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Abstract—Fault-based testing has been proven to be a cost 
effective testing technique for software logics and rules 
expressed in Boolean expressions. It can guarantee the 
elimination of common faults without exhaustive testing. 
However, average software testing practitioners may not have 
in-depth knowledge on Boolean algebra and complex logic 
derivations required to apply existing fault-based testing 
techniques. In this paper, a dynamic fault visualization tool has 
been proposed. This tool allows its user to visualize fault-based 
testing and prioritize test inputs with a simple greedy method. 
The performance evaluation of this tool has been done on 
Boolean expressions extracted from a real life aviation tool. 
The results show that it can achieve significant performance 
improvements compared to ordinary sequential order test 
execution and existing static technique. The proposed 
visualization tool could also identify possible faults to guide the 
debugging process.  

Keywords-component; Software Testing, Fault-based 
Testing, Fault Visualization. 

I.  INTRODUCTION  
Software testing and debugging contribute up to 50% to 

75% of the software development cost [1], making it the 
most expensive activities in the software development life-
cycle. A software system with m input variables, each having 
n values, will have mn possible inputs for testing. Hence, it is 
prohibitively expensive, if not impossible, to exhaustively 
test a software system for all its possible inputs. This 
problem is further amplified for software systems that 
require long computation time to run each test inputs or if the 
execution process requires user interactions that cannot be 
automated to run a large number of test inputs. 

In recent years, fault-based testing [2][3][4] have 
emerged as an innovative approach to minimize the cost and 
time in testing software system. Fault-based testing 
techniques guarantee the detection of common types of faults 
committed by programmers by selecting only a small test 
suite (that is, a small set of test inputs) that target the 
detection these common faults. If software under test does 
not fail when tested with this small test suite, then it can be 
guaranteed that the software system is free from these 
common fault types. Fault-based testing has been proven to 
be particularly effective in testing software systems in which 
logics and rules are either specified or can be modeled into 
Boolean expressions [5]. 

Existing studies on fault-based testing for Boolean 
expressions have been focusing on the reduction of test suite 
size [2][5], automated generation of test cases [3][7][9] and 
the relationships among common fault-classes 
[4][8][10][11]. Even though these fault-based testing 
techniques are highly effective, they require knowledge on 
complex logic derivations and in-depth knowledge on 
Boolean algebra. Unfortunately, not all software testing 
practitioners have the required skills, hence, limits the 
applicability of these fault-based testing techniques.  

In view of this problem, a new dynamic fault 
visualization technique and tool are proposed in this paper 
for fault-based testing of Boolean expressions. A colour 
image will be used to help software testers visualize and 
select the best test input to run in order to detect the most 
number of common faults. If no fault is detected by the 
selected test input, it implies that the software under test is 
free from the common faults detectable by this test input. 
The colour image is then updated to allow the testers to 
visualize and select the next best test input to detect the 
remaining common faults.  This way, test inputs are 
prioritized according to their fault detection capability. 
Unlike existing techniques, this visual based technique and 
tool is simple and accessible to more software testing 
practitioners because it does not require complex logic 
derivations and in-depth knowledge of Boolean algebra.  

In order to evaluate the performance of the proposed 
technique and tool developed, the aircraft Traffic Collision 
Avoidance System II (TCASII) [5] has been used as the 
subject program for testing. The experiment results show that 
the proposed interactive fault visualization technique and 
tool yield significant improvements in fault detection 
efficiency. Furthermore, the tool could also identify the 
possible faults occurred. This can be used to guide the 
debugging (fault localization) process. 

The rest of this is organized as follows: Section II 
outlines the terminologies used in this paper, types of faults 
and the subject program used for testing. Section III 
describes the fault-based testing and prioritization strategy. 
Section IV introduces the proposed tool, dynamic fault 
visualization tool. Section V evaluates and compares the 
performance of the proposed dynamic fault visualization 
tool. Section VI discusses the findings and concludes this 
paper. 

2012 International Conference on Advanced Computer Science Applications and Technologies

978-0-7695-4959-0/13 $25.00 © 2013 IEEE

DOI 10.1109/ACSAT.2012.55

301



II. PRELIMINARIES 
This section will outline the terminologies and notations 

used in Boolean expressions, types of common faults and the 
Boolean specifications of the subject program for testing, 
TCASII. 

A. Terminologies and Notations 
The Boolean operators and the truth values used in this 

paper are defined in TABLE I.  

