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Abstract—As control flow hijacking attacks become more
challenging due to the deployment of various exploit mitigation
technologies, the leakage of sensitive process data through the
exploitation of memory disclosure vulnerabilities is becoming an
increasingly important threat. To make matters worse, recently
introduced transient execution attacks provide a new avenue
for leaking confidential process data. As a response, various
approaches for selectively protecting subsets of critical in-memory
data have been proposed, which though either require a signifi-
cant code refactoring effort, or do not scale for large applications.

In this paper we present DynPTA, a selective data protection
approach that combines static analysis with scoped dynamic data
flow tracking (DFT) to keep a subset of manually annotated
sensitive data always encrypted in memory. DynPTA ameliorates
the inherent overapproximation of pointer analysis—a significant
challenge that has prevented previous approaches from support-
ing large applications—by relying on lightweight label lookups to
determine if potentially sensitive data is actually sensitive. Labeled
objects are tracked only within the subset of value flows that may
carry potentially sensitive data, requiring only a fraction of the
program’s code to be instrumented for DFT. We experimentally
evaluated DynPTA with real-world applications and demonstrate
that it can prevent memory disclosure (Heartbleed) and transient
execution (Spectre) attacks from leaking the protected data, while
incurring a modest runtime overhead of up to 19.2% when
protecting the private TLS key of Nginx with OpenSSL.

I. INTRODUCTION

As defenses against control flow hijacking attacks become

more widely deployed, attackers have started turning their

attention into data-only attacks [1] for the exploitation of

memory corruption or disclosure vulnerabilities. Under certain

conditions, the corruption of non-control data can lead to

arbitrary code execution, e.g., by re-enabling the execution

of untrusted plugins [2, 3, 4]. As technologies such as Flash

and ActiveX are being phased out, mere data leakage is still

possible and can pose a significant threat, e.g., the exfiltration

of secret server keys [5] or private user information [6]. As if

the abundance of memory disclosure bugs was not enough, the

threat of data leakage attacks has recently been exacerbated by

a flurry of transient execution attacks [7], which can leak secrets

through residual microarchitectural side effects. Examples of

the severe outcomes of these attacks include accessing security-

critical files, such as /etc/shadow [8, 9], and leaking

memory from Chrome’s renderer process [10].

Various defenses can be used against data leakage attacks,

involving different performance, usability, and completeness

tradeoffs. Holistic approaches against memory corruption

bugs, such as memory safety [11, 12, 13, 14, 15], and data

flow integrity [16], can mitigate data leakage attacks by

eradicating their main exploitation primitive, i.e., arbitrary

memory read access. In practice, however, their deployment has

been limited due to their prohibitively high runtime overhead

and incompatibility with C/C++ intricacies that are widely

used in real-world applications [17]. At the same time, they

inherently cannot protect against transient execution attacks,

many of which focus on precisely bypassing such software-

enforced bounds checking and similar policies [18, 19].

Instead of protecting all data, an alternative approach is to

selectively protect only the subset of data that is really critical

for a given program. This can be achieved in several ways,

including privilege separation [20, 21], secure execution envi-

ronments [22, 23], sandboxing [24, 25, 26, 27], and fine-grained

memory isolation [27, 28, 29, 30]. Although these approaches

differ across various aspects, their common characteristic is

that they all require a significant code refactoring effort, which

is particularly challenging for large applications.

Seeking to increase the practical applicability of selective

data protection, some recent approaches have opted for requir-

ing the programmer to just annotate security-critical memory

objects in the source code as “sensitive,” and then automatically

harden the program to keep this data protected [31, 32,

33]. This is achieved by a compiler pass that identifies and

instruments the memory load and store instructions that operate

on sensitive objects. DataShield [31] inserts fine-grained bounds

checks for pointers to sensitive data, and lightweight coarse-

grained bounds checks for other pointers. Glamdring [32]

inserts transitions to and from an Intel SGX [34] enclave that

holds the sensitive data. Selective in-memory encryption [33]

inserts cryptographic transformations to keep the in-memory

representation of sensitive data always encrypted.

A key component of these approaches is the automated iden-

tification of all instructions that may access sensitive memory

locations. Due to the widespread use of pointers in C/C++,

pointer (or points-to) analysis must be used to resolve which

pointers can point to sensitive memory locations. There has

been extensive research in the area of points-to analysis, with

various algorithms falling at different points in the spectrum of

precision vs. speed. Andersen’s algorithm [35] offers increased

precision, but with a computational complexity of O(n3) that

makes it inapplicable to large programs. Indicatively, based on

our experience with SVF’s [36] Andersen’s implementation, it
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takes about 11 hours to complete for Nginx with OpenSSL,

while for the Chromium browser, our machine (with 32 GB

of RAM) ran out of memory after running for four days. On

the other hand, Steensgaard’s algorithm [37] has an almost

linear time complexity of O(n), making it scalable for large

programs, but comes with a much higher level of imprecision.

The issues of scalability and precision in points-to analysis

are well-known (we refer to Hind et al. [38, 39] for a more

detailed discussion). For selective data protection defenses, the

more imprecise the points-to analysis, the higher the number of

memory operations identified as potentially sensitive—due to

the overapproximation in computing the points-to graph, more

memory locations than those that will actually hold sensitive

data must be protected. This in turn requires more memory

instructions to be instrumented, which leads to higher overhead.

This challenge limits the applicability of prior works [31, 32,

33] to only moderately complex programs, such as MbedTLS

(a TLS library tailored for embedded systems). To the best of

our knowledge, no prior work on selective data protection is

applicable to larger code bases, such as OpenSSL, which has

actually suffered from in-the-wild data leakage attacks [5].

