
Zero Knowledge for Everything and Everyone:
Fast ZK Processor with Cached ORAM for ANSI C Programs

David Heath∗ Yibin Yang∗ David Devecsery Vladimir Kolesnikov
Georgia Institute of Technology

Email: {heath.davidanthony,yyang811,ddevec,kolesnikov}@gatech.edu
∗Authors contributed equally

Abstract—We build a complete and efficient ZK toolchain that
handles proof statements encoded as arbitrary ANSI C programs.

Zero-Knowledge (ZK) proofs are foundational in cryptogra-
phy. Recent ZK research has focused intensely on non-interactive
proofs of small statements, useful in blockchain scenarios. We
instead target large statements that are useful, e.g., in proving
properties of programs.

Recent work (Heath and Kolesnikov, CCS 2020 [HK20a])
designed an efficient proof-of-concept ZK machine (ZKM). Their
machine executes arbitrary programs over a minimal instruction
set, authenticating in ZK the program execution. In this work,
we significantly extend this research thrust, both in terms of
efficiency and generality. Our contributions include:

• A rich and performance-oriented architecture for represent-
ing arbitrary ZK proofs as programs.

• A complete compiler toolchain providing full support for
ANSI C95 programs. We ran off-the-shelf buggy versions
of the Linux programs sed and gzip, proving in ZK that
each program has a bug. To our knowledge, this is the first
ZK system capable of executing standard Linux programs.

• Improved ZK oblivious RAM (ORAM). [HK20a] intro-
duced an efficient ZK-specific ORAM BubbleRAM that
consumes O(log2 n) communication per access. We extend
BubbleRAM with multi-level caching, decreasing communi-
cation to O(logn) per access. This introduces the possibility
of a cache miss, which we handle cheaply. Our experiments
show that cache misses are rare; in isolation, i.e., ignoring
other processor costs, BubbleCache improves communica-
tion over BubbleRAM by more than 8×. Using BubbleCache
improves our processor’s total communication (including
costs of cache misses) by ≈ 25-30%.

• Numerous low-level optimizations, resulting in a CPU that
is both more expressive and ≈ 5.5× faster than [HK20a]’s.

• Attention to user experience. Our engineer-facing ZK in-
strumentation and extensions are minimal and easy to use.

Put together, our system is efficient and general, and can run
many standard Linux programs. The resultant machine runs at
up to 11KHz on a 1Gbps LAN and supports MBs of RAM.

Index Terms—Zero Knowledge, Systems Architecture

I. INTRODUCTION

Zero Knowledge (ZK) protocols allow a prover P to
demonstrate to a verifier V the truth of a given statement
while revealing nothing additional. ZK proofs (ZKPs) are
foundational cryptographic objects and have attracted wide
research attention. ZK research originally focused on proofs of
specific statements, but more recent works developed efficient
techniques that handle proofs of arbitrary statements. Even
with the pivot towards generality, the community’s focus has
remained on succinct proofs of small statements, motivated

largely by blockchain applications. In contrast, proofs of large,
complex statements have been left relatively unexplored.

Our focus: ZK for large programs. Recent work showed
that ZK protocols can support a relatively efficient ZK proces-
sor [HK20a]. [HK20a] designed a new arithmetic ZK protocol
and data structures, including a ZK-specific ORAM Bub-
bleRAM. They integrated these components into a processor
that executes arbitrary programs in ZK, supports hundreds of
KB of memory, and runs at 2.1KHz over a small instruction
set. We continue [HK20a]’s research thrust into large proof
statement support by improving both the ZK processor’s
efficiency and the tooling available to programmers.

A. Our Contribution

We propose the first complete and concretely efficient ZK
system for general C programs and libc1. Our system allows
P and V to run a mutually agreed C program describing a
proof statement via an interactive constant-round ZKP proto-
col. Our contribution comprises intertwined crypto-technical,
architectural, and systems-technical components. We present:
• An architecture for representing ZK proofs as programs.

While circuit-based ZK is concretely efficient even for
large circuits (e.g., [HK20b], [WYKW20]), circuits do
not scale to programs with complex control flow. We de-
sign a complete architecture for high-performance CPU-
emulation-based ZK, carefully balancing the cost and
expressivity of each CPU step. Our architecture includes
ZK-specific primitives; most notably, our prover oracle
calls allow the programmer to effectively handle P’s
input and to shortcut expensive algorithms that can be
efficiently verified. We compare with previous ZK archi-
tectures [HK20a], [BCG+13] in Section II.

• Extensive compiler and library support. We fully support
ANSI C95 programs and libc.

• Improved ZK oblivious RAM (ORAM). ZK ORAM allows
the proof to efficiently look up an element from mem-
ory obliviously to V . [HK20a] introduced an efficient
ZK-specific ORAM BubbleRAM that costs O(log2 n)
communication per access. We extend BubbleRAM
with multi-level caching, decreasing communication to
O(log n) per access. We call our caching RAM Bub-
bleCache. BubbleCache introduces the possibility of a

1Both [HK20a] and [BCG+13] lack libc and cannot support off-the-shelf
programs. They run, respectively, ≈ 5.5× and 10000× slower than our work.

1538

2021 IEEE Symposium on Security and Privacy (SP)

© 2021, David Heath. Under license to IEEE.
DOI 10.1109/SP40001.2021.00089

20
21

 IE
EE

 S
ym

po
si

um
 o

n
Se

cu
rit

y
an

d
Pr

iv
ac

y
(S

P)
 |

97
8-

1-
72

81
-8

93
4-

5/
21

/$
31

.0
0

©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
SP

40
00

1.
20

21
.0

00
89

cache miss, which we handle cheaply. Our experiments
show that cache misses are rare, and, ignoring other
processor costs, BubbleCache improves communication
over BubbleRAM by more than 8×. Using BubbleCache
improves our processor’s total communication (including
costs of cache misses) by ≈ 25-30%.

• Numerous low-level crypto optimizations as compared
to [HK20a], such as a greatly improved ALU, tighter
integration of instructions into the CPU circuit, and an
efficient small table lookup technique. In sum, our non-
memory based operations consume only 86 oblivious
transfers, about a 4× improvement over [HK20a]. We
also extend [HK20a]’s protocol with generalized vector-
scalar multiplication.

• User experience (UX). Our goal is to make ZK easy to
use by engineers who are not trained in cryptography.
We adhere to standard C, including native Linux I/O,
user-input, and file-system operations, and require only
that the programmer includes special QED instruction(s)
as appropriate: reaching QED means a successful proof.

• Use-cases drawn from existing popular Linux programs.
We ran off-the-shelf, buggy versions of gzip and sed,
proving in ZK the existence of bugs (CVE-2005-1228
and the SIR repository, respectively). The gzip bug
consumes 44, 092 CPU cycles and runs in 6.5s; the sed
bug consumes 390, 002 CPU cycles and runs in 36.1s.
Each benchmark is ≈ 5.4KLOC of C code.

• We plan to open-source our project to the community.

II. RELATED WORK

We compile programs written in high level C down to a
low-level instruction set, and we evaluate instructions on an
emulated ZK CPU. Our technique allows proofs of arbitrary
statements, including statements that are large and complex.
In our review of related work, we focus on concretely efficient
ZK protocols and on works that pursue secure CPU-emulation.

[HK20a] is the most relevant work, and we build on many
of its techniques. Section V reviews their ZK protocol, which
we build on. In this section, we compare to [HK20a] in
several contexts: architecture, ORAM, performance, support
for general C. In sum, our work is better on all of these fronts.
We highlight our cached RAM, our ability to run standard C
programs, and our ≈ 5.5× clock rate improvement.

a) ZK: ZK proofs [GMR85], [GMW91] allow P to
convince V , holding circuit C, that there exists an input, or
witness, w for which C(w) = 1. Early practical ZK protocols,
motivated by signatures and identification schemes, focused
on algebraic relations. More recently, ZK research has shifted
focus to proofs of arbitrary statements.

b) ZK from garbled circuits (GC-ZK) and 2PC: GC-ZK
techniques encode ZK relations as garbled circuits [JKO13],
[FNO15], [HK20b]. [JKO13] established a Garbling Scheme
(GS)-based ZKP framework: by satisfying a few requirements,
a new GS can be plugged into [JKO13]’s protocol to obtain
malicious-verifier ZK. The [HK20a] protocol, which we lever-
age, is formalized in the [JKO13] framework.

[HK20b] showed that GC-ZK can efficiently handle con-
ditional branching. Their ‘stacked garbling’ technique yields

communication that scales only with the longest execution
path, not with the size of the circuit. While [HK20b] improves
communication, their computation remains linear in the num-
ber of branches. Natural circuit-based handling of arbitrary
control flow can result in significant blow-up in circuit size,
and is often infeasible. Our work also scales only in the longest
execution path, but does so by arranging the program into
CPU steps. Because we change the program representation,
we enjoy both communication and computation that scale
linearly in the program’s execution time. We did not apply
stacked garbling in our design. Our CPU is hand-optimized to
aggressively amortize low-level operations. Porting stacking to
the [HK20a] protocol is not trivial and would not substantially
improve our already lean CPU.

Wolverine [WYKW20] recently improved over GC-based
ZK by instead running a maliciously-secure GMW protocol
where V has no input, allowing all GMW gates to be run in
parallel. We use [HK20a]’s protocol which similarly runs all
gates in parallel: our prover P simultaneously requests wire
labels on each algebraic wire and then proves they are all
related. In terms of cost, [HK20a]’s protocol is quite similar
to Wolverine “per gate” for our desired security and represen-
tation. Wolverine requires 2–4 field elements per arithmetic
gate in a large field. To compute our basic operation, vector-
scalar multiplication of a vector with n field elements, we
perform a single 1-out-of-2 OT of n field elements. Thus both
we and Wolverine transmit a similar number of field elements
per arithmetic gate.

Unlike direct circuit representations, CPU-based techniques
allow arbitrary control flow and scale to more realistic pro-
grams. Of course, CPU-based ZK is built on circuit protocols,
so circuit protocol improvements remain an excellent direction
for future work.

c) ZK Processors and Architectures: [BCTV14b],
[BCTV14a], [BCG+13] implement ZK processors via succinct
non-interactive proof engines. In a sense, these approaches
are more general than ours: our approach is interactive and
requires linear communication. The trade-off is efficiency.
These works yield processors that run in the 1Hz range. In
contrast, our processor operates in the 10KHz range. These
works also introduced the TinyRAM architecture, which is
similar in scope to our architecture: it allows proofs of
arbitrary statements formulated as C programs. We build a
custom architecture so as to extract as much performance as
possible from the underlying protocol. As a result, our non-
RAM components are cheap. TinyRAM CPU (without RAM
operations) consumes ≈ 1000 algebraic constraints per cycle,
while ours consumes only 86 OTs (OTs are comparable to
constraints).

[HK20a] implements a concretely efficient interactive ZK
processor and is the closest to our work. Their focus is proof-
of-concept, so they only support a small subset of C. In
contrast, we comprehensively handle C programs.

Our architecture provides ZK-specific features supported
neither by [HK20a] nor by [BCG+13]. Most notably, we
include instructions that we call prover oracle calls. Prover
oracle calls allow the programmer to structure P’s input and
also to use P to shortcut algorithms that are expensive to

1539

compute but efficient to verify. We view prover oracle calls as
a crucial component for general ZK handling. Spice [SAGL18]
used remote procedure calls (RPC), a mechanism similar to
our prover oracle calls, to achieve similar goals.

We mention, but do not discuss in detail, MPC proces-
sors [LO13], [WGMK16], [SHS+15]; their task is different
and they are much less efficient than our ZK processor.

d) Succinct and non-interactive ZK: Our work is built
on an efficient interactive protocol with proof size linear
in the program running time. Other works emphasize non-
interactivity and/or succinct proofs. We review such works in
Appendix A. In short, these works have excellent performance
for small proof statements, but they struggle when handling
larger proof statements.

e) ZK Oblivious RAM (ORAM): A key component in our
processor is our ZK ORAM BubbleCache, an improvement on
the state-of-the-art BubbleRAM [HK20a]. In our experiments
(Section IX), BubbleCache is up to 8× more efficient than
BubbleRAM (improvement depends on RAM size), which was
already concretely efficient. Asymptotically, BubbleCache im-
proves BubbleRAM’s O(log2 n) cost to O(log n), although it
introduces the possibility of cache misses. Like BubbleRAM,
BubbleCache does not use extra rounds of communication.

