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Abstract 

We consider the problem of  localizing underground 
objects a n d  identifying their parameters b y  measuring 
the components o f  the gravity gradient tensor. Ap- 
plications are oriented towards finding tunnels, pollu- 
tants and aquifers, archaeology, oil expcploration, veri- 
fying compliance with peace  treaties (e.g. missile in- 
spection), etc.  

Close interaction between the physical model and a 
signal processing approach leads to a source location 
and parameter estimation problem. We propose sev- 
eral modeling alternatives t o  solve the non-uniqueness 
of the inverse problem, though this paper includes only 
poind masses. 

We use a maxzmum likelihood procedure to solve 
the parameter estimation problem. The Crame'r-Rao 
bound is computed and presented f o r  the range and 
mass of a spheroids! object. Estimation bounds on the 
location of a single point mass and the resolution f o r  
two point masses are studied. 

1 Introduction 

We consider the problem of localizing underground 
objects and identifying their parameters using mea- 
surements of the components of the gravity gradient 
tensor. Consider for instance the case of having to 
find a tunnel, an oblong object less dense than its sur- 
roundings. Assuming we have detected i t ,  i.e. we have 
an idea of where it might be, we need to estimate its 
precise location. The direction along which the tunnel 
runs, i.e. its orientation, is often needed. We may also 
require to estimate its mass density, since it might be 
confused with other oblong objects of different density, 
such as aquifers. 
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We foresee applications of our approach to archae- 
ology, oil exploration, mineralogy, determination of 
the geode, localization of pollutants and aquifers, etc. 
Other interesting applications of gradient gravimetry 
are given in [5], e.g. inspection of missiles. 

Assume a certain mass distribution is given, pro- 
ducing a gravitational potential and force field. A test 
mass at a certain location p i  experiences an attractive 
force due to this field, $($. The gravita1,ional field 
is the attractive force per unit mass and the gravita- 
tional gradient is given by the partial derivatives of 
each gravitational field component, then 

is usually called the gradient tensor at location F'. 
A convenient unit of measurement for the gravita- 
tional gradient is the Eotvos and is equivalent to 
1E = 10-9sec-2. If the Earth were a uniformly dense 
sphere, the gradient at  any point of its surface would 
be vertical with an intensity of about 3100 E. 

Several sensors for measuring the gravit,y gradient 
(gradiometers) have been described and studied in 
the literature. We shall consider using an instrument 
based on a spinning wheel with accelerometers, de- 
scribed in detail in [3]. The output of the instrument 
has two signals: the in-line gradient and ( 'TOSS  gradi- 
ent. When the rotating wheel is laid horizontally the 
in-line gradient is given by C,, - Cx, and the cross 
gradient by G x g .  It is also possible to slant the rotat- 
ing wheel in other orientations and we can show (see 
[4]) that t,here exists a matrix Mj such that 
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where g j ( k )  is a vector with two components, the in- 
line and cross gradient at  the location s;, , and with the 
rotating wheel in the j-th orientation. The formula re- 
flects the fact that the gradient tensor is symmetric. 
Moreover, Poisson’s equation introduces a further con- 
straint among the diagonal components of the gradient 
tensor , leaving only five independent components. 

Assume we have detected, in a certain region, the 
presence of the mass distribution pattern for which 
we are looking and we have to estimate its parame- 
ters. We take a number of gravitational gradient mea- 
surements at  certain locations on the Earth’s surface, 
with the gradiometer slanted in different orientations. 
Our modeling approach, explained in $2,  allows us to 
formulate the parameter estimation problem in an ar- 
ray processing setting, making available many results 
from that context. We use a maximum likelihood es- 
timation scheme to obtain estimates of location, ori- 
entation and mass. We also compute the CramCr-Rao 
lower bound and use it to gain some insight into the 
capabilities of our method. 

2 Modeling 

Assume a Cartesian coordinate system is adopted 
at  the reference measurement point ( M P l ) ,  as indi- 
cated in fig. 1. The 2 axis is roughly along the verti- 
cal and the zy-plane is parallel to the surface. Other 
measurement points MPk are placed at  locations g k  

for k = 2 , .  . . , K .  We show in [4] that a precision on 
the parallelism of the frames of about a minute of an- 
gle per axis gives acceptable results and this can be 
achieved with standard geodesic equipment. 

Underground masses (white circles) are located 
with their centers of mass (CM1, CM2,. . .} at posi- 
tions {P; , pi ,  . . .}. The overall potential function is 
the sum of the contributions of these masses, plus 
the effect of a homogeneous ground of uniform density 
and its spurious objects (black circles), such as stones, 
holes, rocks, etc. The object of interest, as well as the 
undesired masses, can be detected from the surround- 
ing ground as long as their densities differ from the 
background density. 