The competing requirements of high precision (to reduce

instrumentation and its overhead) and reasonable computational

complexity (to scale the analysis for large programs) motivated

us to rethink our approach towards pointer analysis. Starting

with the goal of making selective data protection practical

for large applications, in this paper we present DynPTA, a

defense against data leakage attacks that combines static

analysis with dynamic data flow tracking (DFT) to keep a

subset of manually annotated sensitive data always encrypted

in memory. To protect sensitive data from leakage, we opted

for in-memory encryption [33] because i) it makes the overall

approach applicable on a wide range of systems (in contrast to

relying on more specialized hardware features [30, 32]), and

ii) it protects against transient execution attacks, as any leaked

data will still be encrypted (in contrast to memory safety [31]).

DynPTA uses the linear-time Steensgaard’s points-to analysis

to support large programs, but ameliorates the overapproxima-

tion of the computed points-to graph by relying on lightweight

label lookups to determine if potentially sensitive data is

actually sensitive. We introduce a scoped form of dynamic

DFT to track labeled objects that is applied only on the

potentially sensitive value flows that were identified during

static analysis—requiring only a fraction of the program’s code

to be instrumented for DFT. For a given sensitive pointer

dereference, DynPTA selectively encrypts or decrypts the

accessed data depending on the presence or absence of the

sensitive label. To reduce the imprecision of the points-to

analysis even further, we also introduce a summarization-based

context-sensitive analysis of heap allocations that results in

improved runtime performance.

We implemented a prototype of DynPTA on top of LLVM,

and successfully applied it on eight popular applications,

including Nginx with OpenSSL, Apache Httpd, and OpenVPN—

applications with an order of magnitude more lines of code com-

pared to programs such as MbedTLS that were used in previous

works [31, 33]. DynPTA incurs a modest runtime overhead of

up to 19.2% when protecting the private TLS key of Nginx

with OpenSSL, while for MbedTLS the overhead is just 4.1%

(in contrast to a reported 13% for in-memory encryption [33]

and 35% for DataShield [31]). We also evaluated DynPTA with

real-world memory disclosure (Heartbleed [5]) and transient

execution (Spectre-PHT [40] and Spectre-BTB [41]) attacks,

and demonstrate that the protected data always remains safe.

In summary, we make the following main contributions:

• We propose a hybrid approach that combines static

analysis with scoped dynamic data flow tracking to

improve the scalability and accuracy of points-to analysis.

• We propose a summarization-based context-sensitive heap

modeling approach that reduces the overapproximation of

points-to analysis for heap allocations.

• We implemented the above approaches in DynPTA, a

compiler-level selective data protection defense that keeps

programmer-annotated data always encrypted in memory.

• We experimentally evaluated DynPTA with real-world

applications and demonstrate that it can protect against

memory disclosure and transient execution attacks while

incurring a modest runtime overhead.

Our implementation of DynPTA is publicly available as an

open-source project at https://github.com/taptipalit/dynpta.

II. BACKGROUND AND MOTIVATION

A. Pointer Analysis

Static pointer analysis computes the potential targets of

pointers in a program. Pointer analysis is sound, but as a

static analysis technique, it lacks access to critical runtime

information, and therefore suffers from overapproximation, i.e.,

the resulting “points-to” set of a pointer may include objects

that the pointer will never point to at runtime.

Pointer analysis assumes that a pointer may only point

within the valid bounds of the target object. Memory disclosure

vulnerabilities can still dereference a pointer to access memory

beyond these bounds and leak other objects. Pointer analysis

can correctly identify and model other classes of pointer

transformations that are considered undefined by the ANSI C

standard, such as casting an integer value to a pointer. These

undefined transformations, however, result in major loss of

precision in the resulting points-to graph.

1) Set Inclusion vs. Set Unification: Andersen’s [35]

inclusion-based and Steensgaard’s [37] unification-based algo-

rithms are the two most common pointer analysis approaches.

Both begin by iterating over every instruction and collecting

constraints related to the flows of pointers. These constraints

are of the types Addr-of, Copy, Deref, and Assign. For C

programs, these correspond to statements of the form p := &q,

p := q, p := ∗q, and ∗p := q, respectively. Each algorithm

solves these constraints using a set of resolution rules.

Andersen’s analysis begins by constructing points-to sets
for each pointer. When a new possible target q is found for

a pointer p, then q is included in the points-to set of p. This

inclusion, however, requires the recomputation of the pointer

1920



relationships for all Deref constraints that involve p, resulting in

a cubic complexity of O(n3). This makes Andersen’s algorithm

inapplicable to large and complex applications.

Steensgaard’s analysis maintains both pointer sets and points-
to sets. Every pointer is a member of a unique set, and a points-

to relationship is represented as a one-to-one mapping between

a pointer and a points-to set, i.e., all pointers in a pointer set

may point to all objects in a points-to set. When a new target

q is found for a pointer p, p’s points-to set is unified with

the set that contains q. This allows the algorithm to run in

almost linear time, making it applicable to large applications.

However, the unification of pointer sets leads to a significant

loss of precision, which makes the analysis results less useful.

We discuss the constraints and resolution rules in more detail

and also illustrate the results of running both Andersen’s and

Steensgaard’s analysis on a C code snippet in Appendix A.