TABLE I.  BOOLEAN OPERATOR AND TRUTH VALUES 

AND • 

OR + 

NOT   ̅
TRUE 1 

FALSE 0 
The set of truth values are denote by B = {0, 1} and Bn 

denotes n-dimensional Boolean space.  A variable in 
Boolean expression can be a positive literal or a negative 
literal. A positive literal denotes by original variable and a 
negative literal denotes by a bar  "   �" at the top of original 
variable. For example, given Boolean expression ��� + ��, b 
occurs as a negative literal in the first term and positive 
literal in second term. 

A Boolean expression in disjunctive normal form is said 
to be irredundant, if none of its terms can be omitted from 
the expression, and none of its literals may be omitted from 
any term in the expression without changing its meaning 
[12]. For instance, Boolean expression � + �  is the 
irredundant disjunctive normal form of Boolean expression 
��� + �. 

Let S denotes a program specification written in a 
Boolean expression in disjunctive normal form with m terms, 
 � =  	
 + ⋯ + 	� 
 	
 =  �

 … ���


  
where   	
 (� = 1, 2, 3 … , �)   is the i-th term in S. and 
��
(� = 1, 2, 3 … , �
)  denotes the j-th variable in term 	
 
which has �
  variable. For example, if  � =  ��� + ��, then 
	
 = ���  where �

 = �  , ��
 = ��  and 	� = ��  where �
� = � 
, ��� = �. 

B. Types of Faults 
In the process of implementing logics and rules 

represented by Boolean expressions in software requirement 
specifications into program codes, programmers could 
commit errors such as incorrect control predicates, omitted 
or additional conditions and paths as well as incorrect 
operators or operands. These errors result in omission, 
insertion or incorrect reference of Boolean operands or 
operators in Boolean specifications expressed in DNF form.  
Faults committed by programmers are commonly 
categorized into seven types in previous studies on Fault-
based testing for Boolean expressions [2][4][8][9]. These 
common fault types are listed below. 

1) LIF – Literal Insertion Fault 
An insertion of single variable which exists in whole 
expression but does not exist in the tern it is inserted. 
For example: 
Original Expression : �� +  �� +  � 
After Literal Insertion  : ��� +  �� +  � 

2) LNF – Literal Negation Fault 
A modification of single variable from its original 
state to negation. For example: 
Original Expression : �� +  �� +  � 
After Literal Negation  : �� +  �� +  � 

3) LOF – Literal Omission Fault  
A variable is removed from its term. For example: 
Original Expression : �� +  �� +  � 
After Literal Omission  : � +  �� +  � 

4) LRF – Literal Reference Fault 
A variable is replaced by another variable which 
exists in the whole expression but not in the term 
where literal replacement occurs. For example: 
Original Expression : �� +  �� +  � 
After literal reference fault  : �� +  �� +  � 

5) ORF – Operator Reference Fault 
A switch of operator from ‘AND’ to ‘OR’, and vice 
versa. For example: 
‘AND’ → ‘OR’ 
Original Expression : �� +  �� +  � 
After Operator Switch  : � +  � +  �� +  � 
‘OR’ → ‘AND’ 
Original Expression : �� +  �� +  � 
After Operator Switch  : ���� +  � 

6) TNF – Term Negation Fault 
A conversion of original terms to its negation. De 
Morgan’s Laws apply on this fault, where �� =  �  +
 �.   For Example: 
Original Expression : �� +  �� +  � 
After Term Negation  : �  + �  +  �� +  � 

7) TOF – Term Omission Fault 
A term is removed from the whole expression. For 
example: 
Original Expression : �� +  �� +  � 
After Term Omission  : �� +  � 

C. Subject Program for Testing and Mutation 
The subject program for testing in this study is TCASII 

program (Traffic Collision Avoidance System II). TCASII is 
a real life aircraft collision avoidance system that is used to 
reduce the risk of mid-air collision between aircrafts. Logic 
and rules in the TCASII system are specified by 20 Boolean 
expressions, each having a different number of variables. 
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Figure 1. (on the last page of this paper) shows the original 
Boolean expression in general form extracted from TCASII. 
A mutation approach [3] is used to insert one fault at a time 
into Irredundant Disjunctive Normal Form of these Boolean 
expressions. 

III. FAULT-BASED TEST INPUT SELECTION AND 
PRIORITIZATION STRATEGIES 

Fault-based testing techniques select a small set of test 
inputs to guarantee the detection of common faults 
identified. However, the fault detection capability of the test 
inputs selected may vary from one to the other. With the time 
and cost constraints in testing process, it is desirable to run 
test input that can detect more fault first to maximize the 
chance to detect fault as early as possible. Figure 2.  
illustrates the advantage of prioritization. 

