
Dynamic Reconfiguration For Fault Tolerance For
Critical, Real-Time Processor Arrays

M. D. Derk, School of Computer Science L. S DeBrunner, School of Electrical Enginnering
University of Oklahoma, Normaq Oklahoma 730 19

(405) 325-4852 FAX: (405) 325-7066

Abstract
Keal-time digital signal processing jor critical

applications demands that rapid, .succes@l reconflguration
techniques he employed to increase fault tolerance. To meet
this need, we introduce and dunonstrate a IocaI area
reconjiguration algorithm, fbr a rectangular processor arra,v
that is very eflcient, does not require a host processor, and
will successfully recot&ure jor a fault anywhere in the
locnl area rfthere is an available spare. Further, ifall the
spares in a local area are used, areas can he conihined in a
.svj%vare c:ontrolled procr.cv, preventing a .systemfiJilure.

1. Introduction.

Digital signal processing algorithms, such as Discrete
Fourier Transform matrix inversion and L-U
decompositiori are frequently implemented using systolic or
wavefront arrays. MOR general array structures may also be
used for DSP applications. Fault tolerance in arrays of
processors can be achieved by reconfiguration, a process by
which spare processors are substituted for faulty ones 11-15],
Reconfiguration for yield is applied to correct manufacturing
faults. while rocoilfiguration for reliability (dynarmc
reconfiguration) is applied to correa "on-the-fly" for
processors that become faulty during operation.

Real-time applications, like speech processing and radar?
require that dynamic ra;onfiguration must be as rapid as
possible. bearing in mind that thc processor array may have
already been reconfigured for yield. Ideally, dynamic
reconfiguration should be self-reconfiguration, not requiring
a host processor. Also, for a critical application, or for an
application environment for urhich repair is ditXcult or
impossible. rmnliguralion must be successful as long as
there is an available sparc.

The algorithm presented here meets these criteria. It is
extremely efficient (Oguj time coniplexity), does not require
a host processor for in~plen~entation and can be applied to
an array already reconligured for jield by another method.

The algorilhm is designed to work withm a specified local
area of any size, the only constraint being that there is a
column of spares on the right edge. This area could be the
entire array, and the algorithm &ill use any and all spares for

any arrangement of faults in thc area, as long :IS the number
of faults IS less than or equal to the number of spares. Other
algorithms utilim the local area approach [5-71; however,
our algorithm is unique in the property that there is a
companion algorithm than can combine vertically adjacent
local areas, malung spares in both areas available for faults
in both areas.

The paper is organized as follous: Aftcr a
presentation of definitions and assuniptions, the
reconliguralion algorithm is presented Then,
implementation and time complexity is discussed, after
whch the algorithm to combine local areas IS presented
Finally, the algonthm is analyzed and compared, and
conclusions are drawn.

2. Definition of terms and assumptions.

Processor state, as indicated by the letter "a", "b", "c",
"d" or "s". indicates the state as it relates to the
reconfiguration algorithm, and not to the state of the
computations being performed by the processor. Each
non-failed processor knows its own state, and failed
processors have no slate.

Compensation path is the term used for the series of
logical coordinate changes that start ai the faulty
processor and end at the point that a spare processor is
used. Conipensation paths are found in "fault-stealing"
reconfiguration techniques, such as presented in 12 I.

Fault Model. We shall assume that faults occur one at
a time (within a local area), randomly and independently,
to processors that are in use, and that the reconfiguration
algorithm completes for one failure before the next
testing cycle. We also assume that interconnections and
switches are fault-free, and that spares are not faulty
before they are used, though they may beconte faulty after
they are included in the logical array.

The reconfiguration algorithm does not require the
presence of a host processor for implementation. but a
host processor is needed to implement the algorithm to
combine local areas. Local areas may be any size, but
must be rectangular with one column of spares on the
right. and must be vertically adjacent to be combined.

1058
1058-6393/95 $4.00 0 1995 IEEE

3. Local area reconfiguration algorithm.

This algorithm has two phases. Phase I is always
used, as it performs the actual reconfiguration along with
some state changes. Phase I1 is invoked in only some
cases, and completes the necessary state changes. In the
figures for the following example, boxes indicate
processors and lines indicate activated communication
lines. An "X" in a box indicates a failed processor.