2) Memory Object Modeling: Although constraint resolution

is an important consideration, the way constraints are modeled

also affects the analysis precision and speed. Context sensitivity
is a constraint modeling approach that considers the calling

context when analyzing the target of a function call. When

a function is invoked from multiple call sites, each site is

analyzed independently, reducing imprecision. This is critical

for functions that allocate or reassign objects referenced by their

arguments, or functions that return pointers. The prevalent use

of wrapper functions around memory allocation routines makes

context sensitivity a particularly important issue. Performing

context-insensitive analysis for memory wrappers would cause

all pointers to heap memory to point to the same object.

We address this issue by introducing a summarization-based

context-sensitive heap modeling approach (Section IV-B).

B. In-memory Data Encryption

Starting with the programmer’s sensitive data annotations, the

results of value flow analysis and pointer analysis provide us the

set of all memory load and store instructions that may access

sensitive memory locations. How these memory locations will

be protected against data leakage attacks is an orthogonal

design decision with various possible options. Relying on

typical software-based memory safety checks [31] requires the

insertion of just a few instructions per memory access, but does

not offer any protection against transient execution attacks [7,

19]. Relying on hardware-enforced memory isolation [30, 32,

42] can potentially reduce the cost of memory protection, but

the coarse-grained nature of these isolation mechanisms make

them challenging to use for individual memory objects, while

they may not be available on legacy systems.

An alternative is to keep sensitive data always encrypted

in memory, and decrypt it only when being loaded into CPU

registers [33]. Leaking secrets from registers requires arbitrary

code execution, which falls outside our threat model. The main

benefits of this approach include protection against transient

execution attacks, and wide applicability on existing and legacy

systems. The main drawback is the exceedingly high runtime

overhead of cryptographic transformations, even with hardware

acceleration through the AES-NI extensions.

For DynPTA, we opted to protect sensitive data using

in-memory encryption due to its attractive benefits. As the

key advantage of our approach is that it ameliorates the

overapproximation of the points-to analysis using runtime

information, we can afford the cost of cryptographic operations,

as they will be applied sparingly.

III. THREAT MODEL

We consider memory disclosure or data leakage vulnerabili-

ties that allow an attacker to read arbitrary user-space memory.

Data modification (e.g., swapping an encrypted value with

another leaked encrypted value) or corruption attacks are out

of the scope of this work. We assume that either due to the

nature of the vulnerability (e.g., Heartbleed), or due to defenses

and mitigations against arbitrary code execution, the attacker

has to resort to a data leakage attack. Given that attackers cannot

execute arbitrary machine code, any sensitive information or

secrets stored in the processor’s registers remain safe. Note that

attackers may still run arbitrary script code (e.g., in-browser

JavaScript) to access any part of the process’s address space

through a memory disclosure vulnerability [6].

Our focus is on user-space applications, and the exploitation

of kernel vulnerabilities is out of scope, as we assume that the

attacker cannot corrupt any kernel code or data.

Transient execution attacks can be classified as Spectre-

type [18] or Meltdown-type [43], depending on whether the

program can access the compromised data architecturally [7].

Spectre-type attacks bypass software-defined security policies,

such as bounds checking. Meltdown-type attacks bypass

architectural isolation barriers, and allow access to sensitive

data using instructions that cause hardware faults. We consider

both user-space Spectre-type and Meltdown-type attacks in our

threat model, but their kernel variants are out of scope.

Potential implicit leakage of sensitive data that takes part in

computation that observably affects control flow (e.g., through

execution timing side channels) is outside our threat model.

IV. DESIGN

The main goal of DynPTA is to protect sensitive memory-

resident process data from leakage. Due to the presence

of pointers in C/C++, pointer analysis is required to re-

solve sensitive memory accesses. DynPTA ameliorates the

imprecision of existing (scalable) pointer analysis algorithms

by coupling static pointer analysis with dynamic data flow

tracking (DFT). In particular, DynPTA uses a scoped form of

dynamic DFT that maintains labels for only potentially sensitive

memory objects. For a given sensitive pointer dereference,

DynPTA selectively encrypts or decrypts the accessed data

depending on the presence or absence of the sensitive label.

Although scoped DFT does not improve the precision of pointer

analysis per se, it ensures that only sensitive data undergoes

expensive cryptographic transformations. The sensitive data

to be protected is identified by the developer, who annotates

the respective variables or pointer initialization locations in

the source code—no further manual code modifications are

required, and the rest of the process is fully automated.
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reg1 = isSensitive(ptr1) ? decr(*ptr1) : *ptr1;
*ptr2 = isSensitive(ptr2) ? encr( reg2) :  reg2;
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Fig. 1: In this example, mem4 has been marked as sensitive, and it can be accessed through ptr1 and ptr2, along with other

memory locations (a). Relying on points-to analysis alone necessitates treating all target locations as sensitive, resulting in

excessive cryptographic transformations (b). Before dereferencing a pointer, DynPTA relies on scoped dynamic data flow

tracking to first check if the object is truly sensitive, and only then performs the required encryption or decryption operation (c).

Without the use of data flow tracking, the inherent overap-

proximation of pointer analysis would result in an excessive

number of cryptographic operations for data that is not actually

sensitive. Figure 1 illustrates how the use of scoped DFT

dramatically reduces the required instrumentation, by protecting

only the data that is actually sensitive. Consider the sample

code snippet in Figure 1(a). In this example, we assume

the programmer has specified that location mem4 contains

sensitive data. The two memory load and store instructions

are performed via pointers, and the pointer analysis algorithm

resolves pts(ptr1) := {mem1,mem2,mem3,mem4}, and

pts(ptr2) := {mem3,mem4}. These results may contain

overapproximation, i.e., the memory locations that will be

accessed through the two pointers may be fewer than the

locations the points-to analysis denotes as potential targets.

