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Abstract 
This paper presents a least squares (LS)  design 

methodology for approximating perfect reconstruc- 
tion filter banks. A filter bank can be represented 
as a multi-input multi-output (MIMO) LTI system 
whose transfer function is described b y  the filter bank 
polyphase matrix. Using this MIMO system represen- 
tation we frame a general least squares filter design 
problem. Then given an arbitrary set of rational anal- 
ysis filters we find the causal synthesis filters for a 
filter bank which achieves the best causal LS approxi- 
mation t o  perfect reconstruction. 

1 Introduction 
In this paper we develop a least squares LS) design 

an arbitrary set of analysis filters and some desired re- 
construction delay find the causal synthesis filters re- 
sulting in the best possible approximation to a PRFB. 
The best approximation minimizes the squared error 
between the response of an ideal PRFB and the re- 
sponse achievable with causal synthesis filters. As we 
will demonstrate this LS approximation problem for 
PRFBs is a special case of a more general LS design 
problem for multi-input multi-output (MIMO) linear 
systems. 

Many methods have been proposed for designing 
causal PRFBs. Most of these techniques produce FIR 
QMF filter pairs or equivalent M channel QMF de- 
signs. All of these design techniques for subband fil- 
ters are subject to the severe constraints imposed by 
aliasing cancellation and the required absence or min- 
imization of phase and amplitude distortion. The LS 
design methodology developed in this paper attempts 
to relieve some of these severe design constraints dur- 
ing the selection of the analysis filters, allowing the 
designer to choose from a much broader class of sub- 
band filters. The penalty for choosing arbitrary anal- 
ysis filters is that in general the corresponding synthe- 
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methodology for solving the following prob I em. Given 

sis filters allowing for perfect reconstruction are non 
causal. Any attempts to approximate a PRFB with 
causal synthesis filters will in general result in some 
aliasing distortion as well as phase and amplitude dis- 
tortion. However once a set of subband analysis fil- 
ters is selected this LS design technique produces the 
causal synthesis filters which simultaneously minimize 
the combined aliasing, phase and amplitude distortion 
for a given reconstruction delay. 

To begin we translate the PRFB approximation 
problem into a MIMO LS design problem in sec- 
tions 2 and 3 .  This representation for filter banks 
as MIMO systems is a direct consequence of the gen- 
eral unifying theory for PRFBs developed primarily 
by Vaidyanathan in [2] [3] [4], and Vetterli in [5 ]  [6] 
and is based on the polyphase representation. Once 
framed in the multivariate context we recognize Ihe 
PRFB approximation problem as a classical LS equal- 
ization problem for a MIMO LTI system. In section 
3.1 we outline a computational algorithm for finding 
the LS solution. These algorithms are applied in an 
actual design example in section 4. 

2 Multivariate System Analysis for 

In this section we consider the multi-input multi- 
output (MIMO) representation for filter banks. This 
MIMO system representation arises naturally from the 
filter bank polyphase representation. Consider the fil- 
ter bank polyphase representation depictcd in figure 
1. H(z) is the type I polyphase matrix representing 
and the analysis filters. G ( z )  is the type I1 polyphase 
matrix representing and the synthesis filters. The first 
operation performed on the input sequence is a serial 
to parallel conversion. The delay elements and deci- 
mators convert the input scalar sequence uk into a se- 
quence of vectors u k .  The resulting vector sequence u k  
is filtered using the MIMO LTI filter H(z) t o  produce 
{xk). Subsequently {xk) is filtered by the synthesis 
filter GT(z )  to produce the output vector sequence 

Filter Banks 

{ Y d .  
Y(.) = G T ( . ) X ( 4  = G ~ ( . ) H ( . ) ~ ( ~ )  

The output vector sequence {yr} is then converted 
back to a scalar sequence {yk} by the zero-filling and 
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Z - 1  

Figure 1: Multirate filter bank / MIMO filter 

the delay operators which perform a parallel to serial 
conversion. 

3 PRFB Approximation and Multi- 
variate LS Equalization 

We now consider the necessary and sufficient con- 
ditions for perfect reconstruction (PR) in terms of the 
polyphase product matrix F ( z )  = GT(z)H(z). A fil- 
ter bank achieves perfect reconstruction iff: 

lM-r ] (1) i Z-m,-l 1, 0 
0 z-"o 

G ~ ( . ) H ( z )  = 

This condition for perfect reconstruction was origi- 
nally derived by Vaidyanathan in [3]. A filter bank 
whose polyphase product matrix satisfies condition 1 
achieves perfect reconstruction with a delay of L = 
N + ( M  - 1) where N = m,M + T .  Then the out- 
put y(z) is precisely a delayed version of the input, 
y(z) = ~ - ~ u ( z ) .  Given an arbitrary set of analysis fil- 
ters with polyphase matrix H(z) ,  perfect reconstruc- 
tion is obtained when the synthesis filter polyphase 
matrix G T ( z )  satisfies G T ( z )  = CN(z)H-l(z),  where 
CN(z)  is defined as the pseudocirculant matrix on 
the RHS of equation 1. The inverse polyphase ma- 
trix H-l(z) is in general non-causal. Therefore most 
PRFB design techniques constrain the analysis filters 
so that the inverse polyphase matrix H-l(z) is causal. 

