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ABSTRACT 
UCA- ESPRITis  a recently developed closed form algorithm 
for use in conjunction with a uniform circular array (UCA) 
that provides automatically paired source azimuth and el- 
evation angle estimates. 2D DFT Beamspace ESPRIT is 
presented as an algorithm providing the same capabilities 
for a uniform rectangular array (URA). In the final stage 
of the algorithm, the real and imaginary parts of the i - th 
eigenvalue of a matrix yield the respective direction cosines 
of the i- th source relative to the two array axes. In ad- 
dition to the reduction in computational complexity facili- 
tated by operation in a reduced dimension beamspace, 2 0  
DFT Beamspace ESPRIT is efficiently formulated in terms 
of real-valued computation throughout. Simulation results 
are presented verifying the efficacy of the method. 

1. INTRODUCTION 
For 1D arrays, if the elements are uniformly-spaced, Root- 
MUSIC and ESPRIT avert a spectral search in determining 
the direction of arrival (DOA) of each incident signal. In- 
stead, the DOA of each signal is determined from the roots 
of a polynomial. For either Root-MUSICor ESPRIT‘,  the 
roots of interest ideally lie on the unit circle and are re- 
lated one-to-one with each source, assuming the interele- 
ment spacing to be less than or equal to a half-wavelength. 
For 2D (planar) arrays, the fact that the fundamental the- 
orem of algebra does not hold in two dimensions typically 
precludes a rooting type of formulation. Even for the highly 
regular uniform rectangular array (URA), 2D MUSIC re- 
quires a spectral search of a multimodal two-dimensional 
surface, while both Multiple Invariance ESPRIT [l] and 
Clark & Scharf’s 2D IQML [2] algorithm involve nonlinear 
optimization. Now, it should be pointed out that a URA 
lends itself to  separable processing allowing one to  decom- 
pose the 2D problem into two 1D problems. That is, one can 
estimate the DOA’s with respect to  one array axis via one 
set of calculations involving a MUSIC or ESPRIT based 
polynomial formulation, and do the same with respect to 
another array axis. Coupling information may be employed 
to subsequently pair the respective members of the two sets 
of 1 D  angle estimates. 

tThis research was supported by NSF under grant no. MIP- 

I I n  ESPRIT the DOA’s are extracted from eigenvalues which 
9320890 and by AFOSR under contract no. F49620-92-5-0198. 

are roots of the characteristic polynomial of a matrix. 

$Institute of Network Theory and Circuit Design 
Technical University of Munich 

D-80290 Munich, Germany 

In the Algebraically Coupled Matrix Pencil ( A C M P )  
method of van der Veen e t  a1 eigenvector information is 
employed to pair the respective members of the two sets of 
1D angle estimates. Yet, ACMP breaks down if two sources 
have the same arrival angle relative to  either the z-axis or 
the y-axis, assuming the URA to lie in the z-y plane. 

In contrast, for a uniform circular array (UCA) the 
recently developed UCA- ESPRIT [4] algorithm provides 
closed-form, automatically paired 2D angle estimates as 
long as the azimuth and elevation angle of each signal ar- 
rival is unique. In the final stage of UCA-ESPRIT,  the i-th 
eigenvalue of a matrix is of the form U, + j w , ,  where U, and 
w ,  are the direction cosines of the i-th source relative to the 
z and y axes, respectively. These eigenvalues are unique 
for each source such that UCA-ESPRIT does not have the 
aforementioned problem A CMP has when two sources have 
the same I, or the same U,. We here develop a similar 
closed-form 2D angle estimation algorithm for a URA that 
provides automatic pairing in the same fashion. That  is, in 
the final stage of new algorithm, referred to as 2D Unitary 
ESPRIT, the real and imaginary parts of the i-th eigenvalue 
of a matrix are one-to-one related to U ,  and U,, respectively. 