As shown in Figure 1(b), relying solely on static analysis,

we would conclude that ptr2 may point to sensitive memory

mem4, and therefore the value being stored must be encrypted

first. As ptr2 may also be used to store values to mem3, the

content of mem3 will end up being encrypted as well. Similarly,

the pointer analysis informs us that ptr1 may be used to read

not only from mem3 and mem4, but also from two more

memory locations. Since any read access through ptr1 will

first decrypt the fetched data, all memory objects that ptr1
may point to (mem1, mem2, mem3, mem4) must be kept

encrypted in memory to maintain the correct execution of the

program—otherwise any non-encrypted data accessed through

the pointer would be mangled by the decryption operation.

Instead of unconditionally encrypting (or decrypting) all

memory objects written (or read) through a pointer associated

with sensitive data, DynPTA uses scoped dynamic DFT to

maintain labels for sensitive objects. At runtime, DynPTA

selectively applies cryptographic transformations depending on

the presence or absence of the sensitive label for a given pointer

dereference. As shown in Figure 1(c), before reading through

ptr1 or writing through ptr2, DynPTA first dynamically checks
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Fig. 2: DynPTA’s main analysis and transformation phases.

whether the pointed object is truly sensitive, and if so, then

applies the necessary decryption or encryption operation.

Figure 2 presents an overview of DynPTA’s design, and

illustrates how the different phases of our approach analyze

and transform a target program. Based on the programmer’s

annotations, we first identify the initial set of sensitive memory

objects �. The whole code is then analyzed using Steensgaard’s

algorithm in conjunction with our context-sensitive heap mod-

eling (Section IV-B) to identify the set of memory instructions

that may access sensitive data �. Memory instructions are

then further analyzed to pinpoint those that may result in the

flow of sensitive values from the initial (annotated as) sensitive

objects to other variables �. Finally, the memory instructions

identified in the previous step are instrumented with code that

i) determines at runtime whether the read (or written) data is

sensitive or not based on its DFT information �, and ii) in case

it is sensitive, decrypts (or encrypts) the data before moving it

to CPU registers (or writing it back to memory) �.

A. Sensitive Object Identification

As shown in the example of Listing 1, DynPTA provides a

mark_sensitive() function that programmers can use to

mark individual objects that need to be protected. The function

treats the object whose address is provided to it as sensitive.

These objects can be simple variables or data referred to by

pointers. Note that when a programmer marks a pointer as
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sensitive, their intent is to guarantee the confidentiality of what
the pointer points to, and not of the pointer itself.

For pointers, mark_sensitive() must be applied at

every initialization (or reinitialization) point of the pointer,

where the pointer points to a new object. In the example of

Listing 1, the priv_key pointer is annotated as sensitive

after it is initialized in Line 3, and again after it is reini-

tialized in Line 12. For variables, the programmer must use

mark_sensitive() only once after the variable is defined.

1 int main (void) {
2 char* priv_key = malloc(8);
3 mark_sensitive(priv_key);
4 ...
5 char* ptr = priv_key;
6 ...
7 pub_key[i] = *(ptr+i)ˆ0xA;
8 ...
9 priv_key = malloc(8);

10 mark_sensitive(priv_key);
11 }

Listing 1: Simplified code with a pointer annotated as sensitive.

Once the initial annotations are provided by the program-

mer, no other manual intervention is required. DynPTA then

processes the annotations to identify all sensitive objects and

applies a “sensitive” label to them that is propagated by DFT at

runtime. Identifying sensitive variables is straightforward based

on the accompanying annotation. In case a pointer is marked

as sensitive, we have to treat the objects that this pointer points

to as sensitive, and any memory instructions operating on these

objects must be protected. DynPTA uses Steensgaard’s pointer

analysis with a novel context-sensitive heap modeling approach

to find these memory instructions.

B. Summarization-based Context-sensitive Heap Modeling

As discussed in Section II-A2, context sensitivity is an

important aspect of modeling the memory of a program for

pointer analysis. Most pointer analysis implementations model

every call to known Libc memory allocation routines uniquely.

For example, in the assignment p = malloc(...), the

object allocated by malloc flows to the pointer p. In the

presence of memory allocation wrapper functions, however,

this modeling results in a completely context-insensitive heap.

Although the object returned by the Libc function within the

wrapper flows to a single pointer, that pointer itself flows to

all the call sites that invoke the memory allocation wrapper.

Figure 3(a) shows how existing pointer analysis algorithms

model a simplified code snippet from OpenSSL, in which

the CRYPTO_malloc wrapper is used to allocate memory

for the session (sess) and certificate (cert) objects. The

context insensitivity due to the use of the wrapper causes

overapproximation, and both sess and cert point to the same

heap object. In practice, the overapproximation is much worse,

as all memory allocations in the library are performed via calls

to CRYPTO_malloc, and thus all pointers to heap objects

would end up pointing to the same object. For our purposes,

even if just one of these pointers is marked as sensitive, then

all heap objects would become sensitive. To deal with these

SSL_SESSION_NEW {
...
sess = CRYPTO_malloc(…)
...

}

CRYPTO_malloc {
...
ret = malloc(…);
return ret;

}

ssl_cert_new {
...
cert = CRYPTO_malloc(…)
...

}

sess certobject

sess certobject object

����%�	
�&
��	��	��
����'����(�#���	�

����%�	
�&
�sensitive '����(�#���	�

Fig. 3: Context-insensitive (a) vs. context-sensitive (b) modeling

of OpenSSL’s heap. Without context sensitivity, pointer analysis

assumes that sess and cert point to the same object (a).

