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Abstract 

The paper gives an automated procedure to design ratio- 
nal decimation compression systems that resample two- 
dimensional bandpass signals a t  their Nyquist rates. Our 
procedure takes a sketch of the desired bandpass shape 
in the frequency domain, circumscribes it with a paral- 
lelogram of  minimal area, and linearly maps the mini- 
mal enclosing parallelogram onto one period of the fre- 
quency domain. From the rataonal matrix that performs 
the linear mapping, we compute the parameters o f  the 
upsampler, filter, and downsampler an the compression 
system. The compression system only has linear com- 
ponents. 

1. Introduction 

Decimation systems are used to reduce the amount of 
data for applications in which the crucial data occu- 
pies a certain frequency band. Images, for example, 
are often oversampled, so most of the signal energy 
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Figure 1: A Fan Filter Frequency Response 

resides at low frequencies. If the high-frequency con- 
tent (edges, texture, etc.) is not important, then the 
image can be decimated to a lower spatial resolution. 
In video processing, two-dimensional decimators can 
be used to convert sequences of images from inter- 
laced to non-interlaced format. These decimators pre- 
serve the frequency content in a diamond-shaped (i.e., 
parallelogram-shaped) passband centered at  zero fre- 
quency. Seismic data is sampled in position and time 
[l]. Data falling on position-time lines having the same 
slope correspond to seismic waves having the same ve- 
locity since slope = = velocity. Fan filters are 
used to pass ranges of velocities [l, 21. If the range 
of passed velocities is small, the fan filters produce 
“narrowband” signals. When the narrowband spec- 
trum includes either frequency axis, the spectrum takes 
the shape of a periodically repeating parallelogram, as 
shown in Figure 1. 

The paper discusses the automation of the design 
of compression systems that resample 2-D bandpass 
signals at  their Nyquist rates. The compression sys- 
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Figure 2: Flow Graph of a Two-Dimensional Decimator 

tem consists of a cascade of a modulator, an upsam- 
pler, a filter, and a downsampler, as shown in Figure 
1 above. The compression system performs a rational 
resampling of the input signal in the sense that the over- 
all sampling rate is altered by a rational factor equal 
to I=/. That is, the sampling matrix of the input 
signal is mapped to the sampling matrix of the output 
signal by a matrix of rational numbers. 

This paper presents an automated design proce- 
dure which designs the compression system based on 
a sketch of the input frequency band to be preserved. 
Section 2 reviews recent results in the theory underly- 
ing 2-D rational decimation systems. Section 3 shows 
how to automate the design of 2-D rational decimation 
systems. Besides synthesizing various theoretical re- 
sults together, Section 3 introduces a new result in the 
field of computational geometry- finding a parallel- 
ogram with minimal area that circumscribes a convex 
polygon. Section 4 gives a design example using the our 
implementation in the Mathematica [3] symbolic math- 
ematics environment. The Mathematica implementa- 
tion is encoded in a set of signal processing packages 
by Evans, McClellan, and others [4, 51. Section 5 con- 
cludes the paper and discusses areas of future research. 

2. Background 

Rational decimation systems extract a connected por- 
tion of the input frequency spectrum (the passband) 
and resample it at a lower rate. To resample the de- 
sired passband at the Nyquist rate, the passband is first 
shifted in the frequency domain so that it is centered 
at  zero frequency and then mapped onto one period 
of the frequency domain while preventing aliasing and 
imaging effects. In this paper, we choose the period 
w1 E [ - x ,  H )  U w2 E [ - x ,  x ) ,  which is also known as 
the fundamental frequency tile. Recall that the fre- 
quency domain is periodic with period of 2 x  in each 
frequency variable. 

If the passband is a parallelogram centered at zero 
frequency whose coordinates are rational multiples of 
P, then the corners of the parallelogram can be mapped 
one-to-one with the corners of the fundamental fre- 

quency tile [6] .  The one-to-one mapping, which is car- 
ried out by a rational matrix, expands the interior of 
the parallelogram to fill the fundamental frequency tile. 
From the rational matrix, we can easily find the val- 
ues for upsampling matrix L and the downsampling 
matrix M and specifications on the shape of the pass- 
band for the filter h[n] [6]. In fact, the rational matrix 
can always be factored to find L and M that are rel- 
atively prime [7]. If L and M are relatively prime, 
then efficient polyphase implementations always exist 
for these rational decimator designs [8] .  The family 
of two-dimensional interpolated finite impulse response 
(IFIR) filters provides efficient realizations of the filter 
h[n] [9], and recently, a general design framework has 
been developed to design IFIR filters [lo]. 

3. An Automated Design Procedure 

The last section reviewed the theory to resample one 
family of bandpass signals at  its Nyquist rate. The 
spectrum of the bandpass signals must have the shape 
of a parallelogram whose vertex coordinates are ratio- 
nal multiples of x .  In this section, we derive a general 
procedure that can design rational decimation systems 
for the family of bandpass signals whose spectrum is a 
polygon, either concave or convex. 