3.1 Example.

This example takes a 4 x 4 local area through several
faults that occur dynamically, and the response of the
reconfiguration algorithm to each of them Each local
area begins as a fault-free rectangular grid, as shown in
Figure 1. There is one column of spares on the right.
Initially, each non-spare processor is assigned a state of
a . Thc rou and column indicators arc logical

coordinates, and may or may not be physical coordinates
also. since the array may haw been previously
reconfigured for yicld.

I, I,

I I I

Figure I. Initial Array.
Assumc that the processor at logical coordinatc 2,3

fails. Since the processors in row 2 have a state of "a".
indicating an initial state. then the closest spare is the
one at the end of row 2. Reconfiguration occurs as
shown by Figure 2. making use of the spare. Also, the
state of each non-faulty processor in row 2 has been
changed to "b". indicating that the spare in that row has
been used. Figure 3 shows the reconfiguration that occurs
should the processor in coordinates 3,l fail, using the
spare at the end of row 3 , and changing the states of the
processors in row 3 to "b".

If the processor at logical coordinate 3,2 should fail at
this point. thcre is no spare in row 3 to use Therefore,
the processors of logical column 2 are shifted down one
logical position in rows 3 and 4. Row 4 processors are

Figure 2. Array after one fault.
I I I .

Figure 3. Array after two faults.
I I I -

'UL

I I '

Figure 4. Array after Phase I, third fault.
shifted to the right one logical position between column 2
and the spare. freeing up a processor for use by column
2.The result is in Figure 4. Note that the algorithm has

1059

also changed the states of the processor in logical row 4
to "b", indicating that the spare in row 4 has bccn uscd.

Phase I1 is invoked if the processors in the bottom row
have a state of "b" or "c". Since the processors in the
lowest row now have a state of "b", this invokes Phase 11,
which alters the states of the processors in rows 2
through 4 to "c", as shown in Figure 5, indicating that all
spares in row twoand the rows below have been used.

Figure 5. Array after Phase II, third fault

We now suppose that a failure occurs at coordinates
2.1. Column one is shifted up one logical row. Row one
is shifted to the right by one place. Figure 6 shows the
state of the array after Phase I . Since the bottom row has
a state of "c". Phase I1 is invoked, which extends the state
of "c" to every non-failed processor in the local area.
Since the processors in the top row have a state of 'IC". we
know that all spares in the local area have been uscd.
Phase I1 therefore sweeps each column again, changing
the states of all non-failed processors to "d", as shown in
Figure 7.

3.2 Phase I.

The first phase is always executed when a fault is
detected.

State "a": If a processor with a state of "a" fails. thc
processors in that row between the failed processor and
the spare on the right edge of that row, inclusive, change
their logical coordinates so that each one substitutes for
the processor to the left. That is, the processor with
logical coordinates i j assumes new logical coordinates
I J - I . Also, all processors in that logical row change thcir
state to "b". The failed processor is excluded from the
logical row, and has no state.

I I

IL1l- i - I

Figure 6. Array after Phase I , fourth fault.

I I

I I
I I

Figure 7. Array after Phase II, fourth fault.
-- State "b": If a processor with a state of "b" fails. the

processors in its logical colunin between the failed
processor and the first processor in that logical column
BELOW it with a state of "a" change their logical
coordinates so that a processor with logical coordinates
iJ has new coordinates of i-l,j. This means they are
effectively in one logical row above the one i n which they
were previously. Therefore. if the first processor in the
logical column below the fault with a statr: of "a" has
logical coordmates of x,y, then. that processor will
assume new logical coordinates of x- 1 .y. The processors
on logical row "x" from logical column y+l rightward to
the spare change their logical coordinates from x j to sj-
1, effectively shifting them one place to the right to make
room for the downward shiftcd column. Then, all the
proccssors in logical row "x" change their statcs to "b".

State "c": IT a processor with a state of 'IC" fails, then
a procedure analogous to the one described for state "b"
takes place, except that the column is shiftcd up rather

--

1060

than down. and all the processors in the logical row that
shifted to the right change their states to 'IC''.

