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Abstract 
In this paper we consider the Gabor representa- 

tion which uses a one-sided exponential window for 
detection and analysis of transient signals. Earlier re- 
sults on the critically sampled case are extended to the 
more practically useful oversampled case. For over- 
sampling by an integer factor we derive an explicit 
analytical expression for the dual window (dud frame) 
function required for computing the Gabor representa- 
tion. Based on this expression we develop an efficient 
procedure for computing the Gabor coefficients. Fi- 
nally, we demonstrate the performance of the method 
by numerical examples. 

1. Introduction 
This paper considers the Gabor representation for 

detection and analysis of transient signals [l]. Suppose 
we are given a continuous time signal {y ( t ) ,  -w 5 t 5 
CQ} and a window function g ( t ) .  The Gabor represen- 
tation of y ( t )  using the window function g ( t )  is 

where 
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This function represents quite well the jump disconti- 
nuity and the gradual decay characterizing many phys- 
ical transient phenomena. Also, we show that for the 
case of integer oversampling the dual window (frame) 
has finite support and therefore is most suitable for 
Gabor analysis of continuous data streams. 

In this paper we derive an analytical expression 
for the dual frame associated with the one sided ex- 
ponential window function for the oversampled case. 
Based on this expression we develop an efficient pro- 
cedure for computing the Gabor coefficients. Then we 
demonstrate the performance of the method by nu- 
merical examples. 

2. Mathematical Background 
In this section we review the definition of the Zak 

transform [9] and the theory of frames [ll] which are 
very useful tools in problems of Gabor representation. 

The Z a k  Transform 
m 

m,n=-e¶ 

gmn(t) = g( t  - nu) explj2rmbtI (2) 

a > 0, b > 0 and ab 5 1. The condition ab 5 1 
is necessary for the existence of the representation. 
ab = 1 is the case of critical sampling while ab < 1 
is the oversampled case where l/ab is &he oversam- 
pling factor [2, 31. In the case of critical sampling the 
representation is not always stable; for example when 
g(z) is a Gaussian function [4, 51. The importance of 
oversampling in the Gabor scheme was recognized and 
demonstrated by several authors [7, 81. In this paper 
we focus therefore on the oversampled case. 

As in [6, 101 we propose to use a one-sided expo- 
nential function as the Gabor window function g ( t ) .  

This work was supported by the United States Army Re- 
search Office under Contract DAAL03-91-C-0022, sponsored by 
the U.S. Army Communications Electronics Command, Center 
for Signals Warfare. 

The Zak transform of a signal f(z) is defined as 
follows: 

where -eo < z,w < 00 and X > 0 is a fixed parameter. 
The properties of the Zak transform required for this 
paper can be found in [7] 

Frames 

We now give a very short review of the theory 
of frames, focusing only on the definitions and results 
which will be used in the derivations. For more com- 
plete reviews the interested reader is referred to  [ll]. 

Definition 1 A sequence {h,} in a Hilbert space 
H constitutes a frame if there exist positive numbers 
A, B called frame bounds, 0 < A 5 B < 00 such that 
for all h E H we have 
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~ 1 l h 1 1 ~  5 I < h,hn > l 2  I B I I ~ I I ~  
n 

Definition 2 Given a frame {hn} in a Hilbert space 
H the frame operator S is defined as: 

Sh = < h,h,,  > hn (4) 
n 

The following two corollaries summarize the re- 

Corollary 1 1. S is a bounded linear operator with 

2. S is invertible and B-'I  5 S-' 5 A-'Z. 
3. (S- 'h ,}  is a frame with bounds El-',  A-' ,  

AI  5 S means < A l h , h  >L< S h , h  > for all 

Corollary 2 Every h E H can be written as 

sults required in this paper. 

AI 5 s 5 B I .  

called the dual frame of {h,,}. 

h E H ,  where Z is the identity operator. 

h = < h,S-'h,, > h, (5) 
n 

(5) which expresses h a s  a linear combination of 
the frame elements will play an important roll in de- 
riving the Gabor representation. 

Frames and the Gabor representation 

In [2] Daubechies has shown that if {gmn} consti- 
tute a frame in L2((72), the dual frame has the form 

S-'gmn(z) = -T.mn(z) = ?(z - nu)  exp(j2n"c) (6) 

where S is the frame operator 

S h  = < h,gmn > g m n  (7) 
nan 

and 7 = S-lg.  
For rational oversampling factor l / u b  = p/p Zibul- 

ski and Zeevi [7] have shown that the Zak transform 
of T(z) with X = l / h ,  ~ ( T , w ) ,  satisfies the following 
equation. 

p-1 p - 1  

CCG(x - I - ,w)G ' ( z  - 1-,w - a - ) r ( z , w  - -) 
P P z -  2 

9 9 P P i=o I=O 

= P G ( X I W )  (8) 

For p = 1 (8) is reduced to 

A procedure for solving (8) for p > 1 is outlined 
in [7]. We will assume p = 1 restrict,ing ourselves to 
oversampling by integers, i . e . ,  l / a b  = 1 , 2 , 3 , .  . _. 

Clearly, ? ( x )  satisfies the reconstruction formula 
(5). Therefore, for any y(t) in L 2 ( R )  

~ ( t )  = < ~ , = i . m n  gmn(t) (10) 
mn 

The coefficients of the Gabor representation of 
y ( t )  are obtained by comparing (10) wit,h (1). We get. 

Using the Poisson-sum formula \Vesler and Raz 
have shown that the relation (10) leads to t$he hiorthog- 
onality constraint 

1 rcm ' 1  g ( t ) y * ( t  - n/b) exp[-j2~m(l/a)l]dt 
ab --03 

Thus the dual frame is biorthogonal to  the set, 
of window functions. Note that for the ovesampled 
case the solution of (12) is non-unique [8]. The dual 
frame method gives us one possible solution for the 
biorthogonality constraint. 

3. The dual frame for the one sided ex- 
ponential window 

In this section we derive the dual frame for the 
integer oversampled Gabor representation with one 
sided exponential window. The dual frame is a s e  
lution to the biorthogonality constraint (12). For the 
case of critical sampling our result coincides with the 
corresponding biorthogonal function obtained in [lo] 
Then we develop an efficient procedure for comput,ing 
the Gabor coefficients using the dual frame. 

The starting point for the derivation is (9) which 
expresses the X a k  transform of the dual frame F ( x )  
in terms of the Zak transform of the window function 
G(s) for the cme of integer oversampling ratio. The 
following results hold therefore for integer oversam- 
pling, a.e., l/a/l = 1 , 2 , 3 , .  . .. 

Let g ( t )  bt> the one-sided exponential function 

where u ( t )  is the unii. step function. 
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Using the result [7] that for integer oversampling 
factor q 2 1, {gmn) is a frame if only if 

OM- 

0.04- 

0.02- 

0 

-0.02 

1 

9 

9- 1 

0 5 A 5 IG(z - - ,w) l2  5 B < 00 a.e. (14) 
1=0 

1 

- 

- 

where G(z,w) is the Zak transform of g ( t ) ,  we have 
shown that for integer oversampling, {gmn} is a frame 
in L2(R). We therefore can apply (9) to  g ( t ) .  First, 
we compute the Zak transform of g ( t )  as required by 
(9). The Zak transform is evaluated with parameter 
X = l/b. We get, 

2a  exp[-f(x - lxJ)] exp(- LzJj2~w) 
1 - exp(-a/b + j27rw) 

G*(z,w) = 6 
(15) 

where * denotes the complex conjugate operator and 
1.J is the largest integer not greater than t. Also, 

where 

for I = O ,  . . . , q -  1 
Let 

G ~ ( z ,  w) = exp( LzJj27rw) 

We can write G(t ,w) as 

Substituting (19) and (16) into (9) we obtain the 
Zak transform of the dual frame. Now we can apply 
the inverse Zak transform with X = 1 / b  to get the 
desired dual frame. We get 

1 
y(z) = A/ f ' ( z6 ,w)dw 

H;(xb) 

0 

- bHO(Xb) - 

[b(lzbI) - exP(-;)b(lZb+ 1111 (20) 

After some computations we get the following ex- 
pression for the dual frame. 

-kexp{a[x - - 2(1+ 1) I} - l + L < z b < - l +  I ba 9 -  

( 0  otherwise 

where 1 = 0,. .. ,q  - 1 and 

2m 1 ................................................... OJ :,("L * 

............. .................................. 
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Figure 1 : The dual frame y(z) for the one- 
sided exponential window. a = 1 
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Figure 2 : The dual frame T(z) for the one- 
sided exponential window. a = 4 
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As mentioned earlier T(zj  is zero outside [-b '1. 
Within this interval it is piecewise continuous, with 
2q equilength subintervals, in each of which Y(z) is 
continuous . 

In the following figures we show the function ?(z) 
for several values of the oversampling q and the param- 
eter a. In all figures, b = 1. Note that for a fixed q ,  
changing b corresponds to  changing the scaling of the 
time axis, such that T(z) is supported on [-f, b). In 
Figure 1 we plot T(z) for a = 1, while Figure 2 is for 
a = 4. 

Having computed T(z) the Gabor coefficients can 
be computed by (11). We get 

' P  

27rmn 
Q 

C m n  = exp(-j-) 

l lb  
y(t + na)y* ( t )  exp[-j2imbi]Qt (23) 

In practice the coefficients {Cnin} can be approx- 
imated by finite sums. Suppose we sample both the 
signal and the function T(tj at intervals I/(Lb) start- 
ing from t = - l / b .  Then, 

Ljs 

1 27rmn 
L 4 

C,, N - exp(-j-) 

Assume that L / q  is an integer and let y,(l) -- y(l/Lb- 
l/b) and y s ( l )  = y ( l / L b -  l /b).  ys and ys are sampled 
and shifted (by l/b) versions of y and 7 respectively. 
Then we can rewrite ( 2 4 )  as follows 

1 . 2 r m n  
Cm, N - exp( -3 -) 

Lb 9 
(25) 

k 0  r=O 

The second summation is computed using L point 
FFT. 
4. Numerical Examples 

In this section we demonstrate the effect of over- 
sampling on the performance of the above procedure. 
We assume that the received signal has the following 
form 

I 
' 0  2 4 6 E 10 12 14 16 

MQ W l  

Figure 3 : Contour plot of the Gaborgram 
with critical sampling a = b = 1. 

1. 

CC* 

Figure 4 : The Gaborgram with critical sam- 
pling a = b = 1. 

where s ( t )  is a four component transient signal, u ( t )  
is the unit step function and the decay parameter is 
a = 1.25. {A, , toa , f i }  are the amplitude, time of ar- 
rival and frequency of the i-th transient. ~ ( f )  is the 
background noise which is assumed to be a zero mean 
white complex Gaussian random process with variance 
u2. The SNR is defined as 10 log(l/a2). In the follow- 
ing examples A = ( 1 , 1 . 2 , 1 ,  1.2jT, t o  = (6 ,6 ,7 .5 ,  7.5)T 
seconds, f = ( 6 . 5 , 8 , 6 . 5 , 8 ) T  Hz and SNR = -3dB. 
Note that three of the components do not lie on the 
critically sampled Gabor lattice. The received signal 
is sampled at 128 Hz and observed for a sixteen second 
interval. 

The performance is illustrated by plotsting the squ- 
ared absolute value of the Gabor coefficients as a func- 
tion of time and frequency. Such a plot is usually 
called a Gaborgram. Figures 3-4 show the Gabor 
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Figure 5 : Contour plot of the Gaborgram 
with oversampling a = b = 0.5. 
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Figure 6 : The Gaborgram with oversampling 
U = b = 0.5. 

gram obtained for critical sampling, while figures 5-6 
show the Gaborgram for oversampling by a factor of 
4 with U = b = 0.5. For each case we show a contour 
plot and a three dimensional plot of the Gaborgram. 

As may be expected, the Gaborgram in the criti- 
cal sampling case was not able to resolve the four tran- 
sients. Recall that for critical sampling with a = b = 1 
the Gabor functions (synthesis and analysis) corre- 
spond to integer values of time and frequency. Three 
of the transients comprising the received signal do not 
lie in the integer time-frequency grid, causing “non- 
integer” mismatch between the transient signal and 
the Gabor function. For oversampling with a = b = 
0.5 the Gabor functions correspond to a grid sampled 
at integer multiples of 0.5 seconds in time and integer 
multiples of 0.5 Hz in frequency. In this case there 
is no mismatch between the transients and the Gabor 

basis functions and the Gaborgram resolves all four 
transients. 
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