2. DFT BEAMSPACE ESPRIT FOR ULA 

We begin the development by first developing a DFT 
beamspace version of ESPRIT for a uniform linear array 
(ULA) of N elements wherein each of the three primary 
steps of the algorithm are efficiently formulated in terms of 
real-valued computation: (1) the computation of the signal 
eigenvectors, (2) the solution to the system of equations 
derived from these signal eigenvectors, and (3) the com- 
putation of the eigenvalues of the solution to  the system 
of equations formed in stage 2. Note that Xu et .  al. [6] 
have also proposed a beamspace version of ESPRIT for a 
ULA. However, in their algorithm the three primary steps 
above involve complex-valued computation. The ability to  
formulate an ESPRIT-like algorithm for a ULA that only 
requires real-valued computations from start to finish, after 
the initial transformation from element space to beamspace, 
is critically important in developing a closed-form 2D angle 
estimation algorithm for a URA similar to UCA-ESPRIT 
for a UCA. Note, for the sake of notational simplicity, the 
following development employs all N DFT beams, so that 
the beamspace dimension is the same as that of element 
space. A reduced dimension beamspace version of the algo- 
rithm will be presented afterwards. 
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Employing the center of the ULA as the phase reference, 
the array manifold is conjugate centro-symmetric [SI. For 
example, if the number of elements comprising the ULA, 
N,  is odd, there is a sensor located a t  the array center and 
the array manifold is 

, , . . . , e ~ ( v ) p ]  * , a N ( p )  = [ e - J ( T ) * ,  . . . ,e-’’ 1 el’ 
N-1 

(1) 
where p = y d u  with X equal to the wavelength, and d is 
equal to the interelement spacing. Applying the conjugate 
centro-symmetrized version of the m - th  row of the N pt. 
DFT matrix 

-J(N-l)m+ +E = e ~ (  y ) m %  [ 1 , 
(2) 

the m - t h  component of the DFT beamspace manifold is 

I T  , e  -12m% , . . . ,  e 

which is observed to be real-valued. Note that we can per- 
form a front end FFT (effectively implementing the Van- 
dermonde form of the rows of the DFT matrix) and achieve 
conjugate symmetrized beamforming a-posteriori through 
simple scaling of the DFT values [5]. The N x 1 real-valued 
beamspace manifold is then 

bN(P) = W E a N ( P )  = [bO(P) ,  bl(P)  3 . .  . v bN-1 (P)]* 7 (4) 

where WE denotes the conjugate centro-symmetrized N 
pt. DFT matrix whose rows are given by (2). 

Comparing bm+l(p) = -[with sin 3 p - ( m + ~ ) %  bm(p)  in 
(3),  the numerator of bm+l ( p )  is observed to be the negative 
of that of b m ( p ) .  Thus, two successive components of the 
beamspace manifold are related as 

Trigonometric manipulations lead to 

Compiling all N - 1 equations in vector form yields 

tan (%) I’lb(p) = r2b(p) ( 7) 

rl = (8) 
where 

0 ... 0 0 
0 0 

0 ... cos ( (N-2)e)  cos ((N-l)+)  

r2 = (9) 
0 sin 0 ... 0 0 
0 sin sin .._ 0 0 

0 0  0 ... sin ((~-2);) sin ((~-1);) 

With d sources, the beamspace DOA matrix is B = 
[b(pi), b(p2), ..., b(pd)]. The beamspace manifold relation 
in (7) translates into the beamspace DOA matrix relation 

riBi-4, = rzB, (10) 

where 

n , = d i a g { t a n ( F )  ,...,tan(?)}. (11) 

Now, the appropriate signal eigenvectors for the algorithm 
presently under development may be computed as the 
“largest” left singular vectors pf the real-valued matrix 
[R.e{Y},Zm{Y}], where Y = WEX. Asymptotically, the 
N x d matrix of signal eigenvectors, Es, satisfies Es = BT, 
where T is an unknown d x d real-ualuedmatrix. Substi- 
tuting B = EsT-l into (10) yields the signal eigenvector 
relation 

I’lEs* = rzEs, where: !P = T-’n,T. (12) 

Ultimately, the eigenvalues of the d x d solution * to the 
(N - 1) x d matrix equation above are tan(p;/2) i = 1, ..., d .  

