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Abstract 

We present a new approach to the modeling of 
non-Gaussian complez random signals. The method 
transforms an underlying complez white gaussian se- 
quence, whose magnitude as shaped by a Zero Mem- 
o r y  Non-Linear (ZMNL) transformation. In this way, 
we match the magnitude pdfi and the power spectral 
density of the non-gaussian output. The ZMNL tech- 
nique has the additional benefits of synthesizing com- 
plez, positive, or n u l  valued signals by keeping only 
portions of the complez signal. This provides a quick 
simulation capability. The jpdf of a multivariate sam- 
ple i s  easily computed from our model. We use this to 
form a likelihood detector for the pnaence of our non- 
gaussian versus a white gaussian signal. The dramatic 
improvement of the likelihood detector compared with 
a gaussian based quadratic detector is presented. 

1 Introduction 

There has been much discussion in the literature re- 
cently regarding the non-Gaussian behavior of certain 
physical processes. These include acoustic wave prop 
agation in a random ocean and clutter returns in high 
resolution radars aa discussed in Ewart [l] and Ward 
et al [2] respectively. This demonstrates a need for a 
model that incorporates non-Gaussian statistics and 
which can be used in signal processing. Further, these 
processes are often bandpass and modeled as complex, 
requiring a modeling approach that can handle com- 
plex seqeunces. 

We present a new method for the modeling of non- 
Gaussian complex random signals. The method is 
based on an underlying complex gauseian sequence, 
whose magnitude is shaped by a Zero Memory Non- 
Linear (ZMNL) transformation. In this way, we match 
the magnitude pdf, and the power spectral density of 
the non-gaussian process. The ZMNL technique has 
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the additional benefits of synthesizing complex, posi- 
tive, or real valued signals by keeping only portions of 
the complex signal. This provides a quick simulation 
capability. The approach is an extension of Liu and 
Munson [4] from real to complex real signals. 

The jpdf of a multivariate sample can be easily com- 
puted for our model. We use this to form a likelihood 
detector for the presence of our non-gaussian versus 
a white gaussian signal. The dramatic improvement 
of the likelihood detector compared with a gaussian 
based quadratic detector is presented. 

2 Modeling 

The specification of a covariance matrix, mean vec- 
tor, and marginal distribution does not uniquely char- 
acterize a non-Gaussian sequence. Yet, in many situ- 
ations this is the only information available. In prac- 
tice, only these quantities can be accurately estimated 
since estimates of the higher order moments suffer 
from high sampling variances. Even if they are avail- 
able, incorporating them into a modeling scheme is 
problematic. That is, we seek jpdfs not simply mo- 
ments. 

The tradeoffs among modeling candidates become 
issues of usability. The model presented in this sec- 
tion has the advantages of simplicity and generality, 
but, more importantly in this discussion, is the ability 
to compute the jpdf of a multivariate sample. This 
benefit, allows one to incorporate the model in signal 
processing architectures, such as the one developed in 
the next section. 

The idea is to generate a non-Gaussian sequence as 
a distorted version of a correlated complex Gaussian 
sequence. The distortion, which is restricted to a Zero 
Memory Non-Linearity (ZMNL), acts only to shape 
the envelope of the complex Gaussian process. This 
provides the capability to incorporate into the model 
any prescribed marginal amplitude distribution. 
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A block diagram outline the model is seen in fig- 
ure 1. We begin with a complex iid N ( 0 , l )  N x 1 
sequence, 5. The complex Gaussian sequence, 9, is 
obtained from applying the filter H, 5 = H f ,  80 that 
the resulting correlation off  is Cy = HtH. Here, H t  
is the coqjugate transpose of H. The mean of j ;  is aero 
and has variance u2. 

For a given covariance matrix, Cy, the filter H is 
obtained using an appropriate factorization algorithm. 
We use the C h o l d y  decomposition because it is com- 
putated efficiently and it providea a lower triangular 
matrix which results in a c a d  filter. 

We write the complex Gaussian sequence, 9,  in po- 
lar coordinates such that f = Tde. The marginal 
distribution of T is Rayleigh and the marginal dit+ 
tribution of 8 is uniform. A sample of the resulting 
non-Gaussian sequence is written as 

&den = gn(T,)dea. 

Here, the ZMNL, on(.), is applied to the amplitude 
and is obtained by solving 

where FR,(.) is the desired marginal distribution 
function for the nrh value in the sequence R and 
FT,(-) is the Rayleigh diatribution function. The 
derivation of this function is easily understood if we 
view it in two stages. First, it transforms the Rayleigh 
variates to uniform variates using the Rayleigh dik 
tribution function. Secondly, these uniform variates 
are transformed to variates of the desired distribution 
through its inverse distribution function. 

The multivariate distribution for the non-Gaussian 
sequence, Z, is derived by applying the transforma- 
tions to the multivariate Gaussian distribution of 9.  
The result of doing this yields 

where 

Rk = I%tl, and 6 k  = angle(rr). 
One crucial point that we must address is the 

covariance of the resulting non-Gaussian sequence. 
Clearly, because of the ZMNL transformation, the CD. 

variance of 5 will not be the same as the covariance of 
f ,  Cy. To compensate for this, the effective change in 

i = @rl(Rl)del  gal(&)doa ... g i l ( R ~ ) e j e N ] T ,  

H 

Figure 1: The ZMNL Envelope Mapping Model 

correlation caused by the ZMNL must be computed 
and accounted for. This is accomplished by creating a 
mapping from the Correlation of the complex Gaussian 
sequence, 9,  to the correlation of the non-Gaussian se 
quence, i. We define Pe.6 to be the correlation coeffi- 
cient of two complex Gaussian points in the sequence 
9. The covariance between two points in the the 8e- 
quence 5 is computed from 

where, 

I1 ( pTnTm ). 
a4(i - p 2 )  

This equation is computed for a number of correlation 
coefficient values of the complex Gaussian sequence, 
j ; ,  to obtain a map, pe19 -+< inEh >. This map is 
then inverted to find the proper correlation coefficient 
value needed in the Gaussian sequence to obtain the 
desired covariance value in the non-Gaussian sequence. 
It is important to note that the phase correlation is 
not affected by the transformation because the term 
d6 appears outside the integrand, independent of T, 
so we simply need to map the amplitude correlation, 

Became equation (3) must be computed several 
times, simplifying the integral will greatly improve 

p + I < ZnZh > 1. 
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performance. Reed [3] decompoeee the integral into 
a series of Laguerre polynomials. Replacing Tn with 
a&, Tm with a f i ,  and p2 with t the above eque  
tion is 

(4) 
With the use of the Hardy-Hill identity 

where L r ) ( u )  is the generalized Laguerre polynomial 
of order a defined by 

dk (e-uuk+u 1 (Q) Lk (U)= -- E !  duk 

equation ( 4 )  becomes 

Lastly, we substitute back in for p to obtain 

where c r )  and cr )  are the integral coefficients 

For the special case of a power law trapsformation, 
gl(T) = Tu and g2(T) = Tu Reed provides a further 
simplification yielding 

P 

Figure 2: Covariance Maps For 3 Different Marginal 
Distributions 

where 2Fl(a, b; c; z )  is the Gaussian hypergeometric 
function 

Computing the integral in ( 3 )  is also poasible using 
strictly numerical integration. The integrand is gen- 
erally a smooth function and is evaluated efficiently 
using the trapezoidal rule. Furthermore, if it is as- 
sumed that g l ( T )  = g4T) the integrand is symmet- 
ric about TI = T2 reducing the computation in half. 
To get a rough idea of the computational complex- 
ity, on a SPARC 10 evaluating the integral 20 times 
took roughly 3 / 4  of a second. Examples of what these 
mappings look like are seen in figure 2. 

A sequence was generated using this model. The 
real portion of this sequence is seen in figure 3 before 
and after the ZMNL transformation is applied (i.e. 
the Re{?}  and the Re{ii} respectively). The marginal 
amplitude distribution for this non-Gaussian sequence 
is Weibull, which has pdf 

fR(~) = ba- 'R' - le - (R/a)b ,  

and the correlation is exponential with a correlation 
length of 20. The distribution parameters are a = 
0.6351, and b = 0.9. What is evident in this figure 
is that the ZMNL acts to accentuate the large values 
and suppress the smaller ones, producing a sequence 
with a spikey appearance, which is characteristic of 
heavy-tailed non-Gaussian sequences. 
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3 Detection 

Our modeling scheme presented in the previous sec- 
tion contains a multivariate distribution (2) which we 
incorporate into a detection problem. We consider the 
scenario in which we have two alternative hypothesis, 
Ho and H i ,  

where 5, is our received vector at time n, i i n  is a com- 
plex uncorrelated Gaussian vector, and 5, is a com- 
plex correlated non-Gaussian vector with each vector 
having dimension N. Each hypothesis is equally likely 
providing the following likelihood ratio 

fz(zrIH1) i 1 
f!Z(ZkIHO) 

We are basing our test on a single observation of length 
N .  We tested two different detectors. The first uses 
our model as the non-Gaussian pdf for f z (rkIHl) ,  
while the second usea the multivariate Gaussian pdf 
for fz(rkIH1), which reduces to a quadratic detector. 

This comparison provides insight as to how a Gaus- 
sian detector fails when the statistics are markedly 
non-Gaussian. In both detection schemes fi;(zklHo) 
is the uncorrelated multivariate Gaussian pdf. 

Under H I  the received sequence has an exponential 
correlation and a generalized gamma marginal ampli- 

where R, = l5nl. The parameters selected were a = 
0.3094, b = 1.003, k = 2.283, which yield a variance of 
1. The SNR, defined as 

is fixed at 0 dB (i.e. the variance of the white noise 
is fixed at 1). To obtain error probabilities 50000 in- 
dependent trials were run under each hypothesis for 
the two detector types. The non-Gaussian data was 
generated using the transformation model. Figure 4 
shows the results. As is evident from the curve, as 
we increase the dimensionality of our received vec- 
tor the non-Gaussian detector improves dramatically 
while the performance of the Gaussian detector re- 
mains poor. As one would expect, there is an increase 
in the distance between the non-Gaussian distribution 
and the white Gaussian distribution as the dimension- 
ality is increased. 

Further simulations were carried out where the tail 
behavior of the marginal distribution was adjusted. 
From (5) it is clear that the exponential term is go- 
ing to dominate the behavior of the distribution for 
large values of R, thus, we control the tail behavior 
by varying the parameter b. k is fixed at 1, and a is se- 
lected so that the variance remains constant at 1. The 
white Gaussian sequence, i i k ,  is also selected to have 
a variance of 1 yielding a S N R  = 0 dB. Some special 
cases are b = 2 which is the Rayleigh case (Gaussian 
statistics) and b = 1 which is the exponential case. 
Figure 5 shows the performance of the two detectors 
as we vary b.  As expected, the two have similar per- 
formance at b % 2 because we have not deviated much 
from Gaussian statistics. However, for smaller values 
of b the performance of the non-Gaussian detector is 
clearly superior. 

4 Conclusion 

We have presented a model of a complex non- 
Gaussian sequence which allows us to incorporate both 
a preecribed marginal amplitude distribution and co- 
variance. The method models the non-Gaussian se 
quence as a Zero Memory Non-Linear (ZMNL) trans- 
formation of the envelope of a complex Gaussian 
distribution. With the appropriate selection of the 
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ZMNL the model is able to match any amplitude dis- 
tribution. A particular covariance is matched by cor- 
relating the complex Gaussian sequence and account- 
ing for any perturbation caused by the ZMNL. 

This model provides an efficient method to gener- 
ate complex, positive, and real valued non-Gaussian 
seqeuncea. Further, the jpdf of a multivariate sample 
can be computed from the model. Using this, we have 
shown that incorporating non-Gaussian statistics in a 
detection problem greatly improves the performance 
when the statistics are non-Gaussian. As expected, 
our results show that including non-Gaussian statistics 
becomes increasingly important the more the marginal 
distribution deviates from Rayleigh (Gaussian) distri- 
bution. 

Acknowledgements 

This work wm eupported by the Office of Naval Re- 
search under contract N00014-92-1253 and N00014- 
94-1-0084. 

References 

[l] T. E. Ewart. A model of the intensity probabil- 
ity distribution for wave propagation in random 
media. J .  Aconsi. Soc. Am., 86(4), 1989. 

[2] K. D. Ward, C. J. Baker and S. Watts. Maritime 
surveillance radar Part 1: Radar scattering from 
the ocean surface. IEE Proceedings F, 137(2):51- 
62, April 1990. 

[3] I. S. Reed. On the use of Laguerre polynomials 
in treating the envelope and phase components 
of narrow-band Gaussian noise. IRE Ilfulns. on 
lnfownaiion Theory, pages 102-105, September 
1959. 

[4] B.D. Liu and D.C. Munson, “Generation of a ran- 
dom sequence having a jointly specified marginal 
distribution and autocovariance function,” IEEE 
ASSP-6, 1982, pp. 973-983. 

Figure 5: Performance versus tail behavior of G- 
Gamma Distribution 

287 