In developing an automated procedure to design ra- 
tional decimators, we will find a procedure that takes 
a polygonal bandpass spectrum and finds the parallel- 
ogram with minimal areas that circumscribes the poly- 
gon and whose coordinates are rational multiples of H. 

The arbitrary passband shape will be represented as a 
polygon with N vertices. The 271. by 2 7  frequency do- 
main is divided into a grid of (2M+1) x (2M+1) points. 
An exhaustive grid search procedure to find the paral- 
lelogram would require O( M 6 N 2 )  operations. Evans 
and Sakarya have presented a heuristic procedure that 
requires 0 ( N 2 )  operations [7]. In this section, we de- 
rive a procedure that only requires 0 ( N )  operations 
and that is optimal if the vertices of the original polyg- 
onal bandpass spectrum are rational multiples of x .  
The latter condition is satisfied if a designer sketches a 
bandpass shape using a mouse because the polygonal 
vertices selected will be on a frequency grid. 

We first find the convex hull of the input polygon, 
e.g. by using the Graham Scan method [11]. Next, we 
find the parallelogram of minimal area that contains 
convex hull (polygon). At the heart of finding the min- 
imal enclosing parallelogram is our proof given in [12] 
that 

(1) two adjacent sides of the minimal enclosing paral- 
lelogram overlap with two of the edges of convex 
polygon, and 
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(2) the other two adjacent sides of the minimal en- 
closing parallelogram intersect the convex poly- 
gon at two of the convex polygon vertices. 

Conversely, of the two parallel sides of a candidate par- 
allelogram, one side will intersect the convex polygon 
at  an edge, and the other side at a vertex. A pair of two 
parallel sides of different slopes forms a parallelogram. 

This observation suggests a simple algorithm that 
pairs together all possible edgevertex pairs of the con- 
vex polygon, so there are ( N - 2 ) + ( N - 3 ) + ( N - 4 ) + .  . . 
or c3 ( N 2 )  combinations. This approach, though opti- 
mal, is quadratic in the number of polygon vertices N 
and unnecessarily considers many parallelograms. We 
can trim the parallelogram candidates based on an or- 
dering relationship to produce an algorithm that is lin- 
ear in N .  

The formal description of the linear algorithm de- 
pends on the following definitions. Let e and v be an 
edge and a vertex of the convex polygon C. Let I ,  be 
the supporting line of e, and let I ,  be the line though 
v that is parallel to  1,. The supporting line of a line 
segment e is the line containing e, and the supporting 
line of a convex polygon C is a tangent of C. The pair 
(e, U) is called an antipodal pair  of C if I ,  and and I ,  
support C .  Using this terminology, we have proven in 
[12] that there is a parallelogram Pc such that for both 
of its axes 11 and 1 2 ,  the intersection with C consists 
of an antipodal pair. The algorithm also relies on a 
projection operator Pl(f) which projects of f  (an edge 
or vertex) onto the plane orthogonal to line 1. 

The linear algorithm is described to the right in 
Figure 3. A C++ implementation is given in the Ap- 
pendix of [12], and the next section gives an example 
of interaction with the Mathematica implementation. 

4. Design Example 

Our Mathematica implementation of the automated 
design procedure is a combination of using the note- 
book interface to sketch the desired bandpass spec- 
trum as a polygon and our DesignDecimationSystem 
routine that designs the decimation system from the 
polygon. The routine takes one argument that is ei- 
ther a polygon or a resampling matrix. Given a resam- 
pling matrix, the routine factors the resampling matrix 
into the up/downsampling matrices L and M .  Given 
a polygon, the routine performs all of the steps in the 
procedure. The routine supports an option Mod which 
sets an upper limit on the denominator of the coordi- 
nates of the parallelogram computed in step 2 of the 
procedure. The rest of this section discusses the design 
of a two-dimensional decimator for a circular passband 
using our Mathematica implementation. 

~~ ~~ 

Initialization: We compute a list L = L1, . . . , LN of all 
anti-podal pairs of C such that they are stored in clock- 
wise order of their edges, each of which has a pointer to  
its anti-podal vertex. When there are parallel edges in 
C, then there are two adjacent anti-podal vertices and 
we will refer to  the first one in the clockwise ordering. 

Iteration: We move two edge pointers z1 and z2 clock- 
wise around C. Each configuration of z1 and z2 rep- 
resents a pair of anti-podal pairs, and the area of the 
corresponding enclosing parallelogram is computed. At 
each iteration, we move z1 one vertex around the poly- 
gon and then move 22 forward, so z2 is always ahead 
of +I by 1 to N - 1 vertices. We start by setting 
zl = z2 = 1 and then repeat the following steps: 

If z1 = 22, then advance z2 by one. Let e be the 
edge in C pointed to by 22, let v be its anti-podal 
vertex, and let I be the supporting line of the edge 
pointed to by z1. Then, the projection 4 ( v )  is 
a real number and q ( e )  is an interval in R. As 
long as Pl(v) < P,(e), i.e., the P,(v) is smaller 
than the lower boundary of Pl(e), advance the 
pointer z2. 