In this paper we pursue an altogether different 
strategy. Given an arbitrary set of analysis filters, 
we find the causal synthesis filters which result in the 
best possible LS approximation to PR for a given re- 
construction delay. The down-side of this approach is 
that aliasing, amplitude and phase distortions are in- 
troduced. The main advantage is that the designer can 
select the analysis filters from a much broader class of 
rational filters. The resulting PR approximation error 
can in principle be made arbitrarily small by allowing 
sufficient reconstruction delay. 

To solve this approximation problem we first con- 
sider the deterministic least squares design problem 

Figure 2: MIMO least squares design problem. 

for causal MIMO LTI filters 

Given: H(z), F(z) rational 
Find: GT(z) rational and causal which minimizes 

(2) 
This represents the LS equalization or deconvolu- 

tion problem for MIMO LTI systems depicted in fig- 
ure 2. F(z) is the desired channel transfer function 
and H(z) is the actual or measured channel response. 
The design goal is to find a causal MIMO filter G T ( z )  
which minimizes the the total energy in the error se- 
quence {Ek}. 

Given the MIMO system representation for fil- 
ter banks, the PRFB approximation problem can be 
framed as a special case of the MIMO LS design prob- 
lem 2. Perfect reconstruction requires the polyphase 
product matrix F ( r )  to equal C N ( z ) .  This condition is 
necessary and sufficient for perfect reconstruction with 
adelay of L = N+(M-1). Let the actualor measured 
channel response equal the analysis filter polyphase 
matrix H(z). Then solving 2 we obtain the synthesis 
filter polyphase matrix GT(z) .  This polyphase matrix 
represents the causal synthesis filters which minimize 
the energy in the PR approximation error. Given this 
identification of PRFB approximation as a MIMO LS 
problem we solve for the optimum causal synthesis fil- 
ters using the solution to the multivariate LS problem. 
The LS solution G T ( r )  is 

GT(z) = [ F ( . Z ) U ~ ( ~ - ~ ) ] + H ~ ~ ( Z )  (3) 
H( z) = &( .)U( 2) 

u ( ~ ) u ~ ( z - ~ )  = I Paraunitary 

where the operator [.I+ denotes the causal part of 
its argument. The matrix H,(z) is the minimum 
phase equivalent of H(z) where H,(z) and its in- 
verse Hi1(%) are both causal. H(z) is the product 
of its minimum phase equivalent H,(z) and a parau- 
nitary matrix U(z). Thus the causal filter Hi1(r  is 
the MIMO whitening or innovations filter for H 1 z). 
The most challenging aspect of computing the solu- 
tion GT(z )  is to find the minimum phase equivalent 
of the filter H(z). This task is accomplished by per- 
forming a matrix spectral factorization on the product 
H(z)HT(z-') which is positive definite on the unit cir- 
cle. This problem is addressed in the following section. 
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3.1 
In this section we outline an algorithm for com- 

puting the optimal (LS) synthesis filters from a set of 
rational analysis filters and a desired reconstruction 
delay. To begin we are given M rational analysis fil- 
ters h k ( z )  = 8 for k = 0 to M - l where a k ( z )  and 
6 k  ( 2 )  are FIR polynomials. 

Qualitatively these M analysis filters are 1/M band 
rational filters whose pass bands are partitioned to 
cover all frequencies on the unit circle. In more precise 
terms the only requirement imposed on the M analysis 
filters for this design process is that the symmetric 
polyphase matrix product, H(z HT(z-l), is strictly 

Algorithm for Least Squares Design 

positive definite on the unit circ I' e. 

H(eje)HT(e-je) > 0 for V 6 (4) 
This requirement is a sufficient condition for the ma- 
trix spectral factorization which is performed during 
the LS design process. 