This reveals a spatial frequency warping identical to the 
temporal frequency warping incurred in designing a digital 
filter from an analog filter via the bilinear transformation! 
Consider d = X/2 so that p = y d u  = TU. In this case, 
there is a one-to-one mapping between -1 < U, < 1, cor- 
responding to the range of possible values for a direction 
cosine, and -00 < w ,  < 00. 

A summary of DFT Beamspoce ESPRIT is as follows. 
First, compute an N pt. DFT of each snapshot vector 
thereby forming Y = WEX. Second, compute E, via the 
d “largest” left singular vectors of the real-valued matrix 
[‘Re{Y},Zm{Y}]. Third, compute \E (via LS or TLS) as 
the solution to the (N- 1) x d matrix equation (I’lEs) \k = 
(I’zEs). Fourth, compute w,, i = 1 ,..., d ,  as the eigenval- 
ues of the d x d real-valued matrix *. Finally, the spatial 
frequency estimates are pi = 2 tan-’(wi) i = 1, ..., d .  

Reduced computational complexity is realized in scenar- 
ios where one works with DFT beams that encompass some 
angular sector of inter_est. In this case, one only employs a 
subset of the rows of WE, the number of which depends on 
the width of that sector and may be substantially less than 
N,  to transform from element space to beamspace. Em- 
ploying the appropriate subblocks of I’l and I’2 as selection 
matrices, the algorithm is the same as that summarized 
previously except for the reduced dimensionality. For ex- 
ample, if one employed the m-th, (m+l) - th ,  and (m+2)-th 
rows of WE to form three beams to estimate the angles of 
two closely-spaced signal arrivals, as in the low-angle radar 
tracking scheme described by Zoltowski and Lee [8], for ex- 
ample, the appropriate 2 x 3 selection matrices are 

r l =  [ 0 cos i I  (m+l)$  cos ((m O I  + 2 ) 5 )  
c o s ( m 5 )  cos (m+l)$ 
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In this case, one would compute the d = 2 "largest" eigen- 
vectors of a 3 x 3 real-valued matrix, solve a 2 x 2 real-valued 
system of equations, and compute the 2 eigenvalues of the 
resulting 2 x 2 matrix solution. 

3. 2D DFT BEAMSPACE ESPRIT FOR URA 
We now extend 1D DFT Beamspace ESPRIT for a uniform 
rectangular array (URA) of N x M elements lying in the 
z-y plane and equi-spaced by d in either the z or y direc- 
tions. In addition to p = T d u ,  where U is the direction 
cosine variable relative to the x-axis, we define the spatial 
frequency variable v = F d v ,  where w is the direction cosine 
variable relative to the y-axis. 

In this development, in addition to representing the array 
manifold as an N M  x 1 vector, denoted a(p,v) ,  it will be 
convenient to represent it as an N x M matrix, denoted 
d ( p , u ) ,  as well. The two forms are related through the 
operators vet(.) and mat(.)  as a(p, U) = vec(d(p, v)) and 
d(p, v) = mat(a(p,  v)). The operator vet(.) maps an N x 
M matrix to an N M  x 1 vector by stacking the columns 
of the matrix. The operator mat(.) performs the inverse 
mapping, mapping an N M  x 1 vector into an N x M matrix 
such that that mat(uec(X)) = X. An important property 
of the vec operator that will prove useful throughout the 
development is 

uec(ABC) = (CT @ A )  vec(B), (13) 

where @ denotes the Kronecker matrix product. In matrix 
form, the array manifold may be expressed as 

A b ,  = aN(P)a%v), (14) 

where aM(u)  is defined by (1) with N replaced by M and 
p replaced by v. 