If S ( v )  E Pl(e), the compute the correspond- 
ing parallelogram and keep track of the minimum 
computed so far. In the special case that that 
Pl(v) intersects the lower boundary of Pl(e), ad- 
vance z2 to the successor of e, say e’,  and do the 
same computation for the pair (e’, v). 

If z1 < N ,  then advance z1 by one and go to step 
1; otherwise, stop. 

Figure 3: Linear-Time Algorithm to Find the Minimal 
Enclosing Parallelogram of a Convex Polygon [12] 

We ran the design procedure on a circular passband 
of radius 1. We approximated the circle with a twenty- 
sided polygon whose vertices were given by a simple 
Mathematica formula. The design procedure reported 
a packing efficiency of 79.2% and an 8-to-1 compression 
ratio. The best packing efficiency, 86.6%, is obtained 
by circumscribing the passband with a regular hexagon 
[l]. For non-linear compression, the theoretical upper 
limit on the compression ratio is 47r, which is approxi- 
mately 12.5-to-1. 

5. CONCLUSION 

In some image, video, seismic applications, only a por- 
tion of the frequency content of the signals is impor- 
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tant. This paper gives an automated procedure to de- 
sign the 2-D compression system shown in Figure l to 
resample a desired bandpass signal at its Nyquist rate. 
This approach is based on the knowledge of where the 
important bandpass region resides in the frequency do- 
main. The procedure circumscribes the desired band- 
pass spectrum with a parallelogram of minimal area 
and maximally decimates the parallelogram by com- 
puting 

1.  

2. 

3. 

4. 

5. 

the convex hull of the desired bandpass spectrum, 

the parallelogram whose coordinates are rational 
multiples of T, whose extent circumscribes the 
passband, and whose area is minimal, 

the vector necessary to  shift the center of the par- 
allelogram to the origin (baseband) which is equal 
to the modulation parameter no, 

the rational matrix H that maps the paral leb 
gram onto the fundamental frequency tile, and 

the integer matrix factors L and A4 of the rational 
matrix H such that H = L - l M .  

We have implemented the procedure in the version 
3.0 of the Signal Processing Packages and Notebooks 
[4, 51 for the computer algebra system Mathematica. 
Our implementation allows the designer to specify the 
desired bandpass spectrum either graphically by using 
a mouse or manually by calculating the vertices of the 
polygon. Our implementation, however, does not de- 
sign the two-dimensional filter. An earlier version of 
our implementation is in version 2.9.5 of the Signal Pro- 
cessing Packages which is available by anonymous FTP 
to gauss. eedsp.gatech. edu (IP #130.207.226.24) in 
the directory pub/Mathematica. 

There are three immediate areas of future research. 
One area is to include the design of the filter in the au- 
tomated procedure, e.g., by adapting the procedures in 
[lo]. A second area is to develop the theory for ratio- 
nal decimation systems based on a hexagonal bandpass 
spectrum since it would decimate circularly bandlim- 
ited signals more efficiently [l]. The issue of circum- 
scribing a convex polygon bu a hexagon of minimal area 
is also an open research problem. A third area of future 
research is to extend this procedure to multiple chan- 
nels to design perfectly reconstructing two-dimensional 
filter banks [13, 141 based on tiling the frequency do- 
main into different convex polygon shapes. 
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poly - 
Polygon [ 
N[ Tabla[ { Com[tbmtal, Sin[thetal 1, 

{ theta, Pi/lO, 2 Pi, Pi/lO 1 I I 
1; 

Show [ Qraphicm[ { RGBColor[l,1/2,0], poly ) I ,  
AmpectRatio -> 1, h e m  -> True, 
rr- ->  rue, 

PlotRange -> {{-Pi, Pi), { - P i ,  Pi)) I 
rraumTickm -> { piTickm, piTickm ), 

{ mhiftveator, upWtrix, domMatrir } - 
DemignDecimationSymtmm[ 
poly, Dirlop -> All, Mod -> 10 1 

B e s t  packing  e f f i c i e n c y  w i t h  r o t a t e d  r e c t a n g l e  

havinq  r e a l - v a l u e d  c o o r d i n a t e s :  79.2% 

X 
-7T 

0 
-Graphics- 

Actua l  packing  e f f i c i e n c y :  6 2 . 6 %  

(out of a b e s t  p o s s i b l e  79.28)  

This example finds the 2-D rational decimation 
system to resample a circular passband (with ra- 
dius 1) near its Nyquist rate. The circular p a s s  
band is approximated by a twenty-sided regular 
polygon whose vertices are generated by a formula. 
The packing efficiency of 79.2% is with respect to 
the polygon and not the circular passband itself. 
The rational decimator design achieves an 8-to- 
1 compression ratio (IdetMI/Idet LI = 8). The 
theoretical upper limit on the compression ratio is 
the ratio of the area of the fundamental frequency 
tile ( 4 ~ ' )  to the area of the twenty-sided polygon 
(approximately x ,  the area of the circle) which is 
approximately 12.5-to-1. 

Figure 4: Automatic Design of a Decimator for 
Circularly Bandlimited Signals 
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