomial time algorithm for
reconfiguring multiple-track models. [EEE Transactions on
Computers, vol. 42, no. 4. April 1993, pp. 383-394.

[7] Chean, Mengly and Fortes, Jose A.B. The full-use-of-
suitable-spares (FUSS) Approach to hardware reconfiguration
for fault-tolerant processor arrays. IEEE 'lransactions on
Computers, vol. 39, no. 4, April 1990, pp. 564-371.

[8] Bruck, Jehoshua, Cypher, Robert, and Ho, Ching-Tien.
Fauli-tolerant meshes and hypercubes with minimal numbers of
spares. [EEE Transactions on Computers, vol. 42, no. 9,
September 1993, pp. 1089-1103.

[9] Chen, Chang, Feng, An, Kikuno, Tohru and Torii, Koji.
Reconfiguration algorithm for fault-tolerant arrays with
minimum number of dangerous processors. _21st International
Symposium on Fault-Tolerant Computing, June, 1991, pp. 452-
459.

|10} Dutt, Shantanu and Hayes, John P. Some practical issucs

in the design of fault-tolerant muitiprocessors. 21st
International Symposium on Fault Tolerant Computing, 1991,
pp. 292-299.

f11] Lombardi, F., Sami, M.G., and Stefanelli, R.

Reconfiguration of VLSI arrays: an index mapping approach.
Proceedings, First International Conference on Computer
Technology, Systems, and Applications, 1987, pp. 60-65.

[12] Lombardi, Fabrizio and Sciuto, Donatella. Reconfiguration
in WSI arrays using minimum spanning trees. Proceedings,
First International Conference on Computer Technology,
Systems, and Applications, 1987, pp. 547-550.