Using summarization for CRYPTO_malloc, overapproxima-

tion is reduced by creating two distinct heap objects at its two

call sites, allowing pointer analysis to distinguish that sess
and cert point to different objects (b).

challenges, we have developed a summarization-based context-

sensitive heap modeling approach tailored to the extensive use

of memory-related wrappers in popular applications.

1) Memory Allocation Wrapper Identification: The first step

in modeling a context-sensitive heap is to identify the memory

allocation wrappers used by a given application. A wrapper

typically allocates heap memory via a standard Libc memory

allocation function, such as malloc, performs some additional

sanitization and checks, and returns the pointer to the allocated

memory. This pointer, however, may not be the same one

returned by the Libc function—that pointer may have been

copied to other pointers, one of which in turn may be returned.

Similarly, in case of pool-based allocators, the memory is

allocated in pools and the wrapper returns a pointer into a chunk

within this pool. To track such potential pointer manipulation,

we perform a lightweight intraprocedural pointer analysis only

on the candidate function under consideration, and identify if

the returned pointer always points to the heap memory allocated

via known memory allocation functions provided by Libc.

Another challenge is that memory allocation wrappers may

be nested. For example, in OpenSSL, CRYPTO_malloc
internally invokes Libc’s malloc, but there are other wrappers

around CRYPTO_malloc, such as CRYPTO_remalloc and

CRYPTO_realloc, which also need to be identified. There-

fore, we begin our analysis with the known Libc memory

allocation wrappers from the previous step, but also repeat

the process of identifying memory wrappers iteratively, a

configurable number of times (currently set to five), with each

iteration including the wrappers found in the previous iterations

as known memory allocation wrappers.

2) Memory Allocation Wrapper Summarization: The typical

way of modeling a context-sensitive memory model for pointer

analysis is to reanalyze each function at each call site. In our

case, to ensure context-sensitive heap modeling, we would

have to reanalyze each memory allocation wrapper at each of

their call sites. This comes at a cost of increased analysis time,

especially when dealing with nested wrappers.
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An alternative, faster approach is to use summarization [44,

45]. Summarization-based approaches analyze each function

exactly once to derive the points-to relationships between the

arguments and the return values of the function. The result

of this analysis is called the summary of the function. When

performing pointer analysis on the entire program, at each call

site of a given function, its pregenerated summary is readily

used, instead of analyzing the function again.

We employ summarization by first analyzing each memory

allocation wrapper intraprocedurally, and deriving the points-to

relationships between its arguments and return values. We store

these results in a summary that includes the information that

the memory allocation wrapper should allocate a new object on

the heap and return a reference to it. As shown in the example

of Figure 3(b), our analysis summarizes CRYPTO_malloc,

and then at each of its call sites, instead of analyzing the

wrapper again, its pregenerated summary is used. When the

pointer analysis algorithm analyzes these call sites, it creates

two different heap objects for the two invocations, and stores

separate references to them in the sess and cert pointers.

C. Pointer and Value Flow Analysis

Once we have modeled the heap allocations in a context-

sensitive manner, we analyze all pointers and memory objects

in the program using Steensgaard’s unification-based pointer

analysis algorithm [37]. Every instruction in the program is

first analyzed and constraints corresponding to that instruction

are collected. Once all constraints are collected, they are solved

according to the Steensgaard’s algorithm’s constraint resolution

rules specified in Appendix B, providing us the final points-to

sets for each pointer in the program.

Resolving all pointer references is not enough to achieve

complete data protection, as sensitive data may propagate to

other variables and objects, which we call sensitive sink sites. To

prevent potential information leakage through these variables,

DynPTA performs static value flow analysis to identify all

sensitive sink sites.

Sensitive values might flow through both direct and indirect

(via pointers) memory instructions, and thus DynPTA tracks

both direct and indirect value flows. Value flows are represented

as directed dependency chains originating at a memory load
operation and terminating at a memory store operation. A

sensitive value flow originates at a load operation from

a sensitive memory location, and results in marking the

destination memory operand of the final memory store as

sensitive. All such directed dependency chains are linked

recursively, until no new chain is found.

To track indirect value flows, we use the results of Steens-

gaard’s analysis, and consequently, the value flow analysis

provides a superset of all value flows that may result in the flow

of sensitive values. Because the sources of these indirect value

flows may include memory loads via pointers, and similarly the

destinations of these value flows may include memory stores

via pointers, this superset has imprecision associated with both

the sources and the destinations of the value flows. These

source and destination pointers may point to both sensitive

and non-sensitive memory objects. Consequently, if all objects

discovered through DynPTA’s static analysis were marked as

sensitive, we would be unnecessarily protecting a severely

overapproximated set of objects.

The actual sources and targets of the identified (potentially

sensitive) indirect memory accesses are available at runtime—at

which point it can be determined if they are indeed sensitive or

not. Below, we describe how DynPTA uses runtime information

in the form of labels maintained by scoped dynamic data flow

tracking to mitigate the overapproximation of the static analysis.

D. Scoped Dynamic Data Flow Tracking

The result of Steensgaard’s algorithm is the superset of all
possible memory accesses that may read from or write to sensi-

tive memory locations. Due to the inherent overapproximation

of points-to analysis, this set may include indirect memory

operations that actually do not access any sensitive object, as

well as indirect memory operations through partially sensitive
pointers, which access sensitive data only during some of their

invocations. Similarly, value flow analysis captures all value

flows that may involve sensitive data. At runtime, however,

only a subset of them will actually involve sensitive data.