Let 000 , 001 , 010 , … , 111  represent 
the a test inputs,  1 , 2 , 3 , … , 10  represent 
the common faults identified, and X  indicates the 
capability of a test input to detect the fault. Let 000  {1, 8} 
denotes test inputs 000  is capable to detect fault ‘1’ and 
‘8’. 

Let O denotes a sequence of test inputs to detect all 
faults, ti denotes test input i, and ��
  denotes fault j can be 
detected by test input i. Let F denotes the sequence of faults 
detected by executed O. 
 � = 	
, 	�, 	�, … , 	
 
 	�
 = �

, ��
, ��
, … , ��
  
 From Figure 2. , without prioritization, a Sequential 
Order, where the first test input is executed first followed by 
the second and subsequent test inputs, will require the first 
six test inputs to be executed to detect all 10 faults as 
required in fault-based testing. 
 � = {000, 001, 010, 011, 100, 101} 
 � = {(1, 8), (2, 9), (3, 4, 5, 6), (7), ( ), (10)}  

In sequence O, it can be observed that in Figure 2. , test 
input ‘100’ is redundant because the faults detectable by this 
test inputs have been detected by test inputs executed earlier 
in the sequence. Therefore, executing test input ‘100’ in 
Sequential Order is a waste of testing time and cost.  

On the other hand, by using a simple greedy method to 
prioritize test inputs execution, the goal of detecting more 
faults as early as possible in the testing process could be 
achieved. In the greedy method, the test inputs that are able 
to detect the most number of faults were selected. Once this 
test input has been executed on the software under test 
without causing any failure, the faults (columns in Figure 2. ) 
detectable by this test input can be removed from the table. 
The test input that can detect the most number of remaining 
faults is then selected as the next test input.By applying this 
greedy method on the test inputs in Figure 2. , the following 
test sequence can be obtained which only requires three test 
inputs to be executed to detect all possible faults in fault 
based testing.  
 � = {010, 111, 011} 
 � = {(2, 3, 4, 5, 6), (1, 8, 9, 10), (7)} 

Figure 3. shows how these faults are eliminated (shaded 
in grey) after each test input in this sequence executed on the 
software under test. 

 
Figure 2.  Fault Detection Capabilities of Test Inputs. 

   
Figure 3.  Elimination of Faults Using Prioritized of Test Inputs. 

 First, test input 010 was selected to be executed because 
it is able to detect the most number of faults (five faults). 
Then, test input ‘111’ is selected because it is able to detect 
the most number of remaining faults. Lastly, either test 
input ‘011’ or ‘101’ can be selected for execution as they 
can detect the same number of faults which is fault 7.  

From the above examples, it can be observed that the 
Sequential Order requires six out of eight test inputs to be 
executed (75% of all test inputs) while the greedy method 
prioritization only requires three out of eight test inputs 
(37.5% of all test inputs). This reduction can significantly 
reduce the time and cost in testing.  

As it is desirable to detect more common faults as early 
as possible in the testing process, the Average Percentage of 
Fault Detected (APFD) [13] has been used to measure the 
rates (how fast) both Sequential Order and the greedy 
method prioritization discover all faults. Let 
 ��� = total number of fault discovered in � sequence  
 ��� = total number of fault test cases 
 !#�$ =  %&'*%&-*%&.*⋯*%&/

� × %%& × 100%   
Based on the above formula, the APFD for Sequential 

Order and greedy method prioritization can be calculated as 
below. The higher the APDF value, the faster is the rate at 
which the sequences of test inputs are detecting faults.  

Test 
Inputs 

Faults 

1 2 3 4 5 6 7 8 9 10 

000 X X 

001 X X 

010 X X X X X 

011 X X X 

100 X X X 

101 X X 

110 

111 X X X X 
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APFD for Sequential Order: 
!#�$ =  �*;*<*>*>*
?*
?*
?

< ×
? × 100%  
!#�$ =  77.5%  

APFD for greedy method prioritization: 
!#�$ =  A*>*
?*
?*
?*
?*
?*
?

< ×
? × 100%  
!#�$ =  92.5%  
From the APFDs, it is evident that the greedy method 

prioritization detects faults at significantly higher rate 
compared to the sequential method. 

IV. DYNAMIC FAULT VISUALIZATION TOOL 
The Dynamic Fault Visualization Tool has been 

developed to assist software testing practitioners to select 
and prioritize test inputs for execution using the greedy 
method described in Section III. With this Dynamic Fault 
Visualization Tool, software testing practitioners can 
visually identify the best test input, one that can detect the 
most number of remaining faults dynamically. To use this 
tool, firstly, the tool user needs to provide the Boolean 
expression to be tested. The tool user is able to select types 
of common faults they would like to detect. After that, the 
tool will automatically generate all possible the faults based 
on the fault types using mutation technique. Finally, the tool 
will generate a grayscale colour images to represent the 
number of faults each test input can detect). The UML 
Interaction Diagram of the Dynamic Fault Visualization Tool 
is shown in Figure 4.  

 
Figure 4.  Elimination of Faults Using Prioritized of Test Inputs. 

 
Figure 5.  Screenshots of the Dynamic Fault Visualization Tool. 

Figure 5. shows the screenshot of the Dynamic Fault 
Visualization Tool that have been developed. The tool user is 

able to select which test input to be executed by clicking the 
boxes that represent test inputs on a grayscale colour image.  

In Figure 5. , each row of boxes represents all possible 
test inputs. The numbers at the end of the row indicate the 
test input execution sequence as well as the number of test 
inputs that have been executed. Each box on the row is 
shaded based on a greyscale colour value which is calculated 
with the following formula. 

�� BCDCE = 255 − F �� GC C� HI	��	
J�Kℎ�M	 �I���E C� HI	��	  × 255 N 

In this 8-bit greyscale colour scheme, 255 is the highest 
value which is white in colour, while 0 is the lowest value 
which is black in colour. Darker boxes on the row represent 
test inputs that can detect more faults while brighter boxes 
represent test inputs that can detect fewer faults. Executed 
test inputs are marked as red boxes. This grayscale image is 
updated dynamically after each test input is executed. 

When all the boxes on the lowest row are white in colour, 
it means that all the faults have been covered by the executed 
test inputs. 

As shown in Figure 5. , the fault list at the bottom of the 
visualization tool indicates the faults that can be detected by 
the currently selected test input. If execution of this test input 
causes a failure in the software under test, then it implies that 
the software under test contain one of the faults listed. This 
information can be used to locate the fault in the debugging 
process.   

V. PERFORMANCE EVALUATION 
To evaluate the performance of the Dynamic Fault 

Visualization Tool, the test has been performed on the 20 
Boolean expressions extracted from TCASII shown in Figure 
1.  The “percentage of test inputs used to detect all faults” 
and APFD have been used as the performance metrics to 
evaluate the performance of greedy method prioritization 
implemented in this Dynamic Fault Visualization Tool. The 
performance Sequential Order and the Static Fault Density 
Visualization technique proposed in previous study [14] have 
been presented in TABLE II. for comparison.  

TABLE II. shows the percentage of test inputs used to 
detect all faults. It can be observed that the proposed 
Dynamic Fault Visualization Tool significantly 
outperformed both Static Fault Density Visualization and 
Sequential Order. In average, it only requires 5.81% of the 
total test inputs to detect all seven types of common faults 
defined Section II, compared to 29.96% for Static Fault 
Visualization and 79.90% for Sequential Order. 

The APFD (Average Percentage of Fault Detected) for the 
proposed Dynamic Fault Visualization Tool has also been 
compared to the Static Fault Density Visualization and 
Sequential Order.  The results are shown in TABLE III.  

From TABLE III. it can be observed that Dynamic Fault 
Visualization Tool consistently outperformed both Static 
Fault Density Visualization and Sequential Order. It has an 
average APFD of 98.8%. which is considerably higher than 
an average APFD of 94.1% for the Static Fault Density 
Visualization technique. On the other hand, Sequential Order 
performed poorly with an average APFD of 66.69%. 

Original Expression  
& Generate Mutant Original Expression 

Mutant Generated  
& test cases Data 

Visualize Fault Density 

Select Test Case 
& Execute Test Case Selected 

Updated Fault Density 
Visualization 

Updated Test Cases Data 
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TABLE II.  PERCENTAGES OF TEST INPUTS USED TO DETECT ALL FAULTS 

Boolean 
Expressions 

Sequential 
Order 

Dynamic 
Fault 

Visualization 

Static Fault 
Density 

Visualization 
BE1 94.53% 14.06% 44.53% 
BE2 89.26% 16.60% 99.22% 
BE3 77.37% 1.61% 69.73% 
BE4 96.88% 18.75% 18.75% 
BE5 93.55% 4.10% 31.84% 
BE6 92.33% 2.83% 64.45% 
BE7 90.72% 2.54% 35.94% 
BE8 93.36% 14.06% 58.59% 
BE9 89.84% 12.50% 17.19% 
BE10 83.70% 0.29% 1.57% 
BE11 75.44% 0.98% 5.37% 
BE12 93.80% 1.03% 15.97% 
BE13 56.27% 0.27% 9.18% 
BE14 70.31% 7.03% 25.00% 
BE15 45.90% 2.73% 31.25% 
BE16 60.93% 0.95% 30.84% 
BE17 67.24% 0.59% 3.47% 
BE18 68.46% 1.27% 14.84% 
BE19 68.36% 4.69% 6.64% 
BE20 89.84% 9.38% 14.84% 

Average 79.90% 5.81% 29.96% 

TABLE III.  PERCENTAGES OF TEST INPUTS TO DETECT ALL FAULTS 

Boolean 
Expressions 

Sequential 
Order 

Dynamic 
Fault 

Visualization 

Static Fault 
Density 

Visualization 
BE1 61.24% 97.35% 91.95% 
BE2 61.00% 96.77% 83.56% 
BE3 72.86% 99.71% 84.70% 
BE4 62.56% 95.56% 94.44% 
BE5 41.79% 99.13% 92.50% 
BE6 61.32% 99.57% 95.23% 
BE7 61.42% 99.46% 95.46% 
BE8 66.09% 97.13% 87.03% 
BE9 82.53% 97.52% 95.49% 
BE10 54.32% 99.95% 99.62% 
BE11 59.02% 99.83% 99.01% 
BE12 75.47% 99.82% 96.78% 
BE13 93.26% 99.94% 97.96% 
BE14 63.45% 98.04% 92.73% 
BE15 77.53% 99.29% 90.67% 
BE16 76.61% 99.80% 91.86% 
BE17 59.94% 99.85% 99.37% 
BE18 60.94% 99.68% 97.21% 
BE19 61.15% 99.08% 98.73% 
BE20 81.22% 98.47% 98.01% 

Average 66.69% 98.80% 94.12% 

VI. CONCLUSION 
In this paper, a fault-based testing technique has been 

proposed for Boolean expressions based on dynamic fault 
visualization. A simple greedy method is used to select and 
prioritize test inputs for fault-based testing. Hence, it is 
accessible to average software testing practitioners who do 
not have the in-depth knowledge in Boolean algebra and 
complex logics derivations required to implement existing 
fault-based testing techniques.  

The Dynamic Fault Visualization Tool has been 
developed to implement the proposed fault-based testing 
techniques and generate fault list to guide the debugging 
process. To evaluate the performance of the Dynamic Fault 
Visualization Tool, the experiment has been done on it to 
test the Boolean expressions extracted from TCASII, a real 
life aviation software system.  

The evaluation results show that the proposed Dynamic 
Fault Visualization Tool significantly outperformed both 
Static Fault Density Visualization and Sequential Order. By 
using the Dynamic Fault Visualization Tool, software 
testers only need to run an average of 6% of all possible test 
inputs to guarantee the detection of all common faults. This 
represent a significant saving in both time and cost of 
testing compared to Static Fault Density and Sequential 
Order which require 30% and 80% of test inputs 
respectively. Combined with the simplicity in method and 
debugging guide, the proposed dynamic fault visualization 
technique and tool would be very useful to software testing 
practitioners. 
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BE10  �����̅̅�̅�OK + K̅(ℎ + �)P(T� + TD̅ + �)����������������� 

BE11  ����̅ QQ�OK + K̅(ℎ + S)PR������������������������ +  �OK + K̅(ℎ + �)P�̅�̅R (T� + TD̅��)�������������� 
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BE14  ��(� + �)ℎ + �(� + �)ℎ� + �(� + �) 

BE15  �O(� + � + �)K + �� + �(� + K + ℎ + �)P + (� + �)(� + � + �)� 
BE16  � Q�̅ + �̅ + ��O�̅KℎS̅ + K̅ℎSP����������������� O�K̅D� + K̅S�̅P�����������������R +  O�K̅ℎS̅ + K̅ℎSP����������������� O�̅KD� + K̅S�̅P����������������� (� + ��� + �) 

BE17  (�� + ��)� Q� + O�(K� + ℎ�)PR 

BE18  (�� + ��)� QS̅ + K̅�� + TO̅ℎ� + ��PR 

BE19  (�� + ��)�(�K + �ℎ̅) 

BE20  �̅�K̅��(�� + ���) 

Figure 1.  Boolean expressions for Logics and Rules in TCASII. 
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