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Abstract 
Keal-time digital signal processing jor critical 

applications demands that rapid, .succes@l reconflguration 
techniques he employed to increase fault tolerance. To meet 
this need, we introduce and dunonstrate a IocaI area 
reconjiguration algorithm, fbr a rectangular processor arra,v 
that is very eflcient, does not require a host processor, and 
will successfully recot&ure jor a fault anywhere in the 
locnl area rfthere is an available spare. Further, ifall the 
spares in a local area are used, areas can he conihined in a 
.svj%vare c:ontrolled procr.cv, preventing a .systemfiJilure. 

1. Introduction. 

Digital signal processing algorithms, such as Discrete 
Fourier Transform matrix inversion and L-U 
decompositiori are frequently implemented using systolic or 
wavefront arrays. MOR general array structures may also be 
used for DSP applications. Fault tolerance in arrays of 
processors can be achieved by reconfiguration, a process by 
which spare processors are substituted for faulty ones 11-15], 
Reconfiguration for yield is applied to correct manufacturing 
faults. while rocoilfiguration for reliability (dynarmc 
reconfiguration) is applied to correa "on-the-fly" for 
processors that become faulty during operation. 

Real-time applications, like speech processing and radar? 
require that dynamic ra;onfiguration must be as rapid as 
possible. bearing in mind that thc processor array may have 
already been reconfigured for yield. Ideally, dynamic 
reconfiguration should be self-reconfiguration, not requiring 
a host processor. Also, for a critical application, or for an 
application environment for urhich repair is ditXcult or 
impossible. rmnliguralion must be successful as long as 
there is an available sparc. 

The algorithm presented here meets these criteria. It is 
extremely efficient (Oguj time coniplexity), does not require 
a host processor for in~plen~entation and can be applied to 
an array already reconligured for jield by another method. 

The algorilhm is designed to work withm a specified local 
area of any size, the only constraint being that there is a 
column of spares on the right edge. This area could be the 
entire array, and the algorithm &ill use any and all spares for 

any arrangement of faults in thc area, as long :IS the number 
of faults IS less than or equal to the number of spares. Other 
algorithms utilim the local area approach [5-71; however, 
our algorithm is unique in the property that there is a 
companion algorithm than can combine vertically adjacent 
local areas, malung spares in both areas available for faults 
in both areas. 

The paper is organized as follous: Aftcr a 
presentation of definitions and assuniptions, the 
reconliguralion algorithm is presented Then, 
implementation and time complexity is discussed, after 
whch the algorithm to combine local areas IS presented 
Finally, the algonthm is analyzed and compared, and 
conclusions are drawn. 

2. Definition of terms and assumptions. 

Processor state, as indicated by the letter "a", "b", "c", 
"d" or "s". indicates the state as it relates to the 
reconfiguration algorithm, and not to the state of the 
computations being performed by the processor. Each 
non-failed processor knows its own state, and failed 
processors have no slate. 

Compensation path is the term used for the series of 
logical coordinate changes that start ai the faulty 
processor and end at the point that a spare processor is 
used. Conipensation paths are found in "fault-stealing" 
reconfiguration techniques, such as presented in 12 I. 

Fault Model. We shall assume that faults occur one at 
a time (within a local area), randomly and independently, 
to processors that are in use, and that the reconfiguration 
algorithm completes for one failure before the next 
testing cycle. We also assume that interconnections and 
switches are fault-free, and that spares are not faulty 
before they are used, though they may beconte faulty after 
they are included in the logical array. 

The reconfiguration algorithm does not require the 
presence of a host processor for implementation. but a 
host processor is needed to implement the algorithm to 
combine local areas. Local areas may be any size, but 
must be rectangular with one column of spares on the 
right. and must be vertically adjacent to be combined. 
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3. Local area reconfiguration algorithm. 

This algorithm has two phases. Phase I is always 
used, as it performs the actual reconfiguration along with 
some state changes. Phase I1 is invoked in only some 
cases, and completes the necessary state changes. In the 
figures for the following example, boxes indicate 
processors and lines indicate activated communication 
lines. An "X" in a box indicates a failed processor. 

3.1 Example. 

This example takes a 4 x 4 local area through several 
faults that occur dynamically, and the response of the 
reconfiguration algorithm to each of them Each local 
area begins as a fault-free rectangular grid, as shown in 
Figure 1. There is one column of spares on the right. 
Initially, each non-spare processor is assigned a state of 
a . Thc rou and column indicators arc logical 

coordinates, and may or may not be physical coordinates 
also. since the array may haw been previously 
reconfigured for yicld. 

I, I, 

I I I 

Figure I. Initial Array. 
Assumc that the processor at logical coordinatc 2,3 

fails. Since the processors in row 2 have a state of "a". 
indicating an initial state. then the closest spare is the 
one at the end of row 2. Reconfiguration occurs as 
shown by Figure 2. making use of the spare. Also, the 
state of each non-faulty processor in row 2 has been 
changed to "b". indicating that the spare in that row has 
been used. Figure 3 shows the reconfiguration that occurs 
should the processor in coordinates 3,l fail, using the 
spare at the end of row 3 ,  and changing the states of the 
processors in row 3 to "b". 

If the processor at logical coordinate 3,2 should fail at 
this point. thcre is no spare in row 3 to use Therefore, 
the processors of logical column 2 are shifted down one 
logical position in rows 3 and 4. Row 4 processors are 

Figure 2. Array after one fault. 
I I I . 

Figure 3. Array after two faults. 
I I I - 

'UL 

I I '  

Figure 4. Array after Phase I, third fault. 
shifted to the right one logical position between column 2 
and the spare. freeing up a processor for use by column 
2.The result is in Figure 4. Note that the algorithm has 
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also changed the states of the processor in logical row 4 
to "b", indicating that the spare in row 4 has bccn uscd. 

Phase I1 is invoked if the processors in the bottom row 
have a state of "b" or "c". Since the processors in the 
lowest row now have a state of "b", this invokes Phase 11, 
which alters the states of the processors in rows 2 
through 4 to "c", as shown in Figure 5, indicating that all 
spares in row twoand the rows below have been used. 

Figure 5. Array after Phase II, third fault 

We now suppose that a failure occurs at coordinates 
2.1. Column one is shifted up one logical row. Row one 
is shifted to the right by one place. Figure 6 shows the 
state of the array after Phase I .  Since the bottom row has 
a state of "c". Phase I1 is invoked, which extends the state 
of "c" to every non-failed processor in the local area. 
Since the processors in the top row have a state of 'IC". we 
know that all spares in the local area have been uscd. 
Phase I1 therefore sweeps each column again, changing 
the states of all non-failed processors to "d", as shown in 
Figure 7. 

3.2 Phase I. 

The first phase is always executed when a fault is 
detected. 

State "a": If a processor with a state of "a" fails. thc 
processors in that row between the failed processor and 
the spare on the right edge of that row, inclusive, change 
their logical coordinates so that each one substitutes for 
the processor to the left. That is, the processor with 
logical coordinates i j  assumes new logical coordinates 
I J - I .  Also, all processors in that logical row change thcir 
state to "b". The failed processor is excluded from the 
logical row, and has no state. 

I I 

IL1l- i -  I 

Figure 6. Array after Phase I ,  fourth fault. 

I I 

I I 
I I 

Figure 7. Array after Phase II, fourth fault. 
-- State "b": If a processor with a state of "b" fails. the 

processors in its logical colunin between the failed 
processor and the first processor in that logical column 
BELOW it with a state of "a" change their logical 
coordinates so that a processor with logical coordinates 
iJ has new coordinates of i-l,j. This means they are 
effectively in  one logical row above the one i n  which they 
were previously. Therefore. if the first processor in the 
logical column below the fault with a statr: of "a" has 
logical coordmates of x,y, then. that processor will 
assume new logical coordinates of x- 1 .y. The processors 
on logical row "x" from logical column y+l rightward to 
the spare change their logical coordinates from x j  to sj- 
1, effectively shifting them one place to the right to make 
room for the downward shiftcd column. Then, all the 
proccssors in logical row "x" change their statcs to "b". 

State "c": IT a processor with a state of 'IC" fails, then 
a procedure analogous to the one described for state "b" 
takes place, except that the column is shiftcd up rather 

-- 
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than down. and all the processors in the logical row that 
shifted to the right change their states to 'IC''. 

State "d": If a processor with a state of "d" fails, then 
there are no spares available to use to compensate. We 
must combine local areas or declare a fatal system 
failure. 

4 Failed processor 
TO at lagicai 
logica1 coordinates i,] 
i,j-1 

as the processor that failed. This state must be correct for 
the proper reconfiguration signals to be sent. 

To start reconfiguration, the processor that detects the 
fault sends a signal through the normal communication 
line that is active because it is a logical neighbor, through 
bypass circuitry, to the other logical neighbors, as shown 
by the heavy lines in Figure 8. 