Write the total gradient tensor due to the back- 
ground, distributed masses indexed by 1 and discrete 
point masses indexed by i, as follows: 

where G(s‘,p3 is the gradient at  s‘ due to a mass at 
p’ and G(s‘,G) is the gradient of the components of 
the gradient tensor. Removal of the background term 

Figure 1: A model for a cut of the ground 

B(Z) may be accomplished by assuming it is due to a 
spherical, uniformly dense mass M (the mass of the 
Earth) with center at a vertical distance R (the radius 
of the Earth). M and R may be either plugged in or 
estimated. Alternatively, we may only use measure- 
ments with the spinning wheel exactly in the xy-plane, 
since the readings do not depend on G,,, Gzyl  G Z z .  

Equation (1) is not useful for our purposes unless 
one knows the exact number, location and nature of all  
the underground masses. Even if many of them can be 
disregarded because their effect is below “noise level”, 
too much knowledge is still required to use (1). More- 
over, there are several mass distributions that may 
produce the same gradient map. This non-uniqueness 
is inherent to the problem and can be circumvented 
through adequate modeling hypotheses. 

We propose to model the gradient at a measure- 
ment point as if it were due to a few candidate pat- 
terns of mass, whose intensities and locations are to 
be determined. The unmodeled gradient is attributed 
to an extra term playing the role of noise. Then the 
model equation for the gradient at  the MP, Z, is 

where C and Z are the index sets for the chosen dis- 
tributed and point masses, respectively. Some physi- 
cal reasoning, see [4], indicates that a good assumption 
for e is that it is white Gaussian noise, of zero mean 
and variance a’. In our model the vertical component 
of B ( 3  is large enough that the probability of having 
a negative vertical component of G ( q  is almost zero. 
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There are several mass patterns of interest. For in- 
stance, the simplest pattern resembling a tunnel is, 
perhaps, a linear mass density of a certain length. 
More concentrated objects with higher densities can 
be better modeled by a simple point mass. If the same 
mass is close to the surface, then concentrating it into 
a point mass may not be accurate enough and a dis- 
tributed mass model may be needed. For those cases 
when the shape of the object becomes important, a 
multipole expansion is probably needed [2]. An ac- 
count of this issue is presented in [4]. For brevity, we 
shall only derive the case of point masses. 

Suppose there is a point source of mass ml,  located 
at P; with respect to a reference frame ( 5 ,  9, le)  and the 
sensor is placed at  the point z k  , see fig. 1. using ele- 
ment,ary physics for the gravitational field components 
in terms of the vector ?k f $1 - g k ,  we can write 

yml 
I Tk I vech{G(s’)} = 7 

- 3(Fk ’ i)2- I Fk 1’ - 
3(Fk ‘;)(?A ‘i) 
3(7k . a)(?k ’ k) 

3 [ F k  ’j)’- I Fk 1’ 
3(Fk . $)(Fk ’?) 

(3) 

- 3(Fk . 1 f k  l2  

3 Parameter Estimation Approach 

We use a maximum likelihood procedure to esti- 
mate point-mass parameters and comput,e the CRB 
to assess the quality of our location estimates of 
spheroidal mass objects. If we take measiirements at 
one MP only five parameters can be estimated, since 
there are five independent components of the gradi- 
ent. Therefore, any practical situation must include 
several MP’s to provide enough equations. Consider a 
situation where we select Itr measurement points and 
J sensor orientations. For simplicity, we assume the 
same number of sensor orientations and the same num- 
ber, N ,  of time repetitions for each MP. We consider 
a model with d point masses. The equivalent to a 
“snapshot” in an array is given by 

T 
Y ( t )  = [YTdt), . “ l  y m 1  . . .  1 Y?,(t)] = 

= A(6)x + e( t )  

of dimension m x 1, with m = 2511, and x = 
[ml ’ . .  m d ] *  and where the equivalent to tht, “ar- 
ray manifold” is 

~ ( 6 )  = [.(el) .(ez) - .  a(ed)i (5) 
The parameters to be estimated are ( 6 T , ~ T , u 2 )  
Their total number is np = 4d+ 1 , i . e .  R 2 3d param- 
eters from 8,  d from x and 1 from U. 

When other patterns are included, we still can give 
the problem the structure of the previous equations. 
Unfortunately the number of parameters to be esti- 
mated grows rapidly, risking the performance, see [4]. 
Increasing the number of MP’s is important not only 
because of noise reduction but also as a way of refining 
our model regarding the non-uniqueness of the inverse 
problem, as seen in the previous section. 