To deal with these two cases of overapproximation, we

use scoped byte-level dynamic data flow tracking, which

relies on a shadow memory to associate labels to the tracked

memory locations. Labels are initialized for every object

that is marked as sensitive. Then, dynamic DFT is applied

only within the scope of the identified potentially sensitive
value flows, and thus only a fraction of the whole program’s

code has to be instrumented with DFT propagation logic.

The (propagated) sensitivity labels are then used to perform

lightweight lookups when dereferencing partially sensitive

pointers, to decide whether the accessed object must undergo

cryptographic transformations.

1) Dynamic DFT on Potentially Sensitive Value Flows:
Every load–store dependency chain identified as potentially

sensitive by the value flow analysis (Section IV-C) consists of

at least two instructions—a memory load and a memory store.

If a dependency chain involves an indirect memory access (via

a pointer), then DynPTA instruments all instructions in the

chain with DFT logic to propagate label information. As we

show in Section VI-B, only a fraction of all value flows (1–9%)

end up being instrumented with DFT propagation logic. At the

terminating memory store operation, DynPTA determines at

runtime whether the value being stored is sensitive (that is, if

it was loaded from a sensitive memory location) or not.

If the initial load instruction reads from a sensitive memory

location, DynPTA performs two actions: i) it applies the

sensitive label to the destination operand of the store instruction,

and ii) it encrypts the value being stored so that the in-memory

representation of the value is protected against data-leakage

attacks. Similarly, if the memory store operation performs an

indirect memory access and writes to a memory location via

a pointer, the sensitive label is applied only to the memory

object that the pointer points to at runtime. Because we include

all targets of sensitive value flows identified statically when
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priv_key_e_bn

pub_key_e_bn

priv_key_mod_bn

pub_key_mod_bn

to

BIGNUM* BN_copy (BIGNUM* to, BIGNUM* from) {
...
to[0] = from[0];
to[1] = from[1];
...

}

from
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Fig. 4: Example of potentially sensitive (dashed arrows) and

actually sensitive (solid arrows) value flows. Sensitivity labels

are maintained using dynamic DFT to distinguish between the

two. DynPTA uses these labels to decide whether the object

written through the to pointer must first be encrypted or not.

void fun (void) {
char *pkey;
pkey = malloc(8);
mark_sensitive(pkey);
...
char *ptr = pkey;
*ptr = ‘A’;
...
ptr = malloc(8);
*ptr = ‘B’;
...

} 

‘B’

pkey

ptr

SENSITIVEencr(‘A’)

��������(�*��� ���#���(�*���

Fig. 5: In this example, ptr is a partially sensitive pointer that

can point to both sensitive and non-sensitive data. By keeping

sensitivity labels in a shadow memory, DynPTA can selectively

apply the required cryptographic transformations only when

the pointer dereference involves sensitive data.

deciding to apply the predicated transformation described in

Section IV-D2, once the sensitive label is applied to a memory

location, all memory instructions operating on that memory

location are automatically instrumented with AES operations.

Because our system relies on runtime DFT label information,

if the same load–store chain (which includes indirect memory

accesses) is invoked multiple times with sensitive and non-

sensitive values, the sensitive labels will be propagated only
to the intended targets of the sensitive value flows. Figure 4

illustrates this case using a simplified code snippet from the

OpenSSL library. The function BN_copy is invoked for the

processing of both the private and the public SSL key. The

from and to pointer arguments can point to parameters of

both the public and the private key, but only the latter needs

to be protected. Based on the label of a given object, DynPTA

decides whether the object must be encrypted or not before

writing it in memory through the to pointer.

Sensitive labels are retained for the lifetime of the object.

Sensitive heap objects have their labels cleared when the object

is freed via the free Libc function. Similarly, sensitive labels

associated with local variables (allocated on the stack) are

cleared when the function returns.

2) Runtime Handling of Potentially Sensitive Pointers:
To overcome the overapproximation of points-to analysis and

avoid costly cryptographic operations for non-sensitive data,

we instrument the dereferences of partially sensitive pointers

to perform a shadow memory lookup, and decide at runtime

whether to apply the cryptographic transformation or not, as

shown in Figure 5. Absence of a label indicates that the

accessed memory location is not sensitive, in which case the

expensive cryptographic operations are elided, and the original

memory load or store operation is performed directly. In case

of loops operating incrementally over potentially sensitive

pointers, we further optimize their label lookups as discussed

in Appendix D.

We should stress that Steensgaard’s analysis identifies only

a fraction of all memory accesses as potentially sensitive, and

only these are instrumented with label lookups. At runtime,

only the fraction of potentially sensitive memory operations

that truly access sensitive objects undergo the expensive AES

transformations. Indicatively, our evaluation shows that about

15% of all memory operations in the tested programs are

instrumented with label lookups, and at runtime, only 1–5%

of all memory accesses undergo AES transformation.

E. In-memory Data Protection using Encryption

Sensitive data remains encrypted in memory as long as

it flows within DynPTA’s protection domain. This domain

depends on the code that takes part in DynPTA’s whole-program

analysis, on which points-to analysis is performed. If sensitive

data has to flow to an external library that is not part of the

protection domain, then for compatibility reasons DynPTA first

decrypts the data. At that point, the plaintext form of sensitive

data will exist in memory, and could be leaked due to some

vulnerability. This is the main reason we require whole program

analysis (including external libraries), to ensure that DynPTA’s

protection domain spans the whole (to the extent possible)

code base of the application. Based on our experiments with

various applications and use cases (Section VI), we did not

encounter and could not identify any other situation in which

sensitive data should escape the protection domain.