The matrix form of the beamspace manifold, denoted 
B(p ,  v), is related to the maJrix form of-the array myifold 
via a 2D DFT as B(p,  v) = W:d(p, v)Wb, where WE de- 
notes the conjugate centro-symmetrjzed N pt. DFT matrix 
whose rows are given by (2) and WE is defined similarly 
with N replaced by M .  Substituiing the form of d ( p , v )  in 
(31) into B ( p ,  v) = Wgd(p, ~ ) W M  yields 

%4 U) = bN(CL)bL(v), (15) 

where bN(p) is defined in (4) and bM(v) is defined similarly 
with N replaced by M and p replaced by U. Given that 
bN(p) satisfies the invariance relationship in (7), it follows 
that B(p ,  v) satisfies 

tan (:) rIB(p,p) = rZB(p,v).  (16) 

where I'l and r2 are defined in (8) and (9). Using the 
property of the vec operator in (13), we find that the N M  x 
1 beamspace manifold in vector form, denoted b(p,v)  = 
vec(B(p, Y)), satisfies 

where I',,l and r,,2 are the (N - l ) M  x N M  matrices: 

rM1 = IM 18 rl and rMz = IM @ rz. (18) 

(17) represents ( N  - l )M equations obtained by comparing 
each pair of adjacent beams having the same v pointing 
angle coordinate. 

Similarly, the 1D beamspace manifold bM(v) satisfies 
tan(vl2) I13bM(v) = I',bM(v), where l'3 and r4 are de- 
fined similar to (8) and (9) with N replaced by M such that 
they are ( M  - 1) x M. It follows that 

Again, using the uec operator, we find that b ( p , v )  satisfies 

tan (:) r Y l b ( p , v )  = rU2b(p,v) ,  (20) 

where and ru2 are the N ( M  - 1) x N M  matrices: 

ryl = r3 8 IN and ruz = r4 8 I ~ .  (21) 

(20) represents N ( M  - 1) equations obtained by comparing 
each pair of adjacent beams having the same p pointing 
angle coordinate. 

Consider the N M  x d real-valued beamspace DOA matrix 
B = [ b ( p ~ ,  VI), ..., b(pd, vd)]. (17) dictates that B satisfies 

r,iBhl, = rpZB (22) 

where hl, is defined in (11). In turn, (20) dictates that B 
satisfies 

where 
I',iBhl, = rYZB (23) 

Sa, = diag{tan (5) ,...,tan ( y ) } .  (24) 

Now, viewing the array output at  a given snapshot as 
an N x M matrix, we compute a 2D DFT, apply the vec 
operator, and place the resulting N M  x 1 vector as a col- 
umn of an N M  x N ,  data matrix Y. Recall that  X denotes 
the N M  x N ,  data matrix prior to the 2D DFT. Using 
the vec operator, the relationshie between Y and X may 
be expressed as Y = (WE @ W,")X. The appropriate 
N M  x d matrix of signal eigenvectors, Es, for the algo- 
rithm presently under development may be computed as 
the d "largest" left singular vectors of the real-valued ma- 
trix [Re{Y},Zm{Y}]. Asymptotically, Es = BT, where 
T is an unknown d x d real-valued matrix. Substituting 
B = EST-' into (22) and (23) yields the signal eigenvector 
relations 

I',.lEs*,, = I',,2Es where: *,, = T-'hl,,T (25) 

rV1Es*, = I',ZEs where: *, = T-'hl,T. (26) 
Automatic pairing of p and v spatial frequency estimates is 
facilitated by the fact that  all of the quantities in (25) and 
(25) are real-valued. Thus, *, + j* ,  may be spectrally 
decomposed as 