[BCG+13] and a subsequent work [WSR+15] gave ORAM-
like constructions whereby P provides all RAM values as
inputs and then, at the end of the protocol, permutes all
read/write values and demonstrates consistency. The technique
features high concrete costs: (1) P provides each value as
extra input and (2) the consistency check requires check-
ing that values are appropriately sorted. In contrast, Bub-
bleRAM/BubbleCache read values directly from storage and
feature an extremely cheap consistency check: on each access,
P simply proves two values are equal, requiring amortized
zero bytes of communication. More specifically, for a RAM
of size n and for k RAM operations, Buffet’s [WSR+15] cost
is (21 + 10 log k + 2 log n) arithmetic constraints per RAM
operation. BubbleRAM incurs 1

2 log2 n constraints (i.e., OTs)
per RAM operation, and BubbleCache further improves on
BubbleRAM as explained above.

Spice [SAGL18] specified an O(1) cost key-value store.
Their approach elegantly improves over Merkle-tree based
RAMs by maintaining two efficiently updatable hash digests:
one for all reads and one for all writes. On an access,
P provides the requested element as input, and the proof
accordingly updates the two hashes. At the end of the proof,
the two hashes are used to ‘audit’ all accesses, demonstrating
that P honestly constructed each input. While the approach
incurs amortized O(1) cost per access, the concrete costs are
relatively high: their approach (and straightforward O(log n)
Merkle-tree based ZK RAMs) require that the hash function
be evaluated inside the ZK circuit. BubbleCache does not use
non-black-box hash function calls.

III. NOTATION AND ASSUMPTIONS

1) Notation:
• We refer to our running system as ZKM: ZK machine.
• σ is the statistical security parameter (e.g., 40).

Figure 1. The stack of abstractions and implementations in our system.
Each implementation is built using the abstraction below it. At the top level,
users write custom ANSI C programs. We implement ANSI C and libc via
our custom compiler and runtime library. Our compiler interfaces with our
architecture, which is the high level design of our emulated processor; the
architecture consists primarily of our instruction set. We refer to the imple-
mentation of our architecture as our microarchitecture. The microarchitecture
consists of low level processor components and algorithms, such as our ALU
and BubbleCache. Finally, our microarchitecture is implemented in terms of
authenticated shares, realized by [HK20a]’s ZK protocol.

• κ is the computational security parameter (e.g., 128).
• The prover is P . We refer to P by she, her, hers...
• The verifier is V . We refer to V by he, him, his...
• We write , to denote that the left hand side is defined

to be the right hand side.
• We denote that x is uniformly drawn from a set S by
x ∈$ S.

• We denote the field of elements {0, 1, ..., p− 1} by Zp.
• We denote the set of elements {1, 2, ..., p− 1} by Z×p .
• We work with additive secret shares in a field Zp. We

denote a sharing of a semantic value x ∈ Zp by JxK.
Sharings are formally defined in Section V.

2) Cryptographic Assumptions: We use the recent and
efficient Ferret oblivious transfer technique [YWL+20]. Thus,
we inherit its assumptions: (1) learning parity with noise
(LPN), (2) a tweakable correlation-robust hash function, and
(3) a random oracle (RO). If we assume access to an OT oracle,
our technique is secure under standard assumptions.

IV. PRESENTATION ROADMAP

At a high level, we bridge end user programs and an under-
lying ZK protocol. We achieve this in two steps (see Figure 1).
First, end user proof statements are expressed in high level
C. These C programs are translated into ZK assembly by
our custom compiler tool-chain. The resultant assembly is
specified by our architecture, the high level abstraction of
our emulated processor. Second, we execute the assembly on
our custom emulated processor. Our microarchitecture (the
implementation of our architecture) consists of a number of

1540

low-level and algorithmic choices that emphasize efficiency.
The microarchitecture is implemented on top of authenticated
shares, provided by our generalization of [HK20a]’s protocol.

Our presentation proceeds bottom-up through Figure 1’s ab-
straction stack, starting from the most primitive cryptographic
objects and working up to the handling of end user programs:
• Section V reviews [HK20a]’s authenticated share algebra

as well as their cryptographic protocol.
• Section VI presents our architecture, including a high

level description of our machine as well as its instruction
set. We also present extended discussions of so-called
prover oracle calls and of hardware interrupts.

• Section VII describes our microarchitecture with an
emphasis on algorithmic improvements, including our
caching ORAM BubbleCache and our efficient ALU.

• Section VIII shows how we integrated our processor into
a user-facing system. We describe our C compiler and
libc implementations, and we show how the parts of
our system interoperate.

The cross-cutting concern of the stack in Figure 1 is per-
formance: many choices in our design are ultimately informed
by the cost of operations in the authenticated share algebra.

Section IX concludes with experimental findings of the
efficiency of our system.

V. [HK20A]’S AUTHENTICATED SHARE ALGEBRA

Our processor is built on [HK20a]’s ZK protocol. [HK20a]’s
protocol implements the primitives listed in Figure 2.

In the protocol, P and V hold authenticated sharings of
values in a field Zp for a suitably large prime p (we choose
p = 240 − 87, the largest 40 bit prime). An authenticated
sharing consists of two shares, one held by V and one by
P . We denote a sharing where V’s share is s ∈ Zp and P’s
share is t ∈ Zp by writing 〈s, t〉. At the start of the protocol, V
samples a non-zero global value ∆ ∈$ Z×p . Consider a sharing
〈X,x∆ − X〉 where X ∈$ Zp is drawn by V . A sharing of
this form is a valid sharing of the semantic value x ∈ Zp. We
use the shorthand JxK to denote a valid sharing:

JxK , 〈X,x∆−X〉 where X ∈$ Zp
Sharings have two key properties:
1) V’s share gives no information about the semantic value.

This holds trivially: V’s share is independent of x.
2) P’s share is ‘unforgeable’: P cannot use x∆ − X to

construct y∆ − X for y 6= x. This holds because (1)
both X and ∆ are uniform and unknown to P , (2) the
multiples of ∆ are uniformly distributed over the field,
and (3) the chosen prime is large enough to achieve
our desired security: P can forge JyK only by guessing
y∆−X , which only succeeds with probability 1

p−1 .
We review primitive operations on shares in Appendix

B, including our simple but very useful generalization to
the protocol: a vector-scalar multiplication that generalizes
[HK20a]’s share multiplication technique. The interface to
and cost of protocol primitives are given in Figure 2. In
short, linear operations over sharings are computed locally,
but each vector-scalar multiplication requires communication
in the form of a single oblivious transfer (OT).

VI. AN ARCHITECTURE FOR ZK PROGRAMS

This section presents our ZK architecture. Specifically, we
formalize our processor and its instruction set.

We express ZK relations as high level C programs. Section II
discussed that circuit-based ZK dominates in the literature,
but that circuits do not scale to arbitrary control flow. We
instead adopt a CPU emulation-, or ZK Processor-based
architecture: P and V jointly, authentically and obliviously
to V execute a sequence of CPU steps that together evaluate
the program. V accepts the proof if the program terminates in
some distinguished state. Each CPU step is implemented by
a circuit; we carefully manage these circuits to ensure correct
execution of the program.

Section VI-A begins informally, summarizing the “plat-
form” on which we build our architecture. Section VI-A may
be seen as crypto background for an architecture person:
it presents costs of basic functions and derives informal
guidelines for efficient operation. Then, we formalize our
architecture in Sections VI-B and VI-C, giving the description
of our ZK machine as well as its instructions. Sections VI-D
and VI-E then proceed in detail on the more interesting parts
of our architecture: prover oracle calls and hardware interrupts.

A. ZK Processor Intuition and Efficiency Guidelines

Ultimately, our ZK processor is built on simple algebra
implemented by an efficient ZK protocol. While our current
goal is to construct an abstract architecture, we do so keeping
in mind the concrete efficiency properties that our implemen-
tation ultimately inherits. Thus, we informally discuss basic
primitives and pieces of intuition underlying our extensions
and improvements over [HK20a], on which we build. In
particular, we derive basic guidelines for processor design.
Costs discussed in this section are based on concrete choices
of security parameters: 128-bit computational security and 40-
bit statistical security.

As a reminder, the protocol allows P and V to operate on
authenticated sharings of semantic values that appear during
the processor execution. Sharings have two crucial properties:

1) Sharings are oblivious, meaning that they convey no
information about the semantic values to V .

2) Sharings are authentic, meaning that it is infeasible for
P to create a share that is not computed by a procedure
agreed upon by both V and P .

1) Protocol Primitives: The protocol allows P and V to
manipulate integers in the field Zp for a large prime p. The
protocol’s primitive operations over sharings include addition,
subtraction, and a form of vector-scalar multiplication (see
Figure 2 and Appendix B). This vector-scalar multiplication
works as follows: (1) P holds a private scalar x ∈ {0, 1}, (2)
the parties input a shared vector J~yK, and (3) the parties output
the shared scaled vector Jx~yK.

These primitives provide a starting point for implementing
the entire processor state machine, including reading and
decoding instructions, reading/writing memory, and operating
over processor registers. While addition and subtraction are in
a sense ‘free’ (i.e. require no communication), vector-scalar
multiplication requires the parties to interact via oblivious

1541

Operation Communication (Bytes)

Primitive

JxK + JyK 7→ Jx+ yK 0
JxK− JyK 7→ Jx− yK 0
cJxK 7→ JcxK where c ∈ {0..p− 1} is a public constant 0
c 7→ JcK where c ∈ {0..p− 1} is a public constant 0
xJ~yK 7→ Jx~yK where x ∈ {0, 1} is chosen by P 5 · |~y|
P proves JxK = J0K 0 (amortized)

Composite
Private input: x 7→ JxK where x ∈ {0, 1} is chosen by P 5
Decompose shared 32-bit word into 32 shared bits 32 · 5 = 160
Permute vector of n elements where each element holds m shares 5 ·m · n · log n

Figure 2. ZK protocol operations and their communication cost. Primitive operations include (1) adding two sharings, (2) subtracting two sharings, (3)
multiplying a sharing by a public constant, (4) encoding a public constant as a sharing, (5) multiplying a vector of sharings by a bit selected by P , and (6)
checking that a sharing encodes zero. Complex operations are composed from these primitives; we list common composite operations and their costs.

transfer (OT).2 OT cost includes fixed overhead: executing its
basic component Random OT requires either (1) transmission
of 16 bytes (κ bits) with “traditional” techniques or (2) signifi-
cant computation with the recent Silent OT works [BCG+19],
[YWL+20]. OT also includes variable overhead: 5 bytes (σ
bits) are sent per vector element. It is the handling and
transmission of these OTs which bottleneck performance,
so optimizing the processor mostly involves decreasing the
processor’s multiplicative complexity. Thus, we arrive at our
first guideline.

Guideline 1. Minimize multiplications.

We realize Guideline 1 by aggressively amortizing vector-
scalar multiplication. This amortization takes two forms:

1) We seek optimizations that amortize fixed OT overhead
by favoring small numbers of multiplications of long
vectors over large numbers of multiplications of short
vectors. One extreme example is given in Section VII-C,
where we implement small table lookup using a loga-
rithmic number of vector-scalar multiplications.

2) We seek optimizations that re-use the same non-linear
operations to compute different values, perhaps with
the help of additional linear operations. As a simple
example, our processor computes both bit-wise AND
and bit-wise OR each cycle. Rather than computing both
operations separately, we use multiplication to compute
only bit-wise AND, and then use linear operations to
derive bit-wise OR from the result.3

2) Data movement: A significant portion of the work done
by our processor involves conditionally moving information
from one place to another, most notably in the processor’s
RAM. Conditionally moving data can be implemented by
multiplication. While the available multiplication primitive
places a constraint on the scalar x (x must be 0 or 1), the
vector ~y is unconstrained (each index can hold an arbitrary
Zp element). Thus, whether we store individual bits in ~y or if
we store entire words in ~y, the cost of multiplication remains
the same. This leads to our second guideline:

2OT is a foundational cryptographic primitive that allows a receiver R to
learn one of the sender S’s two secrets (1) without R learning the other secret
and (2) without S learning R’s choice.

3Let a, b ∈ {0, 1}. Then a ∧ b = ab and a ∨ b = a+ b− ab.

Guideline 2. Favor moving data as words rather than as bits.

Our processor manipulates 32-bit words. Guideline 2 in-
structs us to represent all 32 bits as a single sharing rather
than separately sharing each bit, reducing the cost of data
movements by 32×. As an additional benefit, the parties store
data more cheaply: if parties store data as shares of bits, they
incur 40× storage blow-up. Word-based storage requires only
40 bits of storage per player per word.