Similarly to our previous work [33], we use AES-128 in

Electronic Code Book (ECB) mode to ensure the confidentiality

of sensitive data in memory. Modern processors offer hardware-

accelerated AES operations, such as the AES-NI extensions of

Intel processors, on which we rely to improve performance.

AES-128 has 10 rounds of operations for both encryption

and decryption. Each of these rounds has its own “round keys”

that are generated from the initial secret key. To avoid the

overhead of generating the round keys from scratch before

each AES operation, DynPTA pregenerates them from the

initial secret key and stores them in registers. Modern Intel

and AMD processors support SSE [46] and provide 16 128-bit

registers (XXM0–XMM15). We use these registers to store

the expanded round keys for all ten encryption round keys.

Decryption round keys are the inverse of the encryption round

keys, and Intel provides the aesimc instruction to efficiently

compute them. Applications that rely on XMM registers for

computation are not directly compatible with DynPTA. This

is not a major issue, however, because most such applications

have the option of being compiled without SSE support for

backwards compatibility reasons.
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V. IMPLEMENTATION

We implemented DynPTA on top of LLVM 7.0 [47]. As

DynPTA needs to perform whole-program analysis on the

application and its dependent libraries, we use link time

optimization (LTO) with the Gold linker [48]. We include

all imported libraries in our analysis except Glibc, for which

instead we provide our own implementation of commonly used

functions (e.g., memcpy, memcmp, strcpy). Our observation

is that sensitive data is not passed to other Libc functions, but

additional ones can be supported as needed. We modified

the build scripts of the applications and libraries to use the

LLVM tools (clang, llvm-ar, and llvm-ranlib), which

operate on LLVM’s intermediate representation (IR), instead

of their counterparts from the GCC toolchain.

A. Context-sensitive Heap Modeling

The first step for modeling a context-sensitive heap is

to identify all memory allocation wrappers (as discussed in

Section IV-B), for which we have implemented an LLVM

pass. For functions that return pointers, we use the intrapro-
cedural Andersen’s points-to analysis provided by LLVM

(CFLAAAnders), to determine if the function returns a

pointer to memory allocated from within the function. Being

intraprocedural, this is a lightweight and inexpensive analysis

with few constraints, and we can thus afford to use the more

expensive (but more precise) Andersen’s algorithm.

As discussed in Section IV-B1, we must iteratively analyze

functions to identify nested wrappers. We set the iteration

limit for this process to five, which is more than enough for

the tested applications. Once the wrappers are identified, we

generate their summary and insert it at the respective call sites.

B. Steensgaard’s Analysis

We implemented our Steensgaard’s pointer analysis on top

of SVF [36], a popular static analysis framework, as an LTO

pass. SVF supports multiple variants of Andersen’s algorithm,

but does not support Steensgaard’s algorithm.

SVF operates on the LLVM IR representation by iterating

over every IR instruction and capturing their pointer constraints.

We solve each of the constraints collected, performing set unifi-

cation operations when required, as described in Section II-A1.

That is, when we discover a new points-to target t for a pointer

p, we unify the sets T and P , where t ∈ T , and P is the

set of objects that p points to. The details are provided in

Appendix C. Solving these constraints results in computing

all points-to relationships associated with the constraints. Only

when solving a constraint results in the derivation of a new call

target for an indirect function call, the constraints associated

with the newly discovered target must be recomputed. Apart

from this, every constraint is processed exactly once, allowing

the algorithm to operate in almost linear time.

We use SVF’s interfaces to export the analysis results.

This allows our implementation to be seamlessly used as

a replacement for the other variants of Andersen’s analysis

provided by SVF (we are in the process of contributing our

Steensgaard’s analysis implementation to the SVF project).

C. Static Value Flow Analysis

As discussed in Section IV-C, objects marked as sensitive

may be copied and stored to other objects and variables. The

LLVM instructions LoadInst and StoreInst are used

to read from and write to memory, respectively. To identify

sensitive value flows, we track the flows that begin from a

LoadInst reading a sensitive object, and terminate in a

StoreInst writing to a non-sensitive object.

As discussed earlier, indirect value flows via pointers are

possible, and we use the Steensgaard’s analysis results to

resolve the sources and targets of any pointers involved in

indirect value flows. Due to its inherent overapproximation,

this means that the sink sites of some of the identified value

flows may not receive any sensitive values at runtime—this

is the reason for introducing dynamic data flow tracking to

maintain sensitivity labels. To aid the DFT phase identify these

potentially sensitive value flows, we add metadata to every

instruction that is part of them.

D. Scoped Dynamic Data Flow Tracking

Similarly to existing DFT frameworks [49], DynPTA main-

tains a shadow memory located at a fixed offset in the process’

address space, which keeps a sensitivity label for each byte of

process data. To speed up label initialization and lookup, we

use hand-crafted assembly code. Note that the shadow memory

does not have to be kept secret from the attacker.

The set of tracked memory objects (located on the stack,

heap, or the global section) includes the objects annotated

directly by the programmer, as well as the rest of the objects

derived through value flow analysis. At program startup, the

only memory locations labeled as sensitive are the locations

that are explicitly marked by the programmer using DynPTA’s

mark_sensitive() function. Marking a memory location

as sensitive i) applies the sensitive label to it, and ii) encrypts the

existing data at that location. From that point on, our scoped

DFT logic propagates sensitive labels only for instructions

that contain our inserted metadata (Section V-C), i.e., the

instructions that take part in potentially sensitive value flows.