*,, + j * ,  = T-' {hl, + jhl,} T (27) 
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A summary of 2 0  DFT Beamspace ESPRIT is as fol- 
lows. First, compute a 2D DFT of the N x M matrix 
of array outputs at each snapshot, apply the uec opera- 
tor, and place the result as a column of Y. Second, com- 
pute E, via the d "largest" left singular vectors of the real- 
valued matrix ['Re{Y},Zm{Y}]. Third, compute (via LS 
or TLS) *,, as the solution to  the (N - 1)M x d matrix 
equation I',lEs?l', = I',zEs and as the solution to 
the N(M - 1) x d matrix equation rYIEs*,, = rY2Es. 
Fourth, compute A,, I = 1, ..., d, as the eigenvalues of the 
d x d complex-valued matrix + je,. Finally, the spa- 
tial frequency estimates are p, = 2tar~-~('Re{X,}) and 
U, = 2 tan-l(Zm{X,}), i = 1, ..., d .  

3.1. Reduced Dimension Example 
As in the 1D case, the utility of 2 0  DFT Beamspace ES- 
PRIT over OD Unitary ESPRIT is in scenarios where one 
works with 2D DFT beams that encompass some volume of 
space of interest. In fact, the ability to  work in a reduced 
dimension beamspace is even of more value in the case of 
a URA since the total number of elements may be quite 
high. As an example, consider a scenario, similar to the 
low-angle radar tracking problem, in which we desire to es- 
timate the respective azimuth and elevation angles of each 
of two closely-spaced sources. Suppose that we form four 
2D DFT beams steered to the spatial frequency coordinate 
pairs (m%,n$) ,  ((m+ 1 ) % , n s ) ,  ( m g ,  (n + I)%), and 
((m + I)%, ( n  + 1)%); the 4 x 1 beamspace manifold is 

b(ll,u) = (28 )  

[Qm,n(fi, v ) ,  bmtl,n(p, U) bm,nt1 ( ~ 9  v) b m t l , n t l  ( P ,  U)] . T 

In this case, Es is 4 x 2 and may be constructed from the 
two "largest" eigenvectors of the real part of the 4 x 4 ma- 
trix formed from the inter-beam correlations. The 2 x 2 
matrices * p  and *, would be computed as the corre- 
sponding solutions to the 2 x 2 respective matrix equations 
r,,lEsQ, = rp2Es and I ' u ~ E ~ * u  = FUZES, where 

rrl = 

1 
1 

cos ( m g )  cos ( (m+l )g )  0 0 

sin (mg) sin ( (m+l)g)  o 0 

cos(n$) 0 cos ( ( n + l ) g )  

0 cos (mg) cos ((m+l)%) 

rp2 = 

rul = 

ru2 = 

[ O  0 sin (m5) sin ((m+l)+) 

cos ((n+l)+) O I  

sin ( (n+ l )g )  O 1 .  
In the final stage, tan(p,/2) + j tan(u,/2), i = 1 ,2 ,  would 
be computed as the the eigenvalues of a 2 x 2 matrix. 

As discussed previously, UCA-ESPRIT [4] is a recently 
developed closed-form 2D angle estimation scheme for a 
uniform circular array (UCA). In the final stage of UCA- 
ESPRIT, the i-th eigenvalue of a matrix has the form 