3) Oblivious RAM: RAM is a tricky subject in ZK: on each
RAM access, V must not learn the queried index. The typical
strategy for implementing such an oblivious RAM (ORAM)
involves carefully permuting data such that is impossible for
V to observe an access pattern. We can permute a large
array by performing a large number of small data move-
ments via a construction called a Waksman permutation net-
work [Wak68]. Unfortunately, permuting n elements requires
O(n log n) vector-scalar multiplications:

Guideline 3. Avoid costly permutations.

To this end, we make use of [HK20a]’s BubbleRAM
construction, a ZK specific ORAM that carefully amortizes
permutations. We take this yet a step further by augmenting
BubbleRAM with a caching mechanism, a trick that reduces
the amortized RAM lookup cost from O(log2 n) to O(log n)
(see Section VII-A). While our improved BubbleCache is
much faster than BubbleRAM per access, it introduces the
possibility of cache misses. In practice, we have found that
cache misses are rare enough that their possibility is more
than made up for by decreased access cost (cf section IX).

4) Mixing Boolean and arithmetic: Guideline 2, which
instructs us to store data in words, has a downside: we often
need to perform bitwise operations, such as AND or OR. Such
operations require each of the value’s bits to be represented by
a distinct sharing. In order to both follow Guideline 2 and al-
low bitwise operations, we need a mechanism that decomposes
integer values into their constituent bits. Bit decomposition
can be built with the help of two protocol primitives: (1) a
primitive that allows V and P to convert a constant c to a
sharing JcK and (2) a primitive that allows P to prove to V
that a sharing holds zero. Note, P can convert an input bit
to a sharing: if P has a bit of input x ∈ {0, 1}, the parties

1542

multiply x · J1K. Now, we can implement bit decomposition:

decompose : Z232 → {0, 1}32

The procedure is as follows: (1) P separately inputs each
output bit (she knows the output bits in clear-text), (2) the
parties use addition to compose the bits into a word, and (3)
P proves that the composed word is equal to the input word
by proving their difference is zero. This last step proves that
P’s provided bit decomposition is valid, so the parties output
those shares. Each decomposition requires P to input 32 bits,
a relatively expensive operation:

Guideline 4. Avoid bit decomposition.

Our implementation performs exactly two bit decomposi-
tions every cycle: in general, each algebraic instruction has two
input registers, and we decompose the values in both registers.
Moreover, we amortize bit decomposition multiplications with
those needed by other operations (per Guideline 1). The two 32
bit decompositions, requiring 64 OTs, are the most expensive
subcomponent of our processor’s ALU.

The above guidelines inform many of our architectural
decisions, and we refer to them to motivate our choices.

B. High Level Architecture

We now formalize our architecture.

Construction 1 (Architecture). Our Architecture is the ab-
stract machine described in this section and in Section VI-C.

Values manipulated by our architecture are 32-bit integer
words. Construction 1 consists of the following components:
• A 32-bit program counter pc.
• An instruction memory I. Instructions are stored sepa-

rately from data in a read-only memory (ROM).4 Sepa-
rating instructions allows us to perform fewer permutation
operations than if we had stored them together with data
(Guideline 3), particularly because ROMs can be effi-
ciently implemented in ZK [HK20a]. Note, the program
(i.e., the content of the ROM) is publicly agreed on by
P and V , though the access order must be kept secret.

• A registry R with 32 registers that each hold a single
word. Instructions operate directly on the registers.

• A main memoryM with 2k words of memory for custom
k. Memory is word-addressable (as opposed to byte-
addressable, see Guidelines 2 and 4). Specific LOAD and
STORE instructions move data between R and M.

• An input tape, holding P’s input values.
• A publicly agreed upon running time T .
At initialization, (1) pc is set to zero, (2) each word inR and

M are set to zero, (3) I is loaded with the program, and (4)
T is chosen. The processor then executes T cycles. On each
cycle, the processor reads instruction I[pc] and accordingly
performs a combination of the following:

4Thus our architecture is a ‘Harvard architecture’, as opposed to a more
typical ‘von Neumann architecture’ in which instructions and data are stored
together. When proving the existence of program bugs, it is possible that
a Harvard architecture could exhibit bugs differently than a von Neumann
architecture. We did not observe this as a practical issue when replicating
bugs - see Section IX-B.

1) Load up to two values from R.
2) Load a value from M.
3) Load a value from the processor’s input tape.
4) Perform an ALU operation on loaded values.
5) Store a value in R.
6) Store a value in M.
7) Update pc.

The specific actions corresponding to each instruction are
given in Section VI-C. After T cycles, the machine loads one
final instruction: if I[pc] holds the distinguished instruction
QED, then the machine outputs 1 (i.e., V accepts the proof)
and otherwise outputs 0 (i.e., reject).

Our architecture also includes hardware interrupts: on an
illegal memory access, the processor jumps to a distinguished
program location. Section VI-E explains our interrupts.

C. Our Instruction Set

Figure 3 enumerates the syntax and semantics of the twenty
instructions in our architecture. We organize our instructions
into four general categories: (1) instructions that perform
simple algebra over the registers, (2) instructions that allow
arbitrary control flow, (3) instructions that manipulate main
memory, and (4) instructions that collect P’s input. We men-
tion several interesting instructions:
• QED is our distinguished ‘proof’ instruction. P succeeds

if she provides input that leads to QED.
• HALT is our distinguished ‘fail’ instruction: since the pro-

cessor is stuck on HALT, it is impossible to subsequently
reach QED and complete a proof.

• ORACLE manages P’s input if P is honest. Section VI-D
discusses ORACLE at length.

• PC provides the minimal functionality required for han-
dling procedure calls: before jumping to a procedure, the
processor must store pc such that it can properly return.

Our instruction set carefully balances expressivity with each
CPU step’s multiplicative complexity (see Guideline 1). Look-
ing forward to our microarchitecture, our ALU, which imple-
ments our algebraic instructions, can be computed using only
65 OTs because of careful amortization (see Section VII-B).
Other candidate instructions, such as a bitwise left shift, would
not fully amortize and would thus require additional OTs.
Since left shift is easily implemented by two instructions
(POW2 and MUL), we omitted this instruction5 and others.

D. P’s Input and Prover Oracle Calls

Cryptographers often view the problem of arranging P’s
input as outside the concern of ZK: P “just knows” her
input. In practice, such omniscience must be arranged: P’s
input can be arbitrarily complex. We believe that, to provide
a suitable interface, a ZK architecture should cleanly integrate
the handling of P’s input. Our architecture provides this
integration via a concept called a prover oracle call.

Prover oracle calls (or just oracle calls) are initiated by our
ORACLE instruction. P subsequently (1) exits the ZK proof, (2)

5The key difference between POW2 and left shift is that it is efficient to
ensure that POW2 will not overflow the prime field.

1543

Syntax Semantics

Algebra

MOV tar {src} R[tar]← val(src)

CMOV tar src0 {src1} R[tar]←

{
val(src1), if R[src0] 6= 0

R[tar], otherwise
ADD tar src0 {src1} R[tar]← R[src0] + val(src1))
SUB tar src0 {src1} R[tar]← R[src0]− val(src1)
MUL tar src0 {src1} R[tar]← R[src0] · val(src1)
XOR tar src0 {src1} R[tar]← R[src0]⊕ val(src1)
AND tar src0 {src1} R[tar]← R[src0] ∧ val(src1)
OR tar src0 {src1} R[tar]← R[src0] ∨ val(src1)

EQZ tar src R[tar]←

{
1, if R[src] = 0

0, otherwise

MSB tar src R[tar]←

{
1, if R[src] ≥ 231

0, otherwise
POW2 tar src R[tar]← 2R[src]

Control Flow

JMP {dst} pc← val(dst)

BNZ src {dst} pc←

{
val(dst), if R[src] 6= 0

pc + 1, otherwise
PC tar {src} R[tar]← pc + val(src) ; pc← pc + 1
HALT – no effect, pc unchanged –
QED – no effect, pc unchanged –

Memory LOAD tar addr0 {addr1} R[tar]←M[R[addr0] + val(addr1)]
STORE src addr0 {addr1} M[R[addr0] + val(addr1)]← R(src)

P Input INPUT tar R[tar]← x where x ∈ {0..232 − 1} is chosen by P
ORACLE {id} honest P privately calls oracle procedure val(id) ; pc← pc + 1

val(x) ,

{
x, if x is an immediate
R[x], if x is a register id

Figure 3. Our instruction set. Each instruction type handles between zero and three arguments. In general, arguments refer to registers, but some arguments,
denoted {·}, can also optionally be immediates (i.e., compile-time constants). val is a helper function that resolves an argument that can be either a register
or an immediate. Unless the semantics otherwise mention an effect on the pc, each instruction also increments the pc.

computes in clear-text an arbitrary procedure over the current
processor state, (3) loads values onto the input tape, and (4)
re-enters the proof. With the input tape properly loaded, the
ZK program can issue INPUT instructions to word-by-word
read from the tape.
P maintains a clear-text table of oracle call procedures. At

runtime, she interprets the ORACLE instruction’s argument as
an index, looks up the corresponding procedure, and runs that
procedure on the current processor state. We provide a suite of
useful oracle calls, and the programmer can extend the table
by dynamically linking custom code.

At a high level, we use oracle calls for two primary tasks.
First, we use oracle calls to interface with P’s clear-text

system. E.g., in our libc implementation, when the ZK
machine reads a file, P escapes the ZK proof, reads from the
target file on her local machine, and loads the resulting bytes
onto the input tape. The ZK machine then loads the bytes off
the tape via INPUT. See Section VIII for more discussion.

Second, we use oracle calls to shortcut procedures that are
expensive to compute but efficient to verify. Given a function f
with input x, it is not necessary for P and V to compute f(x)
under the ZK protocol. Many ZK protocols take advantage of

this fact. We make this capability available to end users via
oracle calls: P computes locally and loads f(x) onto the input
tape (this clairvoyance is why we call them ‘oracle calls’).
Now, the parties need only verify that x and f(x) are related
by f . Verification is sometimes far easier than evaluation. E.g.,
while sorting a list requires O(n log n) operations, verifying
that a given permutation sorts a list uses only O(n) operations
(see Section IX-D). As another example, bitwise right shift is
expensive to compute directly with our instruction set, but can
be easily verified using bitwise operations and multiplication.

After a ’shortcut’ oracle call is complete, it is essential that
P’s inputs be verified: a malicious P can provide arbitrary
inputs rather than following the specification of the oracle call.

Because we provide ORACLE as an instruction, such behav-
iors can be changed/extended by the programmer. This said,
we view oracle calls as a feature primarily for ‘power users’;
users new to ZK can write ordinary C without using the feature
or even knowing that it exists.

E. Hardware Interrupts

Programs can enter inconsistent states, such as when deref-
erencing an invalid memory location. Such errors cannot be

1544

handled directly by the program itself. Computer systems ad-
dress such scenarios via hardware interrupts, special function
calls performed at the time of fault. We introduce interrupts
in our architecture as well. In computer systems, as well as in
ZK, interrupts can be used more generally: for example, for
event- and timer-based interrupts.

Currently, our architecture only issues an interrupt on an
illegal memory access. In this case, the processor sets pc to
a statically determined, constant value MEMFAULT. By default,
index MEMFAULT holds the HALT instruction; a program that
issues an illegal memory access is by default a failed proof.
However, the code at MEMFAULT can be customized. This
is particularly useful for proving the existence of bugs: P
might wish to demonstrate that a particular input will cause
a program to access invalid memory. Rather than hard-coding
this behavior, we take a more general approach: the code at
MEMFAULT can be set to QED, or to any arbitrary program.

As a final detail, we mark a protected region in the middle
of the memory space that, upon access, triggers an interrupt.
This ensures separation of the stack and the heap, and is a
standard security technique used in clear-text systems.

VII. OUR MICROARCHITECTURE

We now formalize our microarchitecture, i.e. the implemen-
tation of our architecture.

Construction 2. Our Microarchitecture is the concrete im-
plementation of the Architecture (Construction 1) described
in this section.

Our microarchitecture manipulates authenticated sharings
of values in the field Zp for a given prime p (concretely,
we choose p = 240 − 87). Construction 2 instantiates the
architecture components as follows:
• The program counter pc ∈ Zp is a sharing JpcK.
• The instruction memory I is implemented by an efficient

ZK ROM as specified by [HK20a]. The ROM consumes
O(log n) OTs per instruction lookup. Our physical in-
struction format is described in Section VII-D.