Assume the noise term e(t) is Gaussian distributed 
with zero mean and covariance u21,. Thus, Y(f) is a 
discrete-time Gaussian stochastic process with mean 
A(6)x and covariance ~’1,. The log-likelihood func- 
tion of the N-size sample is 

- N  (mln(27r) + In IR(8)l +trace {R(8)-’R(@)}) 

N 1 
R(6) = ( Y ( t )  - A(B)x) ( Y ( t )  - A(6)X)T 

t = l  

p ( Q )  = E { Y ( t ) }  = A(19)x 

It can be shown that the following statistics: 
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N 1 = - YT( t )Y ( t )  
t = l  

S K  N 

are sufficient for this problem. The maximum like- 104 

lihood estimate of the parameters (0,x,c2) can be 
easily found as in [6], or using concentrated likelihood 103 

8 = argmin {In ( s ;  - j iTPA(e)b)}  

1 
function concepts, as in [l], obtaining f s 

i 

9 i n 2  

U, 
:: 

j i  = [AT(8)A(8)] -' AT(8)F 
IO '  

8 2  = ( S K  - bTPA(e)b)  / m  

where Pa(6)  is the projection matrix onto the column 5 10 15 20 25 30 
IO0 

space of A(8) (see [SI). The optimization problem for Depth of underground mass (ml 

8 requires a multidimensional non-linear minimization 
procedure and suffers from the standard difficulties, 
such as multiple minima, choice of initial condition 
and computational time. Observe that, unlike the 
deterministic case of the classical source localization 
problem (see [7]), our case has a constant source sig- 
nal, resulting in slightly different estimation formulas. 

The CramQ-Rao bound (CRB), assuming unbiased - 
estimates, can be derived as in [7], or taking advan- I In' 

tage of the concentrated structure of the likelihood i 
function, as in [l]. We obtain the following bounds 5 

Figure 2: CRB ofthe estimated mass for a Point mass 
at  a 

Dismcc f" ongin 
in' - 

(see [71) 

U4 

N m  
C R B ( ~ ~ )  = - 

5 10 15 20 25 30 
in  3 

where we have defined 

x = I, @ X T  ( n  x dn)  

D(0) = [ # a~ e . . .  ?&% I T  ( d n  x m) ae, 

The latter matrix can be obtained, in our case of point 
masses, by differentiating the formulas of eqn (5) using 
(4) and (3).  As is well known, our maximumlikelihood 
estimator need not be unbiased nor achieve the CRB. 
However, we shall use the CRB to give us an indi- 
cation of the best possible performance for unbiased 
estimates. 

4 Simulations and Results 

Figure 3: CRB of the estimated location of a point 
mass at variable depth 

of 104Kg,  a noise of U = 1E (the level of the electronic 
noise) and N = 100 time samples were taken. Three 
orientations of the gradiometer were used, one along 
each co-ordinate axis. Four patterns of five MP's each, 
all on the surface ( z  = 0), were chosen with (x, y) co- 
ordinates given by 

We have conducted several studies that illustrate, 
in figures 2 to 5, the range of possibilities of our pro- 
cedure. In all cases it was assumed that the mass was 

The first column indicates how they show up in the 
figures. In fig. 2 we show the CR standard deviation 
bound for an estimate of the mass as a function of the 
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Figure 4: CRB of the estimated location of a point 
mass at a variable “x” and a depth of 10 meters 

depth at  which the point mass is located. If we assume 
that the estimates are useful until their standard de- 
viation is about a third of the value to be estimated, 
then the method can be used up to a depth of 15 
meters. From fig. 3 we can see that a similar limit ex- 
ists when estimating the range of the point mass. All 
the patterns of MP perform similarly. This situation 
changes when, as fig. 4 shows, the point mass is shifted 
in the 2 direction. Then, as it, may be expected from 
physical principles, the arrays of MP with components 
along the 2 axis perform better. The example of fig. 
5 is on the resolution of two point masses of 104Kg 
separated by a variable angle, at  a depth of 15 meters. 
We see how the pattern of MP along the y axis fails to 
resolve them, whereas all other arrays of M P  separate 
the masses for angles larger t,han 40 degrees. If the 
masses were not so deep, they could be resolved for 
smaller angles. 

5 Summary and Conclusions 

We have presented a procedure that allows the char- 
acterization of underground sources of mass, based 
on measurements of the gravitat,ional gradient with 
a spinning wheel sensor. Applications may call for 
different modeling hypotheses, but for brevity we only 
showed the case of point niasses. CRB derived limits 
show a n  ample potetha1 for applications. 

Figure 5 :  CRB of the estimated separation angle for 
equal masses at a depth of 15 meters 
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