cos ( n 5 )  0 

sin ( n 5 )  o sin ( (n+ l )g )  
[ O  sin (n+) 0 

U, + j v i ,  where U, and vi are the direction cosines of the 
i-th source relative to  the x and y axes, respectively, as 
suming the UCA to lie in the x-y plane. This is in con- 
trast to 2D DFT Beamspace ESPRIT where there is spa- 
tial frequency warping such that the final eigenvalues are 
of the form tan(pi/2) + jtan(v,/2), i = 1, ..., d .  A notable 
difference between the development of UCA-ESPRIT and 
that of 2 0  LIFT Beomspace ESPRIT is that in the former 
the sampled aperture pattern was assumed to  be approxi- 
mately equal to  the continuous aperture pattern [4], while 
no such approximation was made in the latter case. It has 
been shown in [9] that if a similar approximation is made 
in the development of 2 0  DFT Beamspace ESPRIT, the 
final eigenvalues yielded by the resulting approximate 2 0  
DFT Beamapace ESPRIT algorithm are identical in form to 
those yielded by UCA-ESPRIT. Aside from averting spatial 
frequency warping, this form of the eigenvalue has a nice 
geometrical interpretation in that it may be expressed as 
U, + j v i  = sin Bi ejgi ,  where di and Bi are the azimuth and 
elevation angles of the i-th source. 0, varies between 0' and 
90' so that sin& varies between 0 and 1, while 4, varies 
between 0' and 360'. Thus, one can immediately glean the 
azimuth angle of the i-th source from the polar angle of the 
i-th eigenvalue, and the corresponding elevation angle from 
the arcsine of the magnitude of the i-th eigenvalue. If the 
eigenvalue is at  the origin, the source is at boresite. If the 
eigenvalue is on the unit circle, the source is in the same 
plane as the array. Also, we may use the fact that an eigen- 
value should be located on or within the unit circle to screen 
out false alarms. 

4. SIMULATIONS 
Simulations were conducted employing an 8 x 8 URA 
( i . e .  , N = M = 8) with Ax = AM = X/2. The source 
scenario consisted of d = 3 equi-powered, uncorrelated 
sources located at (u1, V I )  = (O,O), (u2, uz)  = (1/8,0), and 
(us, 0 3 )  = (0,1/8), where ui and vi are the direction cosines 
of the i-th source relative to  the z and y axes, respectively. 
Sources 1 and 2 were separated by a half-beamwidth, a. e., 
half the Rayleigh resolution limit, as were sources 2 and 3. 
Sources 1 and 2 have the same U coordinate, while sources 
2 and 3 have the same U coordinate. If the A C M P  algo- 
rithm of van der Veen et a1 [3] was applied in this scenario, 
it would provide a faulty estimate of the number of sources 
as well as faulty source direction estimates. 

A given trial run at a given SNR level (per source per 
element) involved N ,  = 64 snapshots. The noise was 1.i.d. 
from element to element and from snapshot to snapshot. 
The RMS error was employed as the performance metric. 
Let (Gi,, 6 i k )  denote the coordinate estimates of the i-th 
source obtained from a particular algorithm at the k-th run. 
Sample performance statistics were computed from K = 
500 independent trials as 

K 

{ (a i ,  - u , ) ~  + (6i, - ui)2} , i = 1,2 ,3 .  

(29) 
The bias of OD DFT Beamspace ESPRITfor  N ,  I 64 s n a p  
shots over the range of SNR's simulated was found to be 
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negligible. This facilitated comparison with the Cramer 
Rao Lower Bound (CRLB). The performance of 40 DFT 
Beamspace ESPRIT relative to 2D MUSIC was also com- 
pared. The CRLB and the theoretically predicted perfor- 
mance of &D MUSIC were computed according to formulas 
provided in [4] and are plotted in Figures l(a),  I(b),  and 
l(c) for sources 1, 2, and 3, respectively. Finally, for pur- 
poses of comparison, the relative performance of 2 0  Unitary 
ESPRIT [9] is included in the plots. &D Unitary ESPRITis 
a closed-form 2D angle estimation technique similar to 2 0  
DFT Beamspace ESPRIT but based in element space and 
thereby not lending itself to reduced dimension beamspace 
processing. 

Note that &D MUSIC essentially achieved the CRLB over 
the range of SNR’s simulated so that its theoretically pre- 
dicted RMSE curve is coincident with the CRLB curve. Of 
course, 2D MUSIC requires the localization of 3 peaks of a 
2D spectrum. In element space, determining the value of 
the 2D MUSICspectrum at a given point involves the calcu- 
lation of an inner product of the form a H ( p ,  v )P*a(p ,  v ) ,  
where P’ is 64 x 64. This kind of calculation has to be 
done repeatedly in performing a localized Newton-Raphson 
search around each spectral peak. 