Before computing the minimum phase equivalent of 
the analysis filter polyphase matrix we must first con- 
vert the rational analysis filters into their polyphase 
components. Given a rational filter h k ( z )  find the 
polyphase components hk,n(z)  satisfying: 

Each h k , n ( z )  is simply the z-transform of a shifted and 
subsampled version of the impulse response of hk( z ) .  
Thus each polyphase component hk,n(z) is a delayed 
and aliased version of h k ( z ) .  

where WM = e - j a r r I M .  Expressing each polyphase 
component as a rational polynomial we have h k , n ( z )  = 

M-1 

I=O 

M-1 M-1 

(7) 

Equations 6 and 7 allow us to compute the numer- 
ator and denominator polynomials for each polyphase 
component. Additionally every polyphase component 
h k , n  z )  has the same denominator polynomial. This 
fact r, elps reduce computations but more importantly 
it leads to a polyphase matrix representation which 

is conveniently factored. To demonstrate this, sup- 
pose we have found the numerator and denominator 
polynomials, bk , " ( z )  and Q , ~ ( Z ) ,  for each polyphase 
component hk,n(z) in each of the M analysis filters. 
Then the analysis filter polyphase matrix is 

. . .  

hM-l,O(z) hM-l,l(z) ' ' ' hM-l ,M-l(z)  

(l? 

H(z) = 

Since every element of a given row vector has t e 
same denominator polynomial we can factor out all 
the denominator polynomials into a diagonal matrix 
A-l(z) as follows: 

H ( ~ )  = A-~(.)B(.)  (9) 

dk(%) = ak,n(%) = n Uk(Zl'MWL)(ll) 

[33(4Ik,n = b k , n ( Z )  (12) 

A(z) = diag{do(z), d l ( z ) ,  . . d ~ - l ( z ) } ( l O )  
M- 1 

I=O 

After converting the analysis filters into polyphase 
form we need to find the minimum phase equivalent 
of the polyphase matrix H(z). The problem is 

Given: H(z) rational 
Find: H,(z) satisfying 

H(z) = H,(z)U(z) (13) 
u(z)uT(z-l) = I paraunitary 
H,(z) and Hi1(.)  causal 

This is solved by performing a multivariate spectral 
factorization on the rational product matrix S ( z )  = 
Ht)HT(z- ' ) .  A matrix spectral factorization algo- 
rit m takes a matrix which is positive definite on the 
unit circle and symmetrically factors it into minimum 
phase components. 

Given: S ( z )  rational 
where S ( e j e )  > 0 for V O  

r(z) and I'-l(z) causal 

Solving this problem with S(z) = H(z)HT(z-') 
we define the minimum phase equivalent of H(z) as 
follows: 

Find: I?( z )  rational satisfying (14) s ( ~ )  = r(z)rT(z-l) 

H , ( ~ )  E r ( z )  
u ( ~ )  H ; ' ( ~ ) H ( ~ )  

Then H(z) = H,(z)U(z), where U(%) is paraunitary 
and H&) is minimum phase. 

The matrix spectral factorization problem 14 is cen- 
tral to the solution of the multivariate Wiener filtering 
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problem, multivariate prediction, and linear optimal 
control theory. Many computational algorithms have 
been developed for solving it.  Of these techniques the 
Newton-Raphson procedure first proposed by Wilson 
[7] and further refined by Jezek and Kucera [l] is used 
for this PRFB approximation problem. 

This procedure computes successive iterations 
r k ( z )  which converge to the act,ual minimum phase 
solution r(z). This particular algorithm operates on a 
strictly FIR polynomial matrix ~ ( z )  = r(z)rT(z-l). 
Conveniently the computational procedure for finding 
the polyphase matrix components (equations 9-12 and 
6-7) results in the factored form H(z) = A-’ z)B(z)  

ccs. From this factored form it is a straight forward 
procedure to again factor H(z) into a new polynomial 
matrix B( 2 )  and a single monic denominator polyno- 
inial a( z ) .  

where A(z) and B(z)  are both FIR polynomia i matri- 

M-1 M - 1  

a(.) = det(A(z)) = r]: r]: c ~ k ( z l ’ ~ W L )  

k = O  l=O 

M-I  M-1 

Exploiting this new factorization 15 we perform 
a one dimensional spectral factorization on the FIR 
polynomial U(.) to obtain its minimum phase equiva- 
lent a , ( z ) .  Then we find the minimum phase equiva- 
lent of the polynomial matrix B(z) (equation 16) using 
Wilson’s algorithm [7]. Thc minimum phase equiva- 
lent of H(z) can then be writteti 

Next we compute thr paraunitary matrix U(z) sat- 
isfying H(z) = H,(z)U(z) ,  by finding the causal in- 
verse H,’(z) Let B ~ ) ( z )  be the rnatnx of cofactors 
(the adjugate matrix) of B,(z) 

Bu(z)BFdJ)(2)  = dct(B,(z)) . I  

Let Po( ; )  = det(B,(z)) then U(=) 1s computed as fol- 
lows: 

Finally we apply these results to the solution of the 
LS approximation problem for PRFBs. Substituting 
C N ( z )  for F (z )  we caii compute Lhti least, squares syn- 
thesis filter polyphase matrix G‘jz )  using equation 
3.  

3.2 Performance Analysis 
This LS filtm design process produces filter banks 

which in general exhibit aliasing, magnitude and phase 
distortion. Thus we want an expression for the fil- 
ter bank output y(z) which is a function of the input 
alias components and the analysis and synt,hesis fil- 
ters. Such an expression has been developed in [4] 
and [3] 

1 
Y(z) = --gT(Z)Hz(z)ua(z) M (18) 

g ( z )  is a column vector whose elements are the 
synthesis filters HA(z) is the alias component 
(AC) matrix for the analysis filters and U:(.) = 
[U(.), U ( Z W M )  . . .U(ZW,”-’>] is tJir vector of ttic. 
alias components of the input Next we define thc 
aliasing gain T ( z ) ,  such that y(z) = u z ( r ) T ( z )  wherr 
T(z) = $Ha(z)g(z) .  The components of the alias 
ing gain vector, T ( z ) ,  represent the equivalent filters 
applied to each input alias component 

M-1 

k = O  

T”(z) = [to(z),tl(z), . . . X M - ~ ( Z ) ]  

Perfect reconstruction occurs when T( z )  = 
[~-~,0,...0]. Next we would like t,o express T(z) 
in terms of H(z) and G T ( z ) .  By definition of 
t,he polyphase matrix, g ( z )  = GT(z”)J+(=) .  Thv 
polyphase mat,rix H(z) is related to t,he alias compo- 
nent (AC) mat.rix HA(z)  by the following expressioii 

DFT matrix and D(z) = diag{l ,z- l , . . .z-(M-l)}.  
The aliasing gain becomes 

HA(z)  = W“D(z)H T M  ( z  ), where W“ is the inversv 

~ ( 2 )  = - W ~ D ( Z ) H  1 T M  ( Z  ) G ( z ~ ~ ) J + ( z )  (19) 

In the following 1,s design example we plot the magni- 
tude and group delay of the aliasing gain components 
computed using expression 19. 

M 

4 Design Example €ith order Chebyshev 
For this design example we approsimate a t,hrec: 

channel PRFR. The analysis filters selected for this 
task are are all type I1 Chebyshev fil1,ers. All  three 
analysis filters lowpass, bandpass, and highpass, wen’ 
designed so that their 3dB points where at, the nor- 
malized frequencies 1/3 and 2/3 respectively. The low- 
pass and highlmss filters are act,ually 5t,11 ordrr type I[  
Chebyshev filtws while the baridpass filter is a G t h  or- 
der type I1 Chebyshev. All three filters were designed 
with a masimuni stopband ripple 20db below the pass- 
band. The syiithesis filter magnitudes are plotted i r i  
figure 3.  Following the LS design procedures outlined 
in the preceding sections, several different sets of op- 
timal (1,s) syrit,hesis filters were designed by varying 
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the reconstruction delay. The magnitudes of the LS 
synthesis filters with a reconstruction delay of 44 are 
plotted in figure 3. The resulting sequence of filter 
banks exhibits an increasingly better approximation 
to perfect reconstruction as the reconstruction delay 
is increased. The magnitudes of the resulting aliasing 
gain components, T(eJe) = [ta(eje),  ? l ( e j e ) , t z ( e j e ) ] ,  
are plotted in figure 5 for reconstruction delays of 8, 
12, 16 and 24. Clearly as the delay increases the mag- 
nitude of the zeroth term, t o ( e j e ) ,  is converging to a 
constant value of one. Concurrently the other aliasing 
gain terms are fairly rapidly converging to zero. In 
concert with the magnitude response, the group delay 
of the to (eJe)  term is also converging to a constant 
which equals the reconstruction delay. This is evi- 
denced in figure 6. Note that the group delays plotted 
in figure 6 for the t o ( z )  term, are normalized to a de- 
lay of l and the resulting deviations from a value of l 
represent a percentage error from the nominal delay. 

This is precisely the convergence behavior we would 
expect. Increasing the reconstruction delay allows the 
causal filter bank to better approximate a pure delay 
element. 

5 Conclusion 
In this paper we have successfully implemented a 

least squares filter design methodology for approx- 
imating perfect reconstruction filter banks. This 
methodology allows the designer to select subband fil- 
ters from a broad class of rational filters. 
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Figure 3: Chebyshev analysis filters - Magnitude 

Figure 4: LS synthesis filters (delay = 44) - Magnitude 

Figure 5: Aliasing Gain T ( e j e )  - Magnitude 

Figure 6: Aliasing Gain T ( e j e )  - Group delay 
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