
Dynamic Fault Visualization Tool for Fault-based Testing and Prioritization

Patrick Daniel
Faculty of Engineering, Computing and Science

Swinburne University of Technology
Kuching, Sarawak, Malaysia

pdaniel_koe@yahoo.com

Kwan Yong Sim
Faculty of Engineering, Computing and Science

Swinburne University of Technology
Kuching, Sarawak, Malaysia

ksim@swinburne.edu.my

Abstract—Fault-based testing has been proven to be a cost
effective testing technique for software logics and rules
expressed in Boolean expressions. It can guarantee the
elimination of common faults without exhaustive testing.
However, average software testing practitioners may not have
in-depth knowledge on Boolean algebra and complex logic
derivations required to apply existing fault-based testing
techniques. In this paper, a dynamic fault visualization tool has
been proposed. This tool allows its user to visualize fault-based
testing and prioritize test inputs with a simple greedy method.
The performance evaluation of this tool has been done on
Boolean expressions extracted from a real life aviation tool.
The results show that it can achieve significant performance
improvements compared to ordinary sequential order test
execution and existing static technique. The proposed
visualization tool could also identify possible faults to guide the
debugging process.

Keywords-component; Software Testing, Fault-based
Testing, Fault Visualization.

I. INTRODUCTION
Software testing and debugging contribute up to 50% to

75% of the software development cost [1], making it the
most expensive activities in the software development life-
cycle. A software system with m input variables, each having
n values, will have mn possible inputs for testing. Hence, it is
prohibitively expensive, if not impossible, to exhaustively
test a software system for all its possible inputs. This
problem is further amplified for software systems that
require long computation time to run each test inputs or if the
execution process requires user interactions that cannot be
automated to run a large number of test inputs.

In recent years, fault-based testing [2][3][4] have
emerged as an innovative approach to minimize the cost and
time in testing software system. Fault-based testing
techniques guarantee the detection of common types of faults
committed by programmers by selecting only a small test
suite (that is, a small set of test inputs) that target the
detection these common faults. If software under test does
not fail when tested with this small test suite, then it can be
guaranteed that the software system is free from these
common fault types. Fault-based testing has been proven to
be particularly effective in testing software systems in which
logics and rules are either specified or can be modeled into
Boolean expressions [5].

Existing studies on fault-based testing for Boolean
expressions have been focusing on the reduction of test suite
size [2][5], automated generation of test cases [3][7][9] and
the relationships among common fault-classes
[4][8][10][11]. Even though these fault-based testing
techniques are highly effective, they require knowledge on
complex logic derivations and in-depth knowledge on
Boolean algebra. Unfortunately, not all software testing
practitioners have the required skills, hence, limits the
applicability of these fault-based testing techniques.

In view of this problem, a new dynamic fault
visualization technique and tool are proposed in this paper
for fault-based testing of Boolean expressions. A colour
image will be used to help software testers visualize and
select the best test input to run in order to detect the most
number of common faults. If no fault is detected by the
selected test input, it implies that the software under test is
free from the common faults detectable by this test input.
The colour image is then updated to allow the testers to
visualize and select the next best test input to detect the
remaining common faults. This way, test inputs are
prioritized according to their fault detection capability.
Unlike existing techniques, this visual based technique and
tool is simple and accessible to more software testing
practitioners because it does not require complex logic
derivations and in-depth knowledge of Boolean algebra.

In order to evaluate the performance of the proposed
technique and tool developed, the aircraft Traffic Collision
Avoidance System II (TCASII) [5] has been used as the
subject program for testing. The experiment results show that
the proposed interactive fault visualization technique and
tool yield significant improvements in fault detection
efficiency. Furthermore, the tool could also identify the
possible faults occurred. This can be used to guide the
debugging (fault localization) process.

The rest of this is organized as follows: Section II
outlines the terminologies used in this paper, types of faults
and the subject program used for testing. Section III
describes the fault-based testing and prioritization strategy.
Section IV introduces the proposed tool, dynamic fault
visualization tool. Section V evaluates and compares the
performance of the proposed dynamic fault visualization
tool. Section VI discusses the findings and concludes this
paper.

2012 International Conference on Advanced Computer Science Applications and Technologies

978-0-7695-4959-0/13 $25.00 © 2013 IEEE

DOI 10.1109/ACSAT.2012.55

301

II. PRELIMINARIES
This section will outline the terminologies and notations

used in Boolean expressions, types of common faults and the
Boolean specifications of the subject program for testing,
TCASII.

A. Terminologies and Notations
The Boolean operators and the truth values used in this

paper are defined in TABLE I.

TABLE I. BOOLEAN OPERATOR AND TRUTH VALUES

AND •

OR +

NOT ̅
TRUE 1

FALSE 0
The set of truth values are denote by B = {0, 1} and Bn

denotes n-dimensional Boolean space. A variable in
Boolean expression can be a positive literal or a negative
literal. A positive literal denotes by original variable and a
negative literal denotes by a bar " �" at the top of original
variable. For example, given Boolean expression ��� + ��, b
occurs as a negative literal in the first term and positive
literal in second term.

A Boolean expression in disjunctive normal form is said
to be irredundant, if none of its terms can be omitted from
the expression, and none of its literals may be omitted from
any term in the expression without changing its meaning
[12]. For instance, Boolean expression � + � is the
irredundant disjunctive normal form of Boolean expression
��� + �.

Let S denotes a program specification written in a
Boolean expression in disjunctive normal form with m terms,
 � = 	
 + ⋯ + 	�
 	
 = �

 … ���

where 	
 (� = 1, 2, 3 … , �) is the i-th term in S. and
��
(� = 1, 2, 3 … , �
) denotes the j-th variable in term 	

which has �
 variable. For example, if � = ��� + ��, then
	
 = ��� where �

 = � , ��
 = �� and 	� = �� where �
� = �
, ��� = �.

B. Types of Faults
In the process of implementing logics and rules

represented by Boolean expressions in software requirement
specifications into program codes, programmers could
commit errors such as incorrect control predicates, omitted
or additional conditions and paths as well as incorrect
operators or operands. These errors result in omission,
insertion or incorrect reference of Boolean operands or
operators in Boolean specifications expressed in DNF form.
Faults committed by programmers are commonly
categorized into seven types in previous studies on Fault-
based testing for Boolean expressions [2][4][8][9]. These
common fault types are listed below.

1) LIF – Literal Insertion Fault
An insertion of single variable which exists in whole
expression but does not exist in the tern it is inserted.
For example:
Original Expression : �� + �� + �
After Literal Insertion : ��� + �� + �

2) LNF – Literal Negation Fault
A modification of single variable from its original
state to negation. For example:
Original Expression : �� + �� + �
After Literal Negation : �� + �� + �

3) LOF – Literal Omission Fault
A variable is removed from its term. For example:
Original Expression : �� + �� + �
After Literal Omission : � + �� + �

4) LRF – Literal Reference Fault
A variable is replaced by another variable which
exists in the whole expression but not in the term
where literal replacement occurs. For example:
Original Expression : �� + �� + �
After literal reference fault : �� + �� + �

5) ORF – Operator Reference Fault
A switch of operator from ‘AND’ to ‘OR’, and vice
versa. For example:
‘AND’ → ‘OR’
Original Expression : �� + �� + �
After Operator Switch : � + � + �� + �
‘OR’ → ‘AND’
Original Expression : �� + �� + �
After Operator Switch : ���� + �

6) TNF – Term Negation Fault
A conversion of original terms to its negation. De
Morgan’s Laws apply on this fault, where �� = � +
 �. For Example:
Original Expression : �� + �� + �
After Term Negation : � + � + �� + �

7) TOF – Term Omission Fault
A term is removed from the whole expression. For
example:
Original Expression : �� + �� + �
After Term Omission : �� + �

C. Subject Program for Testing and Mutation
The subject program for testing in this study is TCASII

program (Traffic Collision Avoidance System II). TCASII is
a real life aircraft collision avoidance system that is used to
reduce the risk of mid-air collision between aircrafts. Logic
and rules in the TCASII system are specified by 20 Boolean
expressions, each having a different number of variables.

302

Figure 1. (on the last page of this paper) shows the original
Boolean expression in general form extracted from TCASII.
A mutation approach [3] is used to insert one fault at a time
into Irredundant Disjunctive Normal Form of these Boolean
expressions.

III. FAULT-BASED TEST INPUT SELECTION AND
PRIORITIZATION STRATEGIES

Fault-based testing techniques select a small set of test
inputs to guarantee the detection of common faults
identified. However, the fault detection capability of the test
inputs selected may vary from one to the other. With the time
and cost constraints in testing process, it is desirable to run
test input that can detect more fault first to maximize the
chance to detect fault as early as possible. Figure 2.
illustrates the advantage of prioritization.

Let 000 , 001 , 010 , … , 111 represent
the a test inputs, 1 , 2 , 3 , … , 10 represent
the common faults identified, and X indicates the
capability of a test input to detect the fault. Let 000 {1, 8}
denotes test inputs 000 is capable to detect fault ‘1’ and
‘8’.

Let O denotes a sequence of test inputs to detect all
faults, ti denotes test input i, and ��
 denotes fault j can be
detected by test input i. Let F denotes the sequence of faults
detected by executed O.
 � = 	
, 	�, 	�, … , 	

 	�
 = �

, ��
, ��
, … , ��

 From Figure 2. , without prioritization, a Sequential
Order, where the first test input is executed first followed by
the second and subsequent test inputs, will require the first
six test inputs to be executed to detect all 10 faults as
required in fault-based testing.
 � = {000, 001, 010, 011, 100, 101}
 � = {(1, 8), (2, 9), (3, 4, 5, 6), (7), (), (10)}

In sequence O, it can be observed that in Figure 2. , test
input ‘100’ is redundant because the faults detectable by this
test inputs have been detected by test inputs executed earlier
in the sequence. Therefore, executing test input ‘100’ in
Sequential Order is a waste of testing time and cost.

On the other hand, by using a simple greedy method to
prioritize test inputs execution, the goal of detecting more
faults as early as possible in the testing process could be
achieved. In the greedy method, the test inputs that are able
to detect the most number of faults were selected. Once this
test input has been executed on the software under test
without causing any failure, the faults (columns in Figure 2.)
detectable by this test input can be removed from the table.
The test input that can detect the most number of remaining
faults is then selected as the next test input.By applying this
greedy method on the test inputs in Figure 2. , the following
test sequence can be obtained which only requires three test
inputs to be executed to detect all possible faults in fault
based testing.
 � = {010, 111, 011}
 � = {(2, 3, 4, 5, 6), (1, 8, 9, 10), (7)}

Figure 3. shows how these faults are eliminated (shaded
in grey) after each test input in this sequence executed on the
software under test.

Figure 2. Fault Detection Capabilities of Test Inputs.

Figure 3. Elimination of Faults Using Prioritized of Test Inputs.

 First, test input 010 was selected to be executed because
it is able to detect the most number of faults (five faults).
Then, test input ‘111’ is selected because it is able to detect
the most number of remaining faults. Lastly, either test
input ‘011’ or ‘101’ can be selected for execution as they
can detect the same number of faults which is fault 7.

From the above examples, it can be observed that the
Sequential Order requires six out of eight test inputs to be
executed (75% of all test inputs) while the greedy method
prioritization only requires three out of eight test inputs
(37.5% of all test inputs). This reduction can significantly
reduce the time and cost in testing.

As it is desirable to detect more common faults as early
as possible in the testing process, the Average Percentage of
Fault Detected (APFD) [13] has been used to measure the
rates (how fast) both Sequential Order and the greedy
method prioritization discover all faults. Let
 ��� = total number of fault discovered in � sequence
 ��� = total number of fault test cases
 !#�$ = %&'*%&-*%&.*⋯*%&/

� × %%& × 100%
Based on the above formula, the APFD for Sequential

Order and greedy method prioritization can be calculated as
below. The higher the APDF value, the faster is the rate at
which the sequences of test inputs are detecting faults.

Test
Inputs

Faults

1 2 3 4 5 6 7 8 9 10

000 X X

001 X X

010 X X X X X

011 X X X

100 X X X

101 X X

110

111 X X X X

303

APFD for Sequential Order:
!#�$ = �*;*<*>*>*
?*
?*
?

< ×
? × 100%
!#�$ = 77.5%

APFD for greedy method prioritization:
!#�$ = A*>*
?*
?*
?*
?*
?*
?

< ×
? × 100%
!#�$ = 92.5%
From the APFDs, it is evident that the greedy method

prioritization detects faults at significantly higher rate
compared to the sequential method.

IV. DYNAMIC FAULT VISUALIZATION TOOL
The Dynamic Fault Visualization Tool has been

developed to assist software testing practitioners to select
and prioritize test inputs for execution using the greedy
method described in Section III. With this Dynamic Fault
Visualization Tool, software testing practitioners can
visually identify the best test input, one that can detect the
most number of remaining faults dynamically. To use this
tool, firstly, the tool user needs to provide the Boolean
expression to be tested. The tool user is able to select types
of common faults they would like to detect. After that, the
tool will automatically generate all possible the faults based
on the fault types using mutation technique. Finally, the tool
will generate a grayscale colour images to represent the
number of faults each test input can detect). The UML
Interaction Diagram of the Dynamic Fault Visualization Tool
is shown in Figure 4.

Figure 4. Elimination of Faults Using Prioritized of Test Inputs.

Figure 5. Screenshots of the Dynamic Fault Visualization Tool.

Figure 5. shows the screenshot of the Dynamic Fault
Visualization Tool that have been developed. The tool user is

able to select which test input to be executed by clicking the
boxes that represent test inputs on a grayscale colour image.

In Figure 5. , each row of boxes represents all possible
test inputs. The numbers at the end of the row indicate the
test input execution sequence as well as the number of test
inputs that have been executed. Each box on the row is
shaded based on a greyscale colour value which is calculated
with the following formula.

�� BCDCE = 255 − F �� GC C� HI	��	
J�Kℎ�M	 �I���E C� HI	��	 × 255 N

In this 8-bit greyscale colour scheme, 255 is the highest
value which is white in colour, while 0 is the lowest value
which is black in colour. Darker boxes on the row represent
test inputs that can detect more faults while brighter boxes
represent test inputs that can detect fewer faults. Executed
test inputs are marked as red boxes. This grayscale image is
updated dynamically after each test input is executed.

When all the boxes on the lowest row are white in colour,
it means that all the faults have been covered by the executed
test inputs.

As shown in Figure 5. , the fault list at the bottom of the
visualization tool indicates the faults that can be detected by
the currently selected test input. If execution of this test input
causes a failure in the software under test, then it implies that
the software under test contain one of the faults listed. This
information can be used to locate the fault in the debugging
process.

V. PERFORMANCE EVALUATION
To evaluate the performance of the Dynamic Fault

Visualization Tool, the test has been performed on the 20
Boolean expressions extracted from TCASII shown in Figure
1. The “percentage of test inputs used to detect all faults”
and APFD have been used as the performance metrics to
evaluate the performance of greedy method prioritization
implemented in this Dynamic Fault Visualization Tool. The
performance Sequential Order and the Static Fault Density
Visualization technique proposed in previous study [14] have
been presented in TABLE II. for comparison.

TABLE II. shows the percentage of test inputs used to
detect all faults. It can be observed that the proposed
Dynamic Fault Visualization Tool significantly
outperformed both Static Fault Density Visualization and
Sequential Order. In average, it only requires 5.81% of the
total test inputs to detect all seven types of common faults
defined Section II, compared to 29.96% for Static Fault
Visualization and 79.90% for Sequential Order.

The APFD (Average Percentage of Fault Detected) for the
proposed Dynamic Fault Visualization Tool has also been
compared to the Static Fault Density Visualization and
Sequential Order. The results are shown in TABLE III.

From TABLE III. it can be observed that Dynamic Fault
Visualization Tool consistently outperformed both Static
Fault Density Visualization and Sequential Order. It has an
average APFD of 98.8%. which is considerably higher than
an average APFD of 94.1% for the Static Fault Density
Visualization technique. On the other hand, Sequential Order
performed poorly with an average APFD of 66.69%.

Original Expression
& Generate Mutant Original Expression

Mutant Generated
& test cases Data

Visualize Fault Density

Select Test Case
& Execute Test Case Selected

Updated Fault Density
Visualization

Updated Test Cases Data

304

TABLE II. PERCENTAGES OF TEST INPUTS USED TO DETECT ALL FAULTS

Boolean
Expressions

Sequential
Order

Dynamic
Fault

Visualization

Static Fault
Density

Visualization
BE1 94.53% 14.06% 44.53%
BE2 89.26% 16.60% 99.22%
BE3 77.37% 1.61% 69.73%
BE4 96.88% 18.75% 18.75%
BE5 93.55% 4.10% 31.84%
BE6 92.33% 2.83% 64.45%
BE7 90.72% 2.54% 35.94%
BE8 93.36% 14.06% 58.59%
BE9 89.84% 12.50% 17.19%
BE10 83.70% 0.29% 1.57%
BE11 75.44% 0.98% 5.37%
BE12 93.80% 1.03% 15.97%
BE13 56.27% 0.27% 9.18%
BE14 70.31% 7.03% 25.00%
BE15 45.90% 2.73% 31.25%
BE16 60.93% 0.95% 30.84%
BE17 67.24% 0.59% 3.47%
BE18 68.46% 1.27% 14.84%
BE19 68.36% 4.69% 6.64%
BE20 89.84% 9.38% 14.84%

Average 79.90% 5.81% 29.96%

TABLE III. PERCENTAGES OF TEST INPUTS TO DETECT ALL FAULTS

Boolean
Expressions

Sequential
Order

Dynamic
Fault

Visualization

Static Fault
Density

Visualization
BE1 61.24% 97.35% 91.95%
BE2 61.00% 96.77% 83.56%
BE3 72.86% 99.71% 84.70%
BE4 62.56% 95.56% 94.44%
BE5 41.79% 99.13% 92.50%
BE6 61.32% 99.57% 95.23%
BE7 61.42% 99.46% 95.46%
BE8 66.09% 97.13% 87.03%
BE9 82.53% 97.52% 95.49%
BE10 54.32% 99.95% 99.62%
BE11 59.02% 99.83% 99.01%
BE12 75.47% 99.82% 96.78%
BE13 93.26% 99.94% 97.96%
BE14 63.45% 98.04% 92.73%
BE15 77.53% 99.29% 90.67%
BE16 76.61% 99.80% 91.86%
BE17 59.94% 99.85% 99.37%
BE18 60.94% 99.68% 97.21%
BE19 61.15% 99.08% 98.73%
BE20 81.22% 98.47% 98.01%

Average 66.69% 98.80% 94.12%

VI. CONCLUSION
In this paper, a fault-based testing technique has been

proposed for Boolean expressions based on dynamic fault
visualization. A simple greedy method is used to select and
prioritize test inputs for fault-based testing. Hence, it is
accessible to average software testing practitioners who do
not have the in-depth knowledge in Boolean algebra and
complex logics derivations required to implement existing
fault-based testing techniques.

The Dynamic Fault Visualization Tool has been
developed to implement the proposed fault-based testing
techniques and generate fault list to guide the debugging
process. To evaluate the performance of the Dynamic Fault
Visualization Tool, the experiment has been done on it to
test the Boolean expressions extracted from TCASII, a real
life aviation software system.

The evaluation results show that the proposed Dynamic
Fault Visualization Tool significantly outperformed both
Static Fault Density Visualization and Sequential Order. By
using the Dynamic Fault Visualization Tool, software
testers only need to run an average of 6% of all possible test
inputs to guarantee the detection of all common faults. This
represent a significant saving in both time and cost of
testing compared to Static Fault Density and Sequential
Order which require 30% and 80% of test inputs
respectively. Combined with the simplicity in method and
debugging guide, the proposed dynamic fault visualization
technique and tool would be very useful to software testing
practitioners.

ACKNOWLEDGMENT
This work is supported by Malaysian Government

MOHE FRGS (FRGS/2/2010/TK/SWIN/02/03).

REFERENCES
[1] B. Hailpern, P. Santhanam, Software debugging, testing, and

verification, IBM Systems Journal, Vol. 40, No1. 2002.
[2] T. Y. Chen, M. F. Lau, and Y. T. Yu, MUMCUT: A fault-based

strategy for testing Boolean Specifications. In Proceedings of Asia-
Pacific Software Engineering Conference (APSEC ’99). 606–613.
1999.

[3] P. E. Black, V. Okun, and Y. Yesha, Mutation of model checker
specifications for test generation and evaluation. In Proceedings of
Mutation. 14–20. 2000.

[4] T. Tsuchiya, and T. Kikuno, On fault classes and error detection
capability of specification-based testing. ACM Transaction on
Software Engineering Method. 11, 1 (Jan.), 58–62. 2002.

[5] E. Weyuker, T. Goradia, A. Singh, Automatically generating test data
from a Boolean specification, IEEE Transactions on Software
Engineering, Vol. 20, No.5, pp353-363, 1994.

[6] A. Gargantini and E. Riccobene, Automatic model driven animation
of SCR specifications. In Proceedings of the Sixth International
Conference on Fundamental Approaches to Software Engineering
(FASE 2003). Lecture Notes in Computer Science, vol. 2621.
Springer, Berlin, Germany, 294–309. 2003.

[7] A. J. Offutt, S. Liu, A. Abdurazik and P. Ammann, Generating test
data from state-based specifications. Software Testing, Verification
and Reliability. 13, 1 (Mar.), 25–53. 2003.

305

[8] M. F. Lau and Y. T. Yu, An extended fault class hierarchy for
specification-based testing. ACM Transaction on Software
Engineering and Methodology, 14(3):247 – 276, 2005.

[9] Y. T. Yu, M. F. Lau, and T. Y. Chen, Automatic generation of test
cases from Boolean specifications using the MUMCUT strategy.
Journal of Systems and Software, 79(6):820–840, 2006.

[10] Z. Chen, T. Y. Chen, and B. Xu, A revisit of fault class hierarchies in
general boolean specifications. ACM Trans. Softw. Eng. Methodol.
20, 3, Article 13, August 2011.

[11] Y.T. Yu, M.F. Lau, Fault-based test suite prioritization for
specification-based testing, Information and Software Technology,
Volume 54, Issue 2, Pages 179-202, ISSN 0950-5849, February 2012

[12] W. V. Quine, The problem of simplifying truth functions. American
Mathematical Monthly, 59:521–531. 1952.

[13] S. Elbaum, A. G. Malishevsky, G. Rothermel, Test Case
Prioritization: A Family of Empirical Studies, IEEE Transactions on
Software Engineering, v.28 n.2, p.159-182, February 2002.

[14] K.Y. Sim, C. S. Low, and M. L. D. Wong. Visualization of Fault
Density for Specification-based Testing. Proceedings of the 4th
Malaysian Software Engineering Conference (MySEC'08), Kuala
Terengganu, Malaysia, 2008.

BE1 (��)������ O��̅�̅ + �̅�̅�̅ + �̅�̅�P̅ Q��(� + �)ℎ + �(� + �)ℎ� + �(� + �)R

BE2 O�O(� + � + �)K + �� + �(� + K + ℎ + �)P + (� + �)(� + � + �)�P(��)������ (��)������ (��)������ (��)������ (�K)������ (�K)������ (�S)����� (Kℎ)������ (ℎS)�����

BE3 F� Q�̅ + �̅ + ��O�K̅ℎS̅ + K̅ℎSP����������������� O�̅KD� + K̅S�̅P�����������������R + O�K̅ℎS̅ + K̅ℎSP����������������� O�̅KD� + K̅S�̅P�����������������(� + ��� + �)N O����̅ + ����̅ + �����P

BE4 �O�� + �̅P� + �

BE5 � Q�� + �̅ + ��O�̅KℎS̅ + K̅ℎSP����������������� O�K̅D� + K̅S�̅P�����������������R + �

BE6 O��� + ���P(��)������O�K̅ℎ� + �K̅ℎ� + �K̅̅ℎ�P(T�)������ F(�� + ��)� Q� + O�(K� + ℎ�)PRN

BE7 O��� + ���P(��)������ (Kℎ)������ (T�)������ F(�� + ��)� QS̅ + K̅�� + TO̅ℎ� + ��PRN
BE8 O��� + ���P(��)������ (Kℎ)������ Q(�� + ��)�O�K + �ℎ̅PR

BE9 (��)������ Q�̅�K̅��O�� + ���PR

BE10 �����̅̅�̅�OK + K̅(ℎ + �)P(T� + TD̅ + �)�����������������

BE11 ����̅ QQ�OK + K̅(ℎ + S)PR������������������������ + �OK + K̅(ℎ + �)P�̅�̅R (T� + TD̅��)��������������

BE12 ����̅ Q�OK + K̅(ℎ + �)P(�̅�� + �) + ��(�� + TD̅��)R

BE13 � + � + � + ��̅̅��K̅ℎ� + �(� + �)D ̅
BE14 ��(� + �)ℎ + �(� + �)ℎ� + �(� + �)

BE15 �O(� + � + �)K + �� + �(� + K + ℎ + �)P + (� + �)(� + � + �)�
BE16 � Q�̅ + �̅ + ��O�̅KℎS̅ + K̅ℎSP����������������� O�K̅D� + K̅S�̅P�����������������R + O�K̅ℎS̅ + K̅ℎSP����������������� O�̅KD� + K̅S�̅P����������������� (� + ��� + �)

BE17 (�� + ��)� Q� + O�(K� + ℎ�)PR

BE18 (�� + ��)� QS̅ + K̅�� + TO̅ℎ� + ��PR

BE19 (�� + ��)�(�K + �ℎ̅)

BE20 �̅�K̅��(�� + ���)

Figure 1. Boolean expressions for Logics and Rules in TCASII.

306