The respective RMSE’s of LD Unitary ESPRIT and ZD 
DFT Beamspace ESPRIT for sources 1, 2, and 3 are plot- 
ted in Figures l(a),  l(b),  and l(c), respectively. For the 2D 
Unitary ESPRIT algorithm developed in [9], the computa- 
tions required for a single run were: (i) 64 additions per each 
of 64 snapshots to transform from complex-valued space to 
real-valued space, (ii) calculation of the 3 (‘largest” left sin- 
gular vectors of a 64 x 128 real-valued matrix, (iii) calcula- 
tion of the solution to two systems of equations of the form 
AX = B where A and B are both 64 x 3 and real-valued, 
and (iv) calculation of the eigenvalues of a 3 x 3 complex- 
valued matrix. The performance of 2 0  Unitary ESPRIT is 
observed to be very close to the CRLB for SNR’s greater 
than or equal to -6 dB, although it does not achieve the 
CRLB even a t  the rather high SNR level of 12 dB. (Keep 
in mind that there are 64 elements and that the SNR is 
that per element.) Observe that on a logarithmic scale, the 
small gap between the performance of 2 0  Unitary ESPRIT 
and the CRLB is fairly constant as a function of SNR for 
SNR’s above -6 dB. 

To demonstrate the efficacy of working in a reduced 
dimension beamspace, 2 0  D F T  Beamspace ESPRIT em- 
ployed a 3 x 3 set of 9 beams with mainlobes rectangularly 
spaced in the U-w plane and centered a t  (U, v )  = (0,O). In 
accordance with the summary of &D DFT Beamspace ES- 
PRIT at  the end of Section 4.0, the computations required 
for a single run were: (i) 9 sets of 64 multiplications and 
63 additions for each of 64 snapshots to transform from ele- 
ment space to beamspace, (ii) calculation of the 3 “largest” 
left singular vectors of a 9 x 128 real-valued matrix, (iii) 
calculation of the solution to two systems of equations of 
the form AX = B where A and B are both 6 x 3 and real- 
valued, and (iv) calculation of the eigenvalues of a 3 x 3 
complex-valued matrix. A scatter plot of the 3 eigenvalues 
obtained from 2 0  D F T  Beamspace ESPRIT for each of 200 
independent runs a t  an SNR of 3 dB is displayed in Figure 
4(d). For SNR’s greater than or equal to -6 dB, the per- 

formance of 2D DFT Beamspace ESPRIT is observed to be 
only slightly worse than that of 2 0  Unitary ESPRITdespite 
the dramatic reduction in computational complexity. 

The difference in performance between 2 0  Unitary ES- 
PRIT or 2D DFT Beamspace ESPRIT and the CRLB, and 
the fact that 20 MUSICachieves the CRLB for the range of 
SNR’s simulated, suggests a strategy wherein the 2D angle 
estimates provided by either algorithm are used as start- 
ing points for localized Newton searches of the 2 0  MUSIC 
spectrum to achieve uniformly minimum variance unbiased 
estimates (UMVUE’s). Note that the computational bur- 
den of performing these localized searches of the 2D MUSIC 
spectrum may be reduced substantially by operating in a 
reduced dimension, real-valued beamspace. 
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Figure 1: (a) RMSE for source 1 in simulation example. 

RMS Estimation Error for Source 2 at (u.v) = (118.0 
--e-. P DFT Beamspace ESPRIT -- Exp. (9 beams) 
--3(-- 20 Unitary ESPRIT -- Experimental 

20 MUSIC --Theoretical 
*.!. - CR Lower Bound 

' 
64 snapshots per run 
8 x 8 rectangular array, A ~ =  A ~ =  W2 
3 equi-power, uncorrelated sources 
500 trial runs per SNR 

- i o  -5 0 5 10 
SNR (dB) 

Figure 1: (b) RMSE for source 2 in simulation example. 
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Figure 1: (c) RMSE for source 3 in simulation example. 
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Figure 1: (d) Scatter plot of 2D DFT Beamspace ESPRIT 
eigenvalues. 
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