• The registry R is implemented by BubbleCache (see
Section VII-A) with 32 slots.

• The main memory M is implemented by BubbleCache
with 2k slots for publicly agreed k.

• The input tape is implemented by allowing P to provide a
32-bit value on every cycle. We emphasize that the input
tape is not concretely represented inside ZK. However,
if P is honest and runs our implementation (note, there
is no requirement that she does: a malicious P can run
arbitrary software), she maintains a clear-text input tape
that maintains her input choices.

• The number of time steps T is instantiated by a publicly
agreed clear-text integer. P does not use the number of
time steps prescribed by our architecture: she must also
pad T to account for cache misses.

At initialization, pc, R, and M are zero-initialized using
the protocol’s support for constants. Similarly, I is initialized
with the constant program text.

The processor performs T cycles. At the start of each cycle,
P inputs a single bit that allows her to skip the current cycle,

including updating the pc. This capability allows P to skip
cycles when the processor would otherwise incur a cache miss
(see Section VII-A). On a skipped cycle, RAM continues to
make progress towards a cache hit.

On each cycle, the processor loads instruction I[pc] and
performs all of the following actions:
• Load two values from R.
• Load a value from M.
• Read an input from P .
• Based on the instruction, multiplex (1) the second register

value, (2) the loaded memory value, (3) the instruction
immediate, and (4) P’s input. This computes the second
loaded value (the first is the first loaded register value).

• Compute all ALU operations on the two loaded values
(see Section VII-B).

• Compute all possible pc updates.
• Multiplex the ALU output and pc update based on the

instruction opcode.
• Compute mod 232 on the ALU output, ensuring that the

ALU output (which is a Zp element) fits in the set Z232 .
Finally, the processor performs all of the following:
• Update a value in R.
• Update a value in M.
• Update pc.

In many cases and depending on the instruction, each ‘update’
may leave the target untouched.

We describe many of the details above in the following
sections. At a high level, our microarchitecture is the relatively
straight-forward implementation of our architecture, albeit
with many optimizations. Our key claim is the following:

Theorem 1. Assuming a collision resistant hash function,
that the prime modulus p > 237, and that blog pc ≥ σ, our
microarchitecture (Construction 2) is a sound (with soundness
error 2−σ) and complete malicious-verifier Zero Knowledge
machine that proves arbitrary ZK relations expressed in our
ISA (Construction 1) in the OT-hybrid model.

The proof of this theorem relies on the JKO frame-
work [JKO13] and follows naturally (1) from discussion
throughout this section, (2) from the security of the [HK20a]
protocol, and (3) from the fact that we check P’s input values
where appropriate. We defer a more formal treatment of the
proof of Theorem 1 to Appendix D.

We use σ = 40; increasing σ will lead to a linear cost
increase.

A. BubbleCache

[HK20a] introduced BubbleRAM, a ZK-specific ORAM
with high concrete performance. For a RAM with n elements,
BubbleRAM consumes only 1

2 log2 n OTs per access. On each
access, BubbleRAM allows P to shuffle a portion of the RAM.
By doing so she ensures that, on each access, the needed
element is in the zeroth slot of RAM. P proves that her shuffles
are correct by proving that each requested index is equal to
the index stored in RAM. Permutations of large arrays are
expensive to compute: BubbleRAM achieves each permutation
via a Waksman permutation network [Wak68], a circuit that

1545

consumes n log n OTs. However, BubbleRAM is carefully
scheduled such that large permutations are infrequent. Thus,
permutation cost is amortized across accesses.

BubbleRAM’s design ensures that RAM is strictly correct:
the parties are guaranteed to successfully look up the requested
index. In this section, we show that BubbleRAM can be
significantly improved by removing strictness. At a high level,
we modify BubbleRAM such that memory is shuffled less
often. Our modification, which we call BubbleCache, must
therefore allow for cache misses. In practice, the frequency of
cache misses depends on how aggressively we reduce shuffling
and on the proof statement. While the frequency of shuffling
can be chosen arbitrarily, we elect a strategy that results
in O(log n) OTs per access both because of the asymptotic
improvement and because it is effective in practice.

1) BubbleRAM formal review: BubbleRAM’s key primi-
tives are oblivious partitions. A partition on an array of n
elements allows P to select n

2 elements and to permute the
array such that those n

2 elements are in the first n2 array slots;
the remaining n

2 elements are placed into the last n
2 slots.

Aside from partitioning these two halves of the array, the
partition guarantees nothing about the relative order of the
elements. An oblivious partition on n elements can be achieved
by O(n log n) OTs via a Waksman permutation network.

Let N be the number of elements in RAM. BubbleRAM
maintains a time-counter t. t is initialized to zero; after
each access, t is incremented. The key idea is to carefully
partition memory on a schedule according to t. On each
access, BubbleRAM considers each power of two 2k ≤ N
starting from the largest such k and working down to k = 1.
BubbleRAM allows P to partition the first 2k elements if
2k−1 | t, that is if 2k−1 divides t. This strategy is based on the
following argument. If P places the next n

2 needed elements
into the first n2 slots, then we need not look at the last n2 slots
for the next n2 accesses: it is impossible that a needed element
would be in the back of the array. However, once we have
exhausted n

2 accesses, P must repartition memory to again
account for the fact that needed elements might be at the back
of RAM. BubbleRAM stores each RAM element in a tuple
together with its index, allowing the CPU to efficiently check
that P properly moves each needed element to slot zero.

2) Adding Caching to BubbleRAM: It is widely understood
that, in practice, programs exhibit high data locality: once
an element is used, it is likely that the same element will
be needed again soon. As described so far, BubbleRAM
ignores this fact. To take advantage of data locality, we will
allow BubbleRAM to “miss” from time to time. We use this
allowance to “spread out” the BubbleRAM schedule, reducing
the number of partitions and hence the overall cost: we can
partition the first 2k elements when f(k) | t for arbitrary f .6

By varying f , we can trade between RAM performance (a
sparse schedule is cheap) and cache miss-rate (in a sparse
schedule, it is likely P will be unable to put the next needed
element in slot zero at the correct time). By spreading out
the schedule, we essentially transform BubbleRAM from an

6Or we can use any Boolean valued function as our scheduler. We focus
on periodic schedules because they are natural and effective.

efficient array to an even more efficient memory space with
logN levels of cache. Each cache level can be given its own
schedule, allowing us to tune cost trade-offs at each level.

Our processor accounts for cache misses by allowing P
to inject no-ops: P predicts if the RAM will miss and, if
so, instructs the processor to skip a cycle. By doing so,
she skips BubbleRAM’s index comparison check, which she
would otherwise certainly fail because the needed element
is not in slot zero. During the skipped cycle, the RAM
continues to increment its time counter and perform partitions,
so the skipped cycle makes progress towards a cache hit. This
preserves ZK, since no-op cycles are indistinguishable to V .

Cache misses fit well in our CPU emulation-based architec-
ture where no-ops can be easily injected. The same cannot be
said of direct circuit representation-based architectures, where
each potential miss must be conditionally handled. This added
handling further exacerbates the already challenging problem
of circuit-based control flow.

The value of cache-based memory is well understood in
the world of clear-text computing. Our specific choice of f is
loosely based on clear-text caching where each progressively
larger level of cache is more expensive than the last, mapping
to the idea that the more recently a piece of data was used, the
more likely it will be needed again soon. One curious point
is that, in terms of miss-rate, we outperform clear-text RAM
since P has the rather unique opportunity to use Belady’s
optimal page replacement algorithm to optimally program
partitions [Bel66].

3) BubbleCache: We now present our specific choice of
schedule. Consider the function ↑ which, for an input x,
computes the nearest power of two greater than x:

x ↑ , 2dlog xe

Let C be a constant. We use the following scheduler:

(C · k · 2k−1) ↑ | t (1)

That is, we delay partitioning by factor C · k (we vary C
in Section IX; values near 1

2 yield high performance). The
function ↑ ensures that the partition period for level i divides
the period for each level j > i. This prevents partitions at large
levels of cache from ‘ruining’ partitions at low levels of cache
(recall, we do not assume anything about the relative ordering
within the two halves of a partition): at the time we partition
a large level, we will subsequently partition all smaller levels.

Construction 3. BubbleCache is BubbleRAM whose sched-
uler is configured according to Equation (1).

It is difficult to argue analytically that logarithmic delay is a
good choice: data locality depends on the application and the
input, and so is highly variable. We choose logarithmic delay
for two reasons: (1) it yields excellent per-access performance
both asymptotically (see Theorem 2) and concretely and (2) in
our experiments it yields low cache miss-rates. More efficient
caching algorithms are possible, especially if we are willing
to base the caching strategy on the target program. However,
any improvements are likely to be small since BubbleCache
has only logN cost with small constants.

1546

Theorem 2 (BubbleCache efficiency). BubbleCache consumes
O(logN) OTs per access.

Proof. By amortizing partition costs across accesses.
Consider a single element as it moves through the levels

of cache and eventually ends up in slot zero. That element’s
arrival in slot zero is arranged by logN partitions, one for each
power of two less than N . Each partition of n = 2k elements
consumes O(n log n) OTs and is amortized over (C ·k·2k−1) ↑
accesses. Thus, we summarize the cost of a single access:

O

(
logN∑
k=1

2k · log(2k)

(C · k · 2k−1) ↑

)
= O

(
logN∑
k=1

k · 2k

k · 2k

)
= O(logN)

Thus, each access consumes O(logN) OTs.

We use BubbleCache to implement both our main memory
and our registry. The caching mechanism greatly decreases
the communication cost of each processor cycle, and we have
found that the cache miss-rate is generally low.

B. ALU: Efficient Arithmetic

Our processor implements arithmetic instructions via an
arithmetic logic unit (ALU). We defer a formal specification
of the ALU to Appendix C. Here, we note interesting points:

Our construction uses only a 40-bit prime field, as compared
to the 64-bit field used by [HK20a]. This is a significant
improvement: the sizes of messages transmitted by OTs are
reduced. The key reason [HK20a] chose a 64-bit prime is
because naı̈ve multiplication of 32-bit numbers can yield a
value as high as (232 − 1)2. A 64-bit prime field ensures
that even this worst-case multiplication will not overflow. We
designed a form of “bit-wise” multiplication that outputs a
maximum value 32 · (232 − 1) < 237: hence our choice of a
40-bit prime field is informed by security, not by correctness.

Our ALU aggressively amortizes multiplications: the ALU,
which handles all arithmetic instructions, needs only 65 OTs.
Our ALU significantly contributes to our overall performance.

Our architecture operates over 32-bit integers, but our pro-
tocol only supports a prime field. Thus, we must embed 32-bit
integers in the field. We achieve this by computing mod 232

on each ALU output. We do so cheaply: after the ALU runs,
P provides input that subtracts the top bits off an overflowing
value before we store the result in the output register. Although
P chooses this input freely, this trick is automatically secure:
our ALU always decomposes its arguments into 32 bits, and
the validity of the decomposition is checked. This check passes
only if P honestly subtracted off the top bits appropriately.
This does mean a malicious P can store a non-32-bit value
in the registry, but she cannot use this method to cheat: she
cannot read a bad value from the registry without being caught.

C. Multiplexing: Efficient Small Table Lookup

Each cycle has two primary tasks: (1) updating the program
counter and (2) updating the output register (storing to main
memory is also an important effect, but is handled separately).
Each of the twenty instructions in our ISA produce different

reg0opcode reg1 reg2

isImm{

32 31 25 20 15 10 0

32 0

immediate

Figure 4. Our instruction physical format. Each instruction has six fields: (1)
a single bit isImm that indicates if the instruction uses an immediate, (2)
the instruction’s op-code, (3–5) up to three register arguments, and (6) the
full 32-bit optional immediate. The first five fields are packed into one word
(ten bits are left unused) while the immediate is held in a separate word.

such updates. Each cycle, we multiplex over the twenty pos-
sible updates and only apply the current instruction’s update.
Multiplexers can be trivially implemented by large numbers
of multiplications, but this is somewhat inefficient. Here, we
show an improvement that uses vector-scalar multiplication to
more efficiently implement a multiplexer. The key idea is that
we organize values into a small table, then use vector-scalar
multiplication to recursively discard half the table until only
one table entry remains. The full lookup procedure uses log n
OTs to compute a lookup on n elements.

Let T be a table of n elements T1, ..., Tn/2, Tn/2+1, ..., Tn.
Suppose P wishes to look up element i, and let i1 be the first
bit of this index: i1 indicates if the needed element is in the
first half or the second half of the table. To partially look up
based on i1, the parties compute the following expression:

(T1, ..., Tn/2) + i1 · ((Tn/2+1, ..., Tn)− (T1, ..., Tn/2))

If i1 = 0, this expression computes (T1, ..., Tn/2); otherwise,
the expression computes (Tn/2+1, ..., Tn). This expression
requires a single OT of length n/2 secrets. We can recursively
narrow down to a single element using log n OTs. The total
length of OT secrets is n.

At the end of each cycle, we construct a table of three-
tuples. Each tuple contains elements corresponding to one
instruction: (1) the resultant program counter, (2) the resultant
output-register value, and (3) the corresponding instruction op-
code. After we perform a table lookup, we (1) update the
program counter, (2) update the output register, and (3) check
that the instruction’s op-code matches the looked up op-code
(see Section VII-D for further discussion of this check).

D. Instruction Format and Decoding

On each cycle, the processor performs operations according
to the current instruction. Instructions are stored in an effi-
cient read-only memory that requires only 2 logN OTs per
lookup [HK20a]. However, simply searching for the instruc-
tion is not sufficient. We must also ensure that the semantic
action of the processor (how we update the program counter,
registry, and main memory) is consistent with the instruction.

Figure 4 shows our instruction physical format. Each in-
struction holds an opcode, up to three register arguments, an
immediate, and a flag that indicates if the immediate is used.

The first interesting aspect of our instruction format is that
we store the immediate separately from the other fields. This

1547

makes reading the immediate trivial: no bit decomposition is
needed to extract the immediate.

Our registry is implemented by BubbleCache. Hence, on
each access, the RAM yields not only the looked up element,
but also that element’s index. Note also that the opcode
is given as output from the cycle’s multiplexer (see Sec-
tion VII-C). Finally, P chooses isImm as input during an
OT that allows her to swap the third register argument for
the immediate. Thus, each bit of the instruction’s first word is
represented twice: once in the physical instruction, and once
in the corresponding parts of the processor cycle. Therefore,
checking that the processor’s action is consistent with the
current instruction is extremely efficient: the parties use linear
operations to compute a second copy of the instruction’s first
word, then check that the two copies are equal. This means
that the first word of each instruction is never decomposed
into bits, a significant improvement over [HK20a], where a
large number of OTs were needed to decode each instruction.

E. Hardware Interrupts

Recall, our architecture jumps to program location
MEMFAULT when the program accesses an illegal memory
address (Section VI-E). Checking that a given memory address
is legal requires performing comparisons and is expensive.

Fortunately, our processor supports skipped cycles, so we
can handle interrupts cheaply: When an illegal access is at-
tempted, P has no choice but to continually skip cycles. If she
does not, BubbleCache will catch the attempt to index a non-
existent address. With the processor successfully stuck, we
need only make one change: our processor periodically checks
if it is experiencing a fault (we check every 10, 000 cycles).
This check is still relatively expensive, but is performed so
infrequently that the cost is nearly irrelevant. If the check
indicates a fault, our processor sets pc to MEMFAULT, and P
can continue the proof from the new state.

Recall, our architecture maintains a protected region in the
middle of memory. This region is implemented by simply
deleting addresses from BubbleCache’s address space.

VIII. ANSI C IMPLEMENTATION AND SYSTEM DESIGN

The architecture described to this point requires an expert
to craft the needed assembly programs and oracle calls.
Developers should instead be empowered to write ZK proofs
in a familiar way. We achieve this goal by implementing ANSI
C95, a familiar and complete programming environment. Our
implementation consists of two major components: (1) our C
compiler lifts our ISA and allows programmers to write natural
programs, and (2) our runtime library allows programmers to
access data through the C standard library (libc) interface.

Our system is depicted in Figure 5. Users compose proofs as
C programs that are compiled by our custom compiler, based
on LLVM [LA04]. The resulting assembly runs on our ZKM.
While running, the ZKM may communicate with P’s clear-
text system through oracle calls. Users may define and compile
custom oracle calls to further extend this capability.

A. User Experience (UX)

We view the compiler and runtime libraries as the user-
interface to our ZKM. Without a convenient interface, it is
impractical for users to construct non-trivial ZK statements.
We highlight the goals of our UX:

a) High-Level, Standard, Composable Programs: Pro-
grammers should represent their logic in a standard high-level
language, and that logic should be composable. Programmers
should be able to use existing code to quickly and succinctly
develop complex statements.

b) ZK execution that follows plaintext execution: System
and library calls, such as fread are transparently handled by
our runtime library. When such calls are executed, honest P’s
runtime uses an oracle call that ‘mirrors’ the call on her local
system. So for example, if the ZK program attempts to read a
file, P generates the appropriate ZK input by reading that file
on her local system. This mirroring makes ZK execution ‘feel
natural’: performance aside, it is difficult to detect differences
between running a program in clear-text and running the same
program on our ZKM in prover mode.

c) Minimal instrumentation: Standard C programs can
be transformed into proof statements by simply adding the
special instruction QED. Reaching QED constitutes a successful
proof, so the programmer should place QED behind appropriate
checks.

B. C Compiler

To support high-level, standard, composable programs, we
provide a C compiler. Our compiler is built as a custom back-
end to the LLVM compiler toolchain, using the Clang C front-
end. Clang translates C programs into LLVM’s intermediate
representation (IR), LLVM optimizes that IR, and a backend
translates the IR into the target architecture’s instruction set.
To support the ZKM, we add a new ZK backend that translates
LLVM IR to our ISA. Much of this translation is well
supported by our ISA, and while a significant effort, it is
relatively straight-forward. However, there are several classes
of operations in the C language that need special handling.

First, there are division-like operations (divide, modulus,
right-shift) which are not native to our ISA and must be emu-
lated. We do so efficiently via oracle calls (cf Section VI-D).
Our LLVM backend compiles division, right shift, and mod-
ulus operations into oracle calls with associated proofs.

For example, consider logical right-shift: x � y. Our
compiler replaces right-shifts with appropriate oracle calls and
associated proofs. Via the oracle call, P provides the right-shift
result as input. Then, V checks in ZK that the value is correct
(recall, P is untrusted). V checks two properties. First, P’s
low 32 − y bits must match the upper bits of x. Thus, the
parties left-shift P’s bits by y and compare the result with the
upper bits of x. Second, P’s high y bits must be zero. We
use AND to zero out y’s low bits, and we check that the result
is zero. With these checks complete, V is confident that P’s
provided right shift result is correct.

Second, LLVM and C have byte-addressable memory, but
our ISA only supports word-addressable memory. To allow

1548

User Defined
Statement

Design Time

Clang
ZK

Backend

.ll

Our Compiler

.c

.zkCompile Time

.cpp

User Defined
Oracle Calls

Ordinary
Compiler

Compiled
ZK Program

.so

Dynamically Loaded
Oracle Call Library

P’s cleartext
machine

Oracle Calls
YES/NORuntime

Common
Oracle Calls

.cpp

ZKM
P

ZKM
V

Figure 5. Our system design. Software components that we implemented are marked with a star; other software is either provided at design time or is off
the shelf. To use our system, the programmer needs only provide a C program. The C program is translated to our instruction set by our custom compiler.
The programmer provides the resulting assembly to both V and P , who together run the program via the ZK protocol. When the protocol finishes, V either
accepts or rejects the proof. As discussed in Section VI-D, P’s runtime interfaces with her local system via prover oracle calls. We provide a library of
common oracle calls, including implementations of low level operations and of system calls. The programmer may optionally augment the oracle call suite
by compiling custom code and dynamically linking it with P’s runtime.

sub-word granularity, our compiler translates sub-word mem-
ory accesses into full-word accesses. For loads, the compiler
loads a word and masks out the needed bits. For stores,
the compiler (1) loads the current value, (2) overwrites only
the appropriate bits, and (3) performs a word-aligned store.
With these operations, our compiler supports the full range of
integer and pointer operations in the C language.

Third, there are floating point operations. Our compiler
currently emulates floating point by translating each floating
point operation into a library call. These library calls emu-
late floating point via integer arithmetic. While correct, this
approach is slow and could be improved by future work.

Further improving our compiler, especially by incorporating
optimizations, is an exciting direction for future work. We
hope to add optimizations that take advantage of some of the
ZK ISA’s strengths (e.g. large register set), and hide some of
its weaknesses (e.g. word-aligned memory). We also hope to
explore architecture-compiler co-design, such as that of VLIW
architectures [Fis83] to construct more efficient ZK systems.

C. Runtime System Support

Real-world programs interact with an external system: they
communicate with other programs, read files, output data.
However, our ISA only supports a primitive input interface.
We therefore provide runtime support that lifts these low-level
operations into a C standard library interface (libc). Our
libc enables the ZKM to interact with processes and files
on P’s host system, allowing standard C programs, such as
sed and gzip, to run on the ZKM without modification.

We base our libc implementation on Newlib [RHS20].
Newlib builds the higher-level portions of libc on top of
libgloss, a collection of the standard library’s lowest level
behaviors. We provide a custom libgloss implementation,
translating its sixteen system interaction functions, such as
_read (the libgloss version of read), into oracle calls.
Figure 6 lists a simplified version of our _read implemen-
tation, which provides an example of how our entire standard
library is structured.. With libgloss implemented, Newlib
provides the remaining standard library functionality, and thus
we fully support libc.

D. System Limitations

Our system supports ANSI C95 programs. However, many
applications rely on POSIX interfaces and/or features of newer
C standards (C11, C17) beyond ANSI C95. In many cases,
integrating these more complex interfaces, while possible,
would require significant additional engineering. In other
cases, additional ‘hardware’ support would be required. For
instance, mprotect requires memory protection, requiring
our ZKM to add an MPU.

While the security of our ZKM is formally proven, the cor-
rectness of our compiler is not. Consequently, a skeptical P or
V should inspect the compiled assembly. One possible future
direction is to formally verify portions of the compiler [Ler09].

Our libc implementation does not validate data provided
by the external system: such input is seen as part of P’s
witness. For instance, a database application may assume it
always reads from a well-formed database. Our libc will
only return data read from the file, but will not check its

1549

#define READ_ORACLE 1
#define FD_REGISTER ...
#define LEN_REGISTER ...
...
int _read(int fd, char *buf, int len) {
proveroracle(READ_ORACLE, fd, len);
int rc = readtape();
if (rc > len) { HALT; }
for (int i = 0; i < rc; i++) {
buf[i] = readtape() & 0xFF;

}
return rc;

}
...
void read_orc(state* s) {
int fd = s->registry[FD_REGISTER];
int len = s->registry[LEN_REGISTER];
char data[] = new char[len];
// calls Linux’s read function
int rc = read(fd, data, len);
writetape(s->input, rc);
for (int i = 0; i < rc; i++) {
writetape(s->input, data[i]);

}
delete[] data;

}
REGISTER_ORACLE(READ_ORACLE, &read_orc);

Figure 6. The ZK procedure for a file-system read (top) and the corresponding
oracle call procedure run only by P (bottom). _read is run explicitly
by the ZK machine. When P executes this procedure and reaches the
proveroracle call, she temporarily escapes the ZK processor, runs the
procedure read_orc on her local machine to populate the machine’s input
tape, and then re-enters the ZK processor. In contrast, V performs a no-op
at the proveroracle call. Importantly, _read checks that P provided a
valid number of bytes. REGISTER_ORACLE is a helper procedure that lets
the programmer extend P’s oracle call table. Note, because oracle calls (e.g.,
read_orc) are run in cleartext on P’s machine, they are compiled separately
from the proof statements and can be written in C++.

contents. If an application has input constraints, it should in-
clude logic that checks those constraints. Put another way, only
the application itself is authenticated in ZK. The execution
environment is fully under P’s control, and she can arbitrarily
and adaptively alter it: e.g., she can change files, delete files,
or start/stop interacting processes. We leave embedding more
of the execution environment in the ZK proof as future work.

ORAM size is an important consideration: BubbleCache
is stored in corresponding data structures on both P and
V’s systems, and so the size-n BubbleCache is bounded by
the hardware RAM of their systems. Additionally, the largest
permutations employed by BubbleCache impose significant
overhead: the largest permutation requires P and V to execute
1
2n log n OTs. Further, we perform all OTs at the start of the
protocol. This can be taxing for weak P/V .

Natural directions for future work include more efficient
floating point support, compiler optimizations, and adding a
linker, among others.

IX. EVALUATION

In this section, we describe the implementation and eval-
uation of our system. We emphasize our system’s concrete
performance: our system runs at up to 11.89KHz with a
substantial RAM (see Figure 10 for detailed performance
reports, including clock rate, on several benchmarks). This is a
≈ 5.5× improvement over the clock-rate achieved by [HK20a]
for a more expressive instruction set.

A. Implementation Details and Testing Environment

We implemented our approach in C/C++. Our front-
end compiler and standard library together are ≈ 6KLOC.
Our backend cryptographic ZK machine implementation is
≈ 3KLOC. Our compiler is based on LLVM version
10.0.0 and newlib 3.3.0. We instantiated Oblivious
Transfer using the recent Ferret correlated OT [YWL+20] as
implemented by the EMP Toolkit [WMK16]. All benchmarks
were run on a commodity laptop: a MacBook Pro with an Intel
Dual-Core i5 3.1 GHz processor and 8GB of RAM. The two
parties communicated over a simulated 1Gbps LAN with 2ms
latency. Unless otherwise stated, we instantiate BubbleCache
using delay parameter C = 1

2 .

B. Bug Analysis and Detection Methods

In our first experiment, we demonstrate our system’s ability
to handle real-world programs. We pulled buggy versions of
two popular Linux programs, sed and gzip, off the shelf.
We added minimal instrumentation by inserting QED calls at
appropriate locations. Our system successfully proved in ZK
the existence of the bug in each program.

1) sed: Older versions of sed (we use 1.17) contain a
segmentation fault bug listed in the Software-artifact Infras-
tructure Repository (SIR) [DER05]: omitting the final newline
character from the input file results in a length underflow,
which causes sed to attempt to overwrite its entire address
space. This version of sed has 5.4KLOC. The bug exercises
undefined behavior and could exhibit itself in a number of
ways. Our architecture detects this bug through our memory
protection mechanism. We configure our memory hardware
interrupt, MEMFAULT, to hold QED (see Section VI-E), causing a
fault to conclude the proof. The hardware interrupt is triggered
when sed attempts to write to the protected region of memory
between the stack and heap.

We instrumented BubbleCache with 213 words of memory.
QED is reached after 390, 002 cycles, shortly after completion
of a hardware interrupt. The proof ran in 36.1s, yielding a
clock-rate of 11.1KHz. The execution incurred 6, 470 cache
misses and 45, 912 skipped cycles.

2) gzip: The bug (CVE-2005-1228 [CVE05]) allows an
attacker to illegally write to an arbitrary directory. When gzip
decompresses a zip file, the output directory is intended to be
named according to a prefix of the input file name. Under
certain inputs, gzip will erroneously write to an arbitrary
directory chosen by the attacker. We used gzip 1.3, which
is believed to be the last version with this bug. This version
of gzip has 5.4KLOC. We detect the bug by placing string
comparison logic immediately before opening an output file.

1550

Figure 7. BubbleCache’s and BubbleRAM’s amortized communication con-
sumption per cycle as a function of the size of RAM. Each OT swaps two
pairs of words and sends 81 bits (40 per pair element and 1 overhead bit).

Benchmark RAM Size Time Comm. Clock rate
(Words)

Sort (500) 215 1.78× 1.44× 1.92×
Sum (5,000) 215 1.34× 1.54× 1.36×
sed 213 1.26× 1.29× 1.40×
gzip 217 1.15× 1.31× 1.23×

Figure 8. Overall system performance improvement when implementing
RAM with BubbleCache versus with BubbleRAM. We tabulate (1) wall-
clock time reduction, (2) total communication (including non-RAM actions)
reduction, and (3) clock-rate (i.e., Hz) increase. We configured ZKM, setting
RAM to both BubbleCache and BubbleRAM for each of four benchmarks:
calling merge sort on 500 random numbers, summing a list of 5, 000 random
numbers, gzip, and sed bug proofs. An expanded table with additional
metrics is given in Figure 10.

We used BubbleCache with 217 words of memory and C =
1
2 . The proof uses 44, 092 cycles and runs in 6.5s, yielding a
clock-rate of 6.8KHz. gzip runs slower than sed because we
use a larger RAM and do not issue enough instructions to fully
amortize the largest BubbleCache partitions. The execution
incurred 554 cache misses and 2, 868 skipped cycles.

C. BubbleCache Performance

1) Comparison to BubbleRAM: We compare the commu-
nication cost of BubbleCache to that of BubbleRAM. We ran
the trivial program, a single QED instruction, but ensured that
the proof ran for sufficient cycles to fully amortize RAM cost.
RAM cost is program independent: the processor permutes and
accesses RAM on every cycle, regardless of the program. We
instantiated RAM with both BubbleCache and BubbleRAM
of various sizes. Figure 7 plots the resulting RAM communi-
cation consumption. The results clearly show BubbleCache’s
asymptotic advantage. With 217 memory words, BubbleCache
improves communication by more than 8× over BubbleRAM.

2) Cache Miss Rate and Impact: BubbleCache introduces
the possibility of a cache miss. To better understand Bub-
bleCache performance, we ran our system with different
configurations of RAM and against different benchmarks. A
full tabulation of the results is in Appendix E. Figure 8 gives
a high level summary of the results: in our benchmark suite,
despite the fact that RAM is only a single component of
our processor step, using BubbleCache provides substantial
improvement.

D. Prover Oracle Call Shortcuts

As discussed in Section VI-D, oracle calls can shortcut
the evaluation of functions that are expensive to compute but
cheap to verify. We demonstrate this with a concrete example.
We implemented both merge sort and ‘input and prove’ sort.
In the latter, P locally sorts the array, then provides the sorting
permutation as input. In ZK, the players check that the input
is indeed a permutation, apply the permutation, and check the
list is sorted. This algorithm uses only Θ(n) ZK computation.

We ran the two algorithms on lists of 10, 100, and 1000
elements. ‘Input and prove’ sort used respectively 1.47×,
3.92×, and 6.35× fewer ZK instructions than merge sort.

E. Maximum Memory Size

In our benchmarks reported in Figure 10, we configured
RAM with the minimum size needed to correctly execute each
program. We did so to demonstrate maximum performance.
However, our system can also be configured with much larger
RAM. Thus, we experimented with the maximum size of
RAM that our system can handle. We ran our gzip experi-
ment with 224 words, or 32MB, of main memory. The proof
completed successfully in 199s. The proof is substantially
slower than when run with 217 words because of large parti-
tions performed on the first RAM access. When we attempted
225 words, our modest laptop exhausted its memory resource
and the program crashed. With programming improvements
or by using better hardware, we could scale to larger main
memory.

Acknowledgments

We thank our S&P’21 reviewers for their many insightful
comments.

This work was supported in part by NSF award #1909769,
by a Facebook research award, by Georgia Tech’s IISP cy-
bersecurity seed funding (CSF) award, and by Sandia Na-
tional Laboratories, a multi-mission laboratory managed and
operated by National Technology and Engineering Solutions
of Sandia, LLC., a wholly owned subsidiary of Honeywell
International, Inc., for the U.S. Department of Energy’s Na-
tional Nuclear Security Administration under contract DE-NA-
0003525. This material is also based upon work supported
in part by DARPA under Contract No. HR001120C0087.
Any opinions, findings and conclusions or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views of DARPA.

REFERENCES

[AHIV17] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan
Venkitasubramaniam. Ligero: Lightweight sublinear arguments
without a trusted setup. In Bhavani M. Thuraisingham, David
Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017,
pages 2087–2104. ACM Press, October / November 2017.

[ALSZ13] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael
Zohner. More efficient oblivious transfer and extensions for
faster secure computation. In Ahmad-Reza Sadeghi, Virgil D.
Gligor, and Moti Yung, editors, ACM CCS 2013, pages 535–
548. ACM Press, November 2013.

1551

[BBB+18] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra,
Pieter Wuille, and Greg Maxwell. Bulletproofs: Short proofs for
confidential transactions and more. In 2018 IEEE Symposium on
Security and Privacy, pages 315–334. IEEE Computer Society
Press, May 2018.

[BBHR18] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Ri-
abzev. Scalable, transparent, and post-quantum secure compu-
tational integrity. Cryptology ePrint Archive, Report 2018/046,
2018. https://eprint.iacr.org/2018/046.

[BBHR19] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael
Riabzev. Scalable zero knowledge with no trusted setup.
In Alexandra Boldyreva and Daniele Micciancio, editors,
CRYPTO 2019, Part III, volume 11694 of LNCS, pages 701–
732. Springer, Heidelberg, August 2019.

[BCG+13] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran
Tromer, and Madars Virza. SNARKs for C: Verifying program
executions succinctly and in zero knowledge. In Ran Canetti and
Juan A. Garay, editors, CRYPTO 2013, Part II, volume 8043 of
LNCS, pages 90–108. Springer, Heidelberg, August 2013.

[BCG+19] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa
Kohl, and Peter Scholl. Efficient pseudorandom correlation
generators: Silent OT extension and more. In Alexandra
Boldyreva and Daniele Micciancio, editors, CRYPTO 2019,
Part III, volume 11694 of LNCS, pages 489–518. Springer,
Heidelberg, August 2019.

[BCR+19] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas
Spooner, Madars Virza, and Nicholas P. Ward. Aurora: Trans-
parent succinct arguments for R1CS. In Yuval Ishai and Vincent
Rijmen, editors, EUROCRYPT 2019, Part I, volume 11476 of
LNCS, pages 103–128. Springer, Heidelberg, May 2019.

[BCTV14a] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars
Virza. Scalable zero knowledge via cycles of elliptic curves. In
Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014,
Part II, volume 8617 of LNCS, pages 276–294. Springer,
Heidelberg, August 2014.

[BCTV14b] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars
Virza. Succinct non-interactive zero knowledge for a von
neumann architecture. In Kevin Fu and Jaeyeon Jung, editors,
USENIX Security 2014, pages 781–796. USENIX Association,
August 2014.

[Bel66] L. Belady. A study of replacement algorithms for virtual-storage
computer. IBM Syst. J., 5:78–101, 1966.

[BFH+20] Rishabh Bhadauria, Zhiyong Fang, Carmit Hazay, Muthura-
makrishnan Venkitasubramaniam, Tiancheng Xie, and Yupeng
Zhang. Ligero++: A new optimized sublinear IOP. In Jay Lig-
atti, Xinming Ou, Jonathan Katz, and Giovanni Vigna, editors,
ACM CCS 20, pages 2025–2038. ACM Press, November 2020.

[CDG+17] Melissa Chase, David Derler, Steven Goldfeder, Claudio Or-
landi, Sebastian Ramacher, Christian Rechberger, Daniel Sla-
manig, and Greg Zaverucha. Post-quantum zero-knowledge
and signatures from symmetric-key primitives. In Bhavani M.
Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu,
editors, ACM CCS 2017, pages 1825–1842. ACM Press, Oc-
tober / November 2017.

[CFH+15] Craig Costello, Cédric Fournet, Jon Howell, Markulf Kohlweiss,
Benjamin Kreuter, Michael Naehrig, Bryan Parno, and Samee
Zahur. Geppetto: Versatile verifiable computation. In 2015 IEEE
Symposium on Security and Privacy, pages 253–270. IEEE
Computer Society Press, May 2015.

[CVE05] Common Vulnerabilities and Exposures. CVE-2005-1228. https:
//cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1228,
2005.

[DER05] Hyunsook Do, Sebastian G. Elbaum, and Gregg Rothermel.
Supporting controlled experimentation with testing techniques:
An infrastructure and its potential impact. Empirical Software
Engineering: An International Journal, 10(4):405–435, 2005.

[Fis83] Joseph A. Fisher. Very long instruction word architectures and
the eli-512. In Proceedings of the 10th Annual International
Symposium on Computer Architecture, ISCA ’83, page 140–150,
New York, NY, USA, 1983. Association for Computing Machin-
ery.

[FNO15] Tore Kasper Frederiksen, Jesper Buus Nielsen, and Claudio
Orlandi. Privacy-free garbled circuits with applications to effi-
cient zero-knowledge. In Elisabeth Oswald and Marc Fischlin,
editors, EUROCRYPT 2015, Part II, volume 9057 of LNCS,
pages 191–219. Springer, Heidelberg, April 2015.

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana
Raykova. Quadratic span programs and succinct NIZKs without
PCPs. In Thomas Johansson and Phong Q. Nguyen, editors,
EUROCRYPT 2013, volume 7881 of LNCS, pages 626–645.
Springer, Heidelberg, May 2013.

[GMO16] Irene Giacomelli, Jesper Madsen, and Claudio Orlandi. ZKBoo:
Faster zero-knowledge for Boolean circuits. In Thorsten Holz
and Stefan Savage, editors, USENIX Security 2016, pages 1069–
1083. USENIX Association, August 2016.

[GMR85] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The
knowledge complexity of interactive proof-systems (extended
abstract). In 17th ACM STOC, pages 291–304. ACM Press,
May 1985.

[GMW91] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that
yield nothing but their validity or all languages in np have zero-
knowledge proof systems. J. ACM, 38(3):690–728, July 1991.

[Gro16] Jens Groth. On the size of pairing-based non-interactive ar-
guments. In Marc Fischlin and Jean-Sébastien Coron, editors,
EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages 305–
326. Springer, Heidelberg, May 2016.

[HK20a] David Heath and Vladimir Kolesnikov. A 2.1 KHz zero-
knowledge processor with BubbleRAM. In Jay Ligatti, Xinming
Ou, Jonathan Katz, and Giovanni Vigna, editors, ACM CCS 20,
pages 2055–2074. ACM Press, November 2020.

[HK20b] David Heath and Vladimir Kolesnikov. Stacked garbling for
disjunctive zero-knowledge proofs. In Anne Canteaut and Yuval
Ishai, editors, EUROCRYPT 2020, Part III, volume 12107 of
LNCS, pages 569–598. Springer, Heidelberg, May 2020.

[IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sa-
hai. Zero-knowledge from secure multiparty computation. In
David S. Johnson and Uriel Feige, editors, 39th ACM STOC,
pages 21–30. ACM Press, June 2007.

[JKO13] Marek Jawurek, Florian Kerschbaum, and Claudio Orlandi.
Zero-knowledge using garbled circuits: how to prove non-
algebraic statements efficiently. In Ahmad-Reza Sadeghi, Vir-
gil D. Gligor, and Moti Yung, editors, ACM CCS 2013, pages
955–966. ACM Press, November 2013.

[KK13] Vladimir Kolesnikov and Ranjit Kumaresan. Improved OT
extension for transferring short secrets. In Ran Canetti and
Juan A. Garay, editors, CRYPTO 2013, Part II, volume 8043
of LNCS, pages 54–70. Springer, Heidelberg, August 2013.

[KKW18] Jonathan Katz, Vladimir Kolesnikov, and Xiao Wang. Im-
proved non-interactive zero knowledge with applications to
post-quantum signatures. In David Lie, Mohammad Mannan,
Michael Backes, and XiaoFeng Wang, editors, ACM CCS 2018,
pages 525–537. ACM Press, October 2018.

[LA04] Chris Lattner and Vikram Adve. Llvm: A compilation frame-
work for lifelong program analysis & transformation. In
International Symposium on Code Generation and Optimization,
2004. CGO 2004., pages 75–86. IEEE, 2004.

[Ler09] Xavier Leroy. Formal verification of a realistic compiler.
Communications of the ACM, 52(7):107–115, 2009.

[LO13] Steve Lu and Rafail Ostrovsky. How to garble RAM programs.
In Thomas Johansson and Phong Q. Nguyen, editors, EURO-
CRYPT 2013, volume 7881 of LNCS, pages 719–734. Springer,
Heidelberg, May 2013.

[PHGR13] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova.
Pinocchio: Nearly practical verifiable computation. In 2013
IEEE Symposium on Security and Privacy, pages 238–252.
IEEE Computer Society Press, May 2013.

[RHS20] Red Hat Software. Newlib. https://sourceware.org/newlib/,
January 2020.

[SAGL18] Srinath Setty, Sebastian Angel, Trinabh Gupta, and Jonathan
Lee. Proving the correct execution of concurrent services in
zero-knowledge. In 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18), pages 339–356,
Carlsbad, CA, October 2018. USENIX Association.

[SHS+15] Ebrahim M. Songhori, Siam U. Hussain, Ahmad-Reza Sadeghi,
Thomas Schneider, and Farinaz Koushanfar. TinyGarble: Highly
compressed and scalable sequential garbled circuits. In 2015
IEEE Symposium on Security and Privacy, pages 411–428.
IEEE Computer Society Press, May 2015.

[Wak68] Abraham Waksman. A permutation network. J. ACM,
15(1):159–163, January 1968.

[WGMK16] Xiao Shaun Wang, S. Dov Gordon, Allen McIntosh, and
Jonathan Katz. Secure computation of MIPS machine code. In
Ioannis G. Askoxylakis, Sotiris Ioannidis, Sokratis K. Katsikas,

1552

and Catherine A. Meadows, editors, ESORICS 2016, Part II,
volume 9879 of LNCS, pages 99–117. Springer, Heidelberg,
September 2016.

[WMK16] Xiao Wang, Alex J. Malozemoff, and Jonathan Katz. EMP-
toolkit: Efficient MultiParty computation toolkit. https://github.
com/emp-toolkit, 2016.

[WSR+15] Riad S. Wahby, Srinath T. V. Setty, Zuocheng Ren, Andrew J.
Blumberg, and Michael Walfish. Efficient RAM and control
flow in verifiable outsourced computation. In NDSS 2015. The
Internet Society, February 2015.

[WYKW20] Chenkai Weng, Kang Yang, Jonathan Katz, and Xiao Wang.
Wolverine: Fast, scalable, and communication-efficient zero-
knowledge proofs for boolean and arithmetic circuits. Cryp-
tology ePrint Archive, Report 2020/925, 2020. https://eprint.
iacr.org/2020/925.

[XZZ+19] Tiancheng Xie, Jiaheng Zhang, Yupeng Zhang, Charalam-
pos Papamanthou, and Dawn Song. Libra: Succinct zero-
knowledge proofs with optimal prover computation. In Alexan-
dra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019,
Part III, volume 11694 of LNCS, pages 733–764. Springer,
Heidelberg, August 2019.

[YWL+20] Kang Yang, Chenkai Weng, Xiao Lan, Jiang Zhang, and Xiao
Wang. Ferret: Fast extension for correlated OT with small
communication. In Jay Ligatti, Xinming Ou, Jonathan Katz,
and Giovanni Vigna, editors, ACM CCS 20, pages 1607–1626.
ACM Press, November 2020.

APPENDIX A
SUCCINCT AND NON-INTERACTIVE ZK RELATED WORK

Ishai et al. introduced the ‘MPC-in-the-head’ tech-
nique [IKOS07]: here, P emulates in her head an MPC evalua-
tion of the proof among virtual players. V checks random por-
tions of the evaluation transcript and thus gains confidence that
the prover has a witness. By allowing V to inspect transcripts
of only some virtual players, the protocol protects P’s secret.
[IKOS07] inspired a number of subsequent MPC-in-the-head
works, e.g. [GMO16], [CDG+17], [AHIV17], [KKW18].

Succinct non-interactive arguments of knowledge (SNARK)
are extremely small proofs that can be quickly veri-
fied [GGPR13], [PHGR13], [BCG+13], [CFH+15], [Gro16].
Early SNARKs require a semi-trusted party, so more recent
works developed STARKs (succinct transparent arguments of
knowledge) [BBHR18]. STARKs do not require trusted setup
and rely on more efficient primitives. [BFH+20]’s Ligero++
combines techniques of [AHIV17], [BCR+19].

[HK20b] extensively analyzed many of the above works:
namely [KKW18], Ligero, Aurora, Bulletproofs, STARK,
and Libra [KKW18], [AHIV17], [BCR+19], [BBB+18],
[BBHR19], [XZZ+19]. Their analysis demonstrates that while
these works have excellent performance in certain aspects
(e.g., small proof size, fast verification time, non-interactivity),
they struggle to handle large proofs motivated by problems like
proving the existence of a bug in a program.

APPENDIX B
[HK20A] PROTOCOL, EXTENDED

Section V introduced [HK20a]’s arithmetic ZK protocol and
its authenticated sharing representation. Here, we continue by
showing how the protocol primitives are implemented.

a) Proofs of zero and of using correct inputs: P must
frequently prove that her intermediate inputs are chosen cor-
rectly (cf, e.g., Section VI-A4). This is achieved by proving
equality of corresponding values, which, in turn is achieved

by proving that particular shares each encode zero. This is
simple: P sends her share to V and V checks that the two
shares sum to zero. We use a simple optimization: rather than
sending each proof of zero separately, P instead accumulates
a hash digest of all proofs and sends this to V . Thus, P needs
only send κ bits to V to prove the validity of every zero check.

b) Linear Operations: Sharings support efficient linear
operations. Linear operations do not require communication;
the parties need only operate locally on their respective shares.
• To add sharings, parties locally add the shares:

JxK + JyK = 〈X,x∆−X〉+ 〈Y, y∆− Y 〉
, 〈X + Y, (x+ y)∆− (X + Y)〉 = Jx+ yK

To subtract sharings, parties similarly subtract the shares.
• To multiply a sharing by a public constant, the parties

locally multiply the shares by the constant:

cJxK = c〈X,x∆−X〉 , 〈cX, cx∆− cX〉 = JcxK

• Parties encode constants as follows: 〈c∆, 0〉 = JcK
c) Vector-Scalar Multiplication: [HK20a]’s protocol pro-

vides non-linear operations via a special form of share multi-
plication where one share is known to be in {0, 1}. We give a
simple generalization where instead P scales an entire vector
by a private bit. This generalization can achieve [HK20a]’s
multiplication by incorporating public constants and a zero
proof; in fact, the composed protocol is identical to [HK20a]’s.
Our extension also allows other usage, such as fast small table
lookup (Section VII-C). We note that [HK20a] did mention
some special case usage of vector-scalar multiplication, but
did not frame the formalization as generally as the following:

Let x ∈ {0, 1} be held by P and let y1, ..., yn ∈ Zp
be a vector. The parties hold sharings Jy1K, ..., JynK and
wish to compute Jxy1K, ..., JxynK (while P’s input x is not
authenticated, it could be verified later by an appropriately
applied proof of zero). First, P locally multiplies her shares
by x. Thus the parties together hold:

〈Y1, xy1∆− xY1〉, ..., 〈Yn, xyn∆− xYn〉

These intermediate sharings are invalid: the shares in the
ith sharing do not sum to yi∆. To resolve this, the parties
participate in a single 1-out-of-2 OT where V acts as the
sender. V uniformly draws n values Y ′i ∈$ Zp and allows
P to choose between the following two vectors:

Y ′1 , ..., Y
′
n Y ′1 − Y1, ..., Y ′n − Yn

P chooses based on x and hence receives as output the vector
Y ′1 − xY1, ..., Y ′n− xYn. The parties can now compute a valid
sharing for each vector index:

〈Y ′i , xyi∆− xYi − (Y ′i − xYi)〉 = 〈Y ′i , xyi∆− Y ′i 〉 = JxyiK

A vector-scalar multiplication of a length n vector requires
a 1-out-of-2 OT of ndlog pe-bit secrets. Since the trans-
mitted terms Y ′i are random, it suffices to use correlated
OT [ALSZ13], [KK13]. In practice, we instantiate multipli-
cation with the Ferret correlated OT technique [YWL+20].

Security. We stress that there is no security consequence
in using the above generalization of [HK20a]’s multiplication

1553

primitive: [HK20a]’s correctness, soundness, and verifiability
proofs of the underlying garbling scheme are each trivially
adjusted to accommodate this more powerful primitive. Thus,
the extended share algebra of [HK20a] is a malicious-verifier
ZKP system.

APPENDIX C
ARITHMETIC LOGIC UNIT

Figure 9 lists the core of the ALU. Our ALU aggressively
amortizes multiplications: in total, our ALU uses only 65 OTs.
The listed code does not handle MOV (which is trivial) or CMOV
(which is handled by one additional OT). The ALU outputs
are multiplexed by a small table lookup (see Section VII-C).
ADD, SUB, and MUL can each overflow Z232 . The highest

overflow comes from our multiplication algorithm, which can
produce values as high as 32 · (232 − 1). We account for
overflow by allowing P to input a value x ∈ {0..31}. The
parties subtract 232 · JxK from the ALU output, allowing P
to subtract off the top bits. At first, this may seem insecure.
However, note that the ALU bit decomposes each input register
on each cycle, and the validity of these decompositions are
checked. These checks can succeed only if the registers hold
valid Z232 elements. Thus, it is possible for a malicious P to
store an element not in Z232 in the registry, but she cannot
operate on such an illegal element without being caught.

APPENDIX D
PROOFS

Section VII claimed Theorem 1: our microarchitecture is
sound and complete. We now formalize in detail and prove
this claim. Let κ be the computational and σ be the statistical
security parameters (e.g., κ = 128, σ = 40).

To formalize security, we must capture all of P’s OT
choices. Therefore, we define the notion of an extended
witness, which includes not only the program input, but also
all ‘supporting’ OT choices needed to complete the proof (e.g.,
during bit decomposition P selects OT outputs corresponding
to the decomposed integer).

Definition 1 (Extended Witness). The extended witness is the
complete collection of P’s inputs, including supporting choices
that are not syntactically part of her witness.

Definition 2 (Proof Microarchitecture). A proof microarchi-
tecture µ is a protocol (P,V). Let P be a program in our
ISA. P takes as input P and an extended witness I . V takes
as input P . At the end of the protocol, V outputs 0 or 1.

Definition 3 (Proof Microarchitecture Completeness). A proof
microarchitecture µ completely implements our architecture if
for all programs P in our ISA and all extended witnesses I
such that P (I) reaches QED, P(P, I) causes V to output 1.

Theorem 3. If the prime field modulus p is greater than
237, then our microarchitecture (Construction 2) is a complete
implementation of our architecture (Construction 1) in the OT-
hybrid model.

Proof. By inspection of the microarchitecture (Section VII)
including the correctness of BubbleCache (Section VII-A),

of [HK20a]’s oblivious ROM, of small table lookup (Sec-
tion VII-C), and of our ALU (Figure 9). Our microarchitecture
is built on [HK20a]’s share algebra, which, given that OT is
correct, is complete. At a high level, our microarchitecture is a
relatively straightforward implementation of the architecture.
We mention several of the interesting points.
• BubbleCache introduces cache misses, which are not part

of our architecture. We nevertheless correctly implement
the architecture because (1) P skips cycles that would
otherwise experience a cache miss and (2) because Bub-
bleCache makes progress towards a cache hit during
skipped cycles: our processor cannot become stuck.

• The architecture includes hardware interrupts that are
issued on illegal memory accesses. Our microarchitecture
does not immediately issue hardware interrupts. However,
P skips cycles in order to simply wait until we period-
ically check for an illegal memory access. Because we
periodically check, we always make progress towards an
interrupt if the processor is in a fault state.

• Our architecture operates over values in Z232 , but our
microarchitecture operates over values in Zp. However,
we compute mod 232 on every cycle, and thus while
our representation can capture any value in Zp, our
registry and main memory will never store a value
≥ 232. Additionally, no operation will overflow the field:
multiplication has the largest outputs, with a maximum
output value of 32 · (232 − 1) < 237.

• Our architecture performs only one instruction per cycle,
but our microarchitecture must emulate every instruc-
tion on every cycle. This difference is easily accounted
for by (1) issuing dummy memory look-ups when a
register/address is not needed, (2) having P provide a
dummy input on cycles when input is not needed, and
(3) multiplexing (via small table lookup) the effect of
all instructions based on the current instruction opcode.
Thus, while we compute the effect of each instruction,
we only apply the effect of the active instruction.

Our microarchitecture is complete.

Even though our microarchitecture is described in the OT-
hybrid model, we still need computational assumptions: we
perform zero-tests by comparing hashes of a set of zero labels.

To define soundness, we define a syntactic interface to the
prover adversary A. A takes the program P , the extended
witness I , and her share of I as input: A(P, I, JIK). A’s
interface is different from P’s: A takes as input the already-
encoded shares JIK. That is, A does not participate in the OT
step of µ, and instead directly receives P’s shares of I .

Definition 4 (Proof Microarchitecture Soundness). A proof
microarchitecture µ soundly implements our architecture if for
all programs P in our ISA, all extended witnesses I such that
our architecture does not reach QED within poly(1κ) cycles,
and all probabilistic poly-time adversaries A, the probability
that A(P, I, JIK) causes V to output 1 is negligible in κ.

Similar to [JKO13]’s definition of soundness, the above
ensures that malicious P cannot win unless she has input labels
corresponding to I such that P (I) terminates in QED.

1554

ALU(JxK, JyK) :

JzK← J1K . z will in the end denote x = 0

for i ∈ 0..31 :

(J1− xiK, JzK)← (1− xi) · (J1K, JzK) . Decompose x into bits and check if x is zero.

JpowK← J1K . pow will in the end denote 2y mod 232

for i ∈ 0..31 :

. Decompose y into bits, compute bit operations, multiply (with overflow), and compute 2y

J2ix mod 232K =
31−i∑
j=0

2i+j · JxjK

JδpowK← ((2(2
i) mod 232)− 1) · JpowK

(JyiK, J(x ∧ y)iK, Jyi · (2ix mod 232)K, JδpowK)← yi · (J1K, JxiK, J2ix mod 232K, JδpowK)
J(x ∨ y)iK← JxiK + JyiK− J(x ∧ y)iK
J(x⊕ y)iK← J(x ∨ y)iK− J(x ∧ y)iK
JpowK← JpowK + JδpowK

prove JxK−

(
31∑
i=0

2i · JxiK

)
= J0K ; prove JyK−

(
31∑
i=0

2i · JyiK

)
= J0K

return (Jx+ yK, J232 + x− yK,

(
31∑
i=0

Jyi · (2ix mod 232)K

)
, Jx⊕ yK, Jx ∧ yK, Jx ∨ yK, JzK, Jy31K, JpowK)

Figure 9. The core of our ALU computes ADD, SUB, MUL, XOR, AND, OR, EQZ, MSB, and POW2. We denote the ith bit of a value x by writing xi. If a variable
appears outside a share and is not a constant, it indicates that this is a choice made by honest P . The full algorithm consumes only 64 OTs. Addition,
subtraction, and multiplication all include the possibility of an overflow, which is dealt with elsewhere in the processor.

Theorem 4. Assuming a collision resistant hash function, that
the prime field modulus p > 237, and that blog pc ≥ σ,
our microarchitecture (Construction 2) is a sound (w.r.t. σ)
implementation of our architecture (Construction 1) in the OT-
hybrid model.

Proof. By soundness of [HK20a]’s share algebra extended
with our generalized vector-scalar multiplication protocol.
[HK20a]’s share algebra can be framed as a privacy-free
garbling scheme, and hence is sound via [JKO13]’s protocol.

Our microarchitecture is built on share algebra, so primitive
operations are sound. We introduce opportunities to cheat by
allowing P to freely choose certain inputs, but we account
for each of these opportunities by forcing P to prove certain
values are equal to zero (as an optimization, we use a collision-
resistant hash function to compute and verify only a digest of
all zero proofs):

• To compute mod 232, P freely subtracts the top bits
from the ALU output. Suppose P cheats and subtracts top
bits that do not correctly compute mod 232. The ALU
output is subsequently stored in the registry. The next
time the invalid register is accessed, it will be decom-
posed into 32 bits, and the validity of the decomposition
will be checked. Since the register value does not fit in
32 bits, this check will fail and V will reject.

• Each cycle, the processor updates pc and the registry by
multiplexing over the effects of all possible instructions.

To multiplex these effects, P freely chooses a row of
a small lookup table. Suppose P cheats and chooses a
row that does not correspond to the current instruction.
One of the columns of the table is the instruction opcode.
Before the cycle terminates, P must prove that the looked
up opcode (together with the accessed registry indices)
matches the current instruction. Since P cheated and does
not have the correct opcode, she cannot pass this check.

P cannot cheat by skipping cycles. When a cycle is skipped,
the processor makes no progress, except to partition the
content of BubbleCache.
P can cheat by guessing a share that does not arise from the

program execution. Most directly, she can guess a pc share that
moves the processor to QED. As discussed in Section V, this
guess succeeds with probability 1

p−1 , and hence only succeeds
with probability negligible in σ. Even if there are multiple QED
instructions, P’s chances are not improved: she not only has
to reach QED, but also needs to know which specific pc value
she reached such that she can appropriately prove the current
pc value is in the ROM. This is a particular case of a more
general property of the protocol: to cheat, P must both know
a valid share and know the corresponding clear-text value.

Our microarchitecture is sound.

Theorem 5. Our microarchitecture is malicious-verifier Zero
Knowledge.

1555

Bench- RAM Instrs. Accesses Cycles Time (s) Cache IPC Comm. Millions Clock
mark Misses (MB) of OTs (KHz)

Sort
(500)

BubbleRAM

524399
135611

524399 99.0 0.00% 1.000 1755 144.0 5.30
BubbleCache 1/6 524399 65.9 0.00% 1.000 1409 108.0 7.96
BubbleCache 1/3 527053 53.9 0.49% 0.995 1212 87.4 9.78
BubbleCache 1/2 565503 55.6 5.57% 0.927 1216 85.0 10.17
BubbleCache 2/3 593171 67.3 5.92% 0.884 1249 86.5 8.81
BubbleCache 5/6 809246 86.6 20.43% 0.648 1674 115.0 9.34
BubbleCache 1 828633 87.3 20.52% 0.633 1708 117.0 9.50

Sum
(5000)

BubbleRAM

280025
76377

280025 34.4 0.00% 1.000 939 77.0 8.15
BubbleCache 1/6 280025 28.5 0.00% 1.000 754 57.8 9.83
BubbleCache 1/3 280039 25.2 0.01% 1.000 647 46.7 11.11
BubbleCache 1/2 283077 25.6 2.78% 0.989 611 42.8 11.05
BubbleCache 2/3 283333 24.4 2.79% 0.988 598 41.4 11.63
BubbleCache 5/6 381466 32.1 16.68% 0.734 790 54.3 11.89
BubbleCache 1 382554 32.6 16.70% 0.732 788 54.0 11.74

sed

BubbleRAM

344086
56525

350002 45.4 0.00% 0.983 1130 89.7 7.71
BubbleCache 1/6 350002 37.6 0.00% 0.983 973 73.4 9.30
BubbleCache 1/3 350002 35.1 1.02% 0.983 854 61.1 9.98
BubbleCache 1/2 390002 36.1 11.45% 0.882 874 60.8 10.81
BubbleCache 2/3 400002 37.1 11.91% 0.860 943 65.1 10.79
BubbleCache 5/6 530002 53.1 27.94% 0.649 1213 83.2 9.98
BubbleCache 1 540002 54.9 28.10% 0.637 1224 83.8 9.83

gzip

BubbleRAM

41224 6687

41224 7.5 0.00% 1.000 210 17.1 5.53
BubbleCache 1/6 41224 6.9 0.00% 1.000 177 13.7 6.01
BubbleCache 1/3 41458 6.3 0.76% 0.994 162 12.2 6.53
BubbleCache 1/2 44092 6.5 8.28% 0.935 161 11.9 6.82
BubbleCache 2/3 45628 6.5 8.78% 0.903 162 11.9 7.02
BubbleCache 5/6 60643 7.3 29.85% 0.680 186 13.5 8.28
BubbleCache 1 62499 7.7 29.98% 0.660 188 13.6 8.15

Figure 10. Performance characteristics of our system with various RAM configurations and on various benchmarks. We record (1) the total number of
instructions needed to reach QED, (2) the number of LOAD/STORE instructions in the execution, (3) total cycles (including skipped cycles), (4) the total
execution time, (5) the cache miss rate (i.e., the ratio of missed loads/stores to LOAD/STORE instructions), (6) the number of instructions executed per cycle
(IPC), (7) the total communication in MB (8) the number of OTs in millions, and (9) our system’s clock-rate in KHz. Note that each cache miss can be
responsible for more than one skipped cycle. Hence, cache miss rate and IPC can differ. For example, the sed bug causes one cache miss for BubbleRAM
on the illegal access, but that single miss incurs almost 6, 000 skipped cycles while waiting for a hardware interrupt. We ran each of four benchmarks: merge
sort on a list of 500 random numbers, summing a list of 5, 000 numbers, our sed bug benchmark, and our gzip bug benchmark. We ran each benchmark
using BubbleRAM and using BubbleCache configured with various delay constants C.

Proof. Immediate. The [HK20a] protocol is malicious-verifier
Zero Knowledge, as proved by [JKO13].

Theorems 3 to 5 together imply Theorem 1.

APPENDIX E
CACHE MISS RATE, EXTENDED

The Figure 8 statistics are extended in Figure 10.

1556

		2022-08-24T19:38:27-0400
	Preflight Ticket Signature