State "d": If a processor with a state of "d" fails, then
there are no spares available to use to compensate. We
must combine local areas or declare a fatal system
failure.

4 Failed processor
TO at lagicai
logica1 coordinates i,]
i,j-1

as the processor that failed. This state must be correct for
the proper reconfiguration signals to be sent.

To start reconfiguration, the processor that detects the
fault sends a signal through the normal communication
line that is active because it is a logical neighbor, through
bypass circuitry, to the other logical neighbors, as shown
by the heavy lines in Figure 8.

Working
proccssor
at logical
coordinates
i,j+l

3.3 Phase 11.
5. Time complexity of algorithm.

4. Implementation.

A processor failure is detected by its nearest l o p a l
horizontal neighbor. Testing by a logical neighbor rather
than a physical neighbor guarantees that this neighbor
will be a working proccssor. The fault detection and
reconfiguration initiation must be pcrformed by a
horiLonta1 neighbor rather than a vertical neighbor,
because the horiLonta1 neighbor will have the same state

Within an N x M (N rows and M columns) local area,
the reconfiguration signal travels through at most only
one logical row and one logical column, which is N+M
processors. Each processor signaled executes code only
for its particular state and type of signal received. In
each case, the signal is first propagated, so most other
activity is overlapped with signal propagation. Thus, the
total time complexity for the production is M + N + K.
where K is a constant amount. This initial production
may trigger a second wave of state changes, depending
on the fault pattern. However, each logical column
performs these state changes in parallel For the first
through N-1st processor failure, the state changes
propagate upwards from the bottom, changing fewer than
N rows of processors. After the Nth failure a second
wave propagates upwards through all N rows, then down
through all N rows again. Therefore. the most steps it
will take is 2N. making the maximum total steps 3Nt-M
plus a constant, which is O(N+M).

6. Global algorithm to combine local areas.

All rows and columns referred to in this description
are logical rows and columns.

First. the algorithm scans the leftmost column of the
proposed new, larger local area. If there is at least one
processor in t h ~ s column with a state of "a", then there is
at least one unused spare, and area combination will be
productive. Otherwise, the algorithm halts.

To combine the areas, the algorithm clears all top and
bottom row indicators for rows that will be interior rows
of the new area. Then, it scans the states of all
processors, changing the states of all processors with
states of "c" or "d" to "b". This is done for each logical
column in parallel. After that, it tests the state of the
processor in the lefimost column of the bottom row. If it
is "b", it initiates execution of Phase I1 of the
reconfiguration algorithm so that the processors in the
rows below the lowest spare all have states of "c".

Two or more local areas that are adjacent vertically
may be combined as needed. Some areas can be
combined while others are not; the entire array need not
be affected.

1061

7. Comparisons to other algorithms.

This algorithm can make use of every spare in the
local area for any fault in the local area, until the number
of faults equals the number of spares. The algorithm is
efficient. with a time complexity of O(M+N), where M
and N are the dimensions of the local area of the array.
If a local area is square, of dimensions N X N, then the
timc complexity is O(N). This reconfiguration algorithm
is the only one in the literature to combine high
cficicncy with high (nearly 100% or 100%) sparc
utilkation, as shown in the tablc below. (It must be noted
here that Kim and Efe [SI have recently published an
O(1) algorithm, but it requires a parallel host maclunc
for implementation, and is designed for static. not
dynamic reconfiguration.)

Algon tlun I lnle h g h Spare
Complexitc Utilization’,

Vanzarigou, et a1 161 O(N2)* Yes
FIJSS [7j O(N*) Yes
h i c k , et a1 181 O(N2) Yes
Chen, et a1 191 W2) Yes
I h t t and FIayes [101 U N Z) Yes
Fault-stealing 11 1 ow) No
MORA I I 1 I C)(NlogN) NO
Spanning 1 ret: 1 12 I O(N1oglogN) NO
*F’or thr number of faults approumating &e number of rows

Table 1. Comparison to other algorithms.

8. Conclusions.

We have described an efficient algorithm for
reconfiguration for reliability for rectangular processor
arrays. 11 will use every sparc in a local area, and, should
every spare be used within a particular area, that area can
be combined with a neighboring area to allow access to
additional spares.

This algorithm involves only a limited number of
proccssors. mahng it idcally suited for dynamic
reconfiguration. Since the algorithm works with logical
rather than physical addresses, it can be implemented on
an array that has already been reconfigured for yield
during production. by any reconfiguration method.

Scveral features of this reconfiguration method make
it possiblc for the processor array to self-reconfigurc
rather than relying on a host processor. By using
processor reconfiguration states, each processor knows
the nature of the reconfiguration that has already
occurred in its immediale locality, and therefore the
“direction” of the ncarcst sparc. Communications for

implementation arc limited to those processors in the
compensation path, and the algorithm is small enough to
be encoded in the array processors. Also. using logical
rows and columns, reconfiguration messages travel along
the data paths that have been established by previous
reconfigurations, either static or dynamic, which means
that the array processors use the same ports for
application communications and reconfiguration
communications.

References
[1 J Sami, M. and Stefanelli, R. Reconfigurable architectures of
VLSI processing arrays. Proceedinns of the EEE, vol. 74, no.
5, May 1086, pp. 712-722.
[2] Singh, Adit I). Interstitial redundancy: an area efficient
fault tolerance scheme for large area V I X processor arrays.
IEEE ‘Transactions on Computers, vol. 37, no. 1 I , Nov. 1988,
pp. 1398-1410.
131 Wang, M., Culter, M. and Su, S.Y.H. Rewnligmation of
VI .SINS1 mesh array processors with twu-level redundancy.
EEE ‘Transactions on Computers, vol. 38, no 4, April 1989,
pp. 547-554.
141 ‘Tsudit, Nobuo. I lierarchical redundancy for orthogonal
arrays. groccedinas. International Conference on Wal‘er Scale
Integration. Jan. 22-24. 1492, pp. 220-229.
151 Kim, Jung H. and Efe, Keinal. A parallel reconfiguration
algorithm Tor WSVVI,SI processor arrays. -)processors and
Microsystems, vol. 17, no. 6, July-Aug. 1993, pp 353-360.
161 Varvarigon. Theodora A., Roychowdhurq., Vwmi P., and
Kailath, Thomas. A polynomial time algorithm fbr
reconfiguring multiple-track models. Eli11 1 ransactions on
Commters, vol. 42, no. 4. April 1493, pp. 385-394.
171 Chean, Mengly and Fortes, Jose A.D. ‘lhe full-use-of-
suitable-spares (FIJSS) Approach to hardware reconfigmation
for fault-tolerant processor arrays. 113% ‘1 ransactions on
Comriuters, vol. 34, no. 4, April 1990, pp. 564-571
[X] 13ruck, Jehoshua, Cypher, Robert, aid I lo, Ching-’fien.
I’ault-tolerant meshes and hypercubes with mininial numbers of
spares. EIX ’Transactions on Computers, tol. 42, no. 4,
September 1943, pp. 1089-1 103.
191 Chen. Chang, Feng, An, Kikiuio, Tohru a d ’Iorii, Koji.
Iceconfiguration algorithm for fault-tolerant arraj’s with
minimum number of dangerous processors a s t International
Scmtmium on Fault-Tolerant ComDutine;. June. 1991. pp. 452-
459
[101 Dutt, Shantanu and Hayes, John P. Some practic. ‘I I . IssLlcs
in the design of fault-tolerant miiltiproctwors. 2-
International Symposium on Fault Tolerant ComDuting, 149 1 ~

[I 11 Lombardi, F., Sami, M.G., and Stefanelli, R.
Reconfiguration of VLSI arrays: an index mapping approach.
I’roceedings, First International Conference on ComDuter
Technolom. Systems, and Applications, 1987, pp. 60-65.
1121 Lomhardi, Fabrizio and Sciuto, hnatella. Reconfiguration
in WSI arrays using minimum spanning trees. Proceedings,
First Intanational Conference on Computer ‘Technologv,
Svstems, and Applications, 1987, pp 547-550.

pp. 292-249.

1062