Working 
proccssor 
at logical 
coordinates 
i,j+l 

3.3 Phase 11. 
5. Time complexity of algorithm. 

4. Implementation. 

A processor failure is detected by its nearest l o p a l  
horizontal neighbor. Testing by a logical neighbor rather 
than a physical neighbor guarantees that this neighbor 
will be a working proccssor. The fault detection and 
reconfiguration initiation must be pcrformed by a 
horiLonta1 neighbor rather than a vertical neighbor, 
because the horiLonta1 neighbor will have the same state 

Within an N x M (N rows and M columns) local area, 
the reconfiguration signal travels through at most only 
one logical row and one logical column, which is N+M 
processors. Each processor signaled executes code only 
for its particular state and type of signal received. In 
each case, the signal is first propagated, so most other 
activity is overlapped with signal propagation. Thus, the 
total time complexity for the production is M + N + K. 
where K is a constant amount. This initial production 
may trigger a second wave of state changes, depending 
on the fault pattern. However, each logical column 
performs these state changes in parallel For the first 
through N-1st processor failure, the state changes 
propagate upwards from the bottom, changing fewer than 
N rows of processors. After the Nth failure a second 
wave propagates upwards through all N rows, then down 
through all N rows again. Therefore. the most steps it 
will take is 2N. making the maximum total steps 3Nt-M 
plus a constant, which is O(N+M). 

6. Global algorithm to combine local areas. 

All rows and columns referred to in this description 
are logical rows and columns. 

First. the algorithm scans the leftmost column of the 
proposed new, larger local area. If there is at least one 
processor in t h ~ s  column with a state of "a", then there is 
at least one unused spare, and area combination will be 
productive. Otherwise, the algorithm halts. 

To combine the areas, the algorithm clears all top and 
bottom row indicators for rows that will be interior rows 
of the new area. Then, it scans the states of all 
processors, changing the states of all processors with 
states of "c" or "d" to "b". This is done for each logical 
column in parallel. After that, it tests the state of the 
processor in the lefimost column of the bottom row. If it 
is "b", it initiates execution of Phase I1 of the 
reconfiguration algorithm so that the processors in the 
rows below the lowest spare all have states of "c". 

Two or more local areas that are adjacent vertically 
may be combined as needed. Some areas can be 
combined while others are not; the entire array need not 
be affected. 
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7. Comparisons to other algorithms. 

This algorithm can make use of every spare in the 
local area for any fault in the local area, until the number 
of faults equals the number of spares. The algorithm is 
efficient. with a time complexity of O(M+N), where M 
and N are the dimensions of the local area of the array. 
If a local area is square, of dimensions N X N, then the 
timc complexity is O(N). This reconfiguration algorithm 
is the only one in the literature to combine high 
cficicncy with high (nearly 100% or 100%) sparc 
utilkation, as shown in the tablc below. (It must be noted 
here that Kim and Efe [SI have recently published an 
O( 1 )  algorithm, but it requires a parallel host maclunc 
for implementation, and is designed for static. not 
dynamic reconfiguration.) 

Algon tlun I lnle h g h  Spare 
Complexitc Utilization’, 

Vanzarigou, et a1 161 O(N2)* Yes 
FIJSS [7j O(N*) Yes 
h i c k ,  et a1 181 O(N2) Yes 
Chen, et a1 191 W2) Yes 
I h t t  and FIayes [ 101 U N Z )  Yes 
Fault-stealing 11 1 ow) No 
MORA I I 1  I C)( NlogN) NO 
Spanning 1 ret: 1 12 I O(N1oglogN) NO 
*F’or thr number of faults approumating &e number of rows 

Table 1. Comparison to other algorithms. 

8. Conclusions. 

We have described an efficient algorithm for 
reconfiguration for reliability for rectangular processor 
arrays. 11 will use every sparc in a local area, and, should 
every spare be used within a particular area, that area can 
be combined with a neighboring area to allow access to 
additional spares. 

This algorithm involves only a limited number of 
proccssors. mahng it idcally suited for dynamic 
reconfiguration. Since the algorithm works with logical 
rather than physical addresses, it can be implemented on 
an array that has already been reconfigured for yield 
during production. by any reconfiguration method. 

Scveral features of this reconfiguration method make 
it possiblc for the processor array to self-reconfigurc 
rather than relying on a host processor. By using 
processor reconfiguration states, each processor knows 
the nature of the reconfiguration that has already 
occurred in its immediale locality, and therefore the 
“direction” of the ncarcst sparc. Communications for 

implementation arc limited to those processors in the 
compensation path, and the algorithm is small enough to 
be encoded in the array processors. Also. using logical 
rows and columns, reconfiguration messages travel along 
the data paths that have been established by previous 
reconfigurations, either static or dynamic, which means 
that the array processors use the same ports for 
application communications and reconfiguration 
communications. 
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