If a LoadInst reads from a memory location marked

as sensitive, the location of the terminating StoreInst is

also labeled as sensitive. At that point, we insert an LLVM

BranchInst that checks if the value about to be stored is

marked as sensitive, in which case it encrypts the value before

storing it. Any further operations on this object will always

undergo AES transformation, as the label is maintained for

the lifetime of the object. In this way, we apply AES only to

objects that are sinks for truly sensitive value flows.

In addition to properly maintaining sensitive value flows,

Steensgaard’s analysis provides us with every LoadInst and

StoreInst that may access sensitive data. For each of these

instructions, we again perform a label lookup to determine

whether the memory operand is actually sensitive. In that

case, an LLVM BranchInst invokes the corresponding AES

operations—otherwise the memory access proceeds normally.
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TABLE I: Applications used for performance evaluation.

Application Protected KLOC Bitcode DynPTA
Data Size Compilation

Nginx + OpenSSL Private Key 389 8M 50.6 min
Httpd Password 179 3.7M 11.0 min
Lighttpd + ModAuth Password 83 1.9M 2.8 min
MbedTLS server Private Key 54 726K 1.3 min
OpenVPN Private Key 329 3.5M 59.1 min
Memcached + Auth. Password 71 1.1M 1.0 min
ssh-agent Private Key 52 640K 1.3 min
Minisign Private Key 45 1.2M 37 sec

VI. PERFORMANCE EVALUATION

We evaluated DynPTA with a set of eight popular applica-

tions. In each case, we annotate sensitive data such as passwords

and private keys to be protected. Every experiment is performed

20 times, and we report averages. We run all our applications

under test on a machine with an Intel Core i7-6700 CPU and 32

GB of RAM, running Ubuntu 19.10 and Linux kernel 5.3.0-40.

For server–client experiments, we run the client on a machine

with an Intel Xeon E5-2620 CPU and 64 GB of RAM, running

Ubuntu 18.04 and Linux kernel 4.15.0-106. Both the server

and client machines were on the same local 1Gbit/s network.

A. Applications

Table I lists the applications used in our evaluation, and the

respective data annotated as sensitive. We included popular

web servers, VPN servers, and desktop utilities. We also report

the number of source code lines, the LLVM bitcode size, and

the time that DynPTA takes to generate the hardened binaries.

Nginx: We built Nginx with the HTTP_SSL_module
enabled and linked it with the OpenSSL library. We use

LLVM’s link time optimization (LTO) to generate the combined

bitcode that includes the main Nginx executable and all libraries.

Our use case for DynPTA is to protect the parameters of the SSL

private key. These are in BIGNUM objects, which are referred

to by pointers stored in the rsa field of the pkey object. The

function ssl_set_pkey initializes these pointers, which we

mark as sensitive. As shown in Table I, the use of Steensgaard’s

algorithm [37] allows DynPTA to complete in less than an

hour all its analysis and instrumentation passes. Indicatively,

an Andersen’s pass alone for the same code requires almost

11 hours to complete.

Apache Httpd with Authentication: We used LTO to link

Httpd statically with Apache’s Portable Runtime (APR). Httpd

supports password protection for certain directories through

the ModAuth module. The password is stored on the heap

and is referred to through the pointer file_password (in

mod_authn_file.c), which we annotate as sensitive. This

object is allocated via the wrapper ap_getword(), provided

by APR. Our context-sensitive heap modeling successfully

identifies this function as a memory allocation wrapper.

Lighttpd: Similarly to Httpd, Lighttpd also

supports ModAuth for password-protecting files and

directories. The pointer password_buf in function

mod_authn_file_htpasswd_get is initialized to store

the address of the password, and we annotate it as sensitive.

Fig. 6: New instructions added due to scoped DFT for

potentially sensitive value flows.

Fig. 7: Percentage of protected memory instructions.

MbedTLS server: MbedTLS is a lightweight TLS library

which also provides a simple TLS server. Similarly to OpenSSL,

MbedTLS uses a custom data type to represent multi-precision

integers called mbedtls_mpi. The SSL private key is

stored within mbedtls_rsa_context, in objects of type

mbedtls_mpi, which we annotate as sensitive.

OpenVPN: We configured OpenVPN to work with OpenSSL

certificates, and used LTO to build the combined LLVM IR

bitcode. Similarly to Nginx, we annotate the parameters of the

SSL private keys as sensitive.

Memcached with Authentication: When Memcached is

compiled with LibSASL, client connections can be pro-

tected with a password. The variable buffer in function

sasl_server_userdb_checkpass stores this password,

which we mark as sensitive.

ssh-agent: Private SSH keys are typically password-protected

on disk, and ssh-agent conveniently keeps them in memory

so that users do not have to re-type the password. The private

key is stored in an object of type ssh_key (initialized in

function sshkey_new), which we mark as sensitive.

Minisign: Minisign is a simple file signing tool that uses

Libsodium for hashing and signing. The private key used for

signing is stored in an object of type SeckeyStruct, which

we mark as sensitive.

B. Scoped Data Flow Tracking

1) Static Instrumentation: As discussed in Section IV-D,

DynPTA uses scoped DFT to track sensitive value flows

and maintain labels for sensitive data. Figure 6 shows the

1927



Fig. 8: At runtime, the vast majority of memory accesses

proceed normally. Label lookups are performed only for up to

24% of all memory accesses (Nginx), and only a fraction of

those (up to 4% for Nginx) involve AES operations.

percentage of new instructions added for scoped DFT, compared

to the original program. Among the evaluated applications, the

maximum percentage of additional instructions for the DFT

logic is only 9.08%.

Similarly, only a fraction of all memory load and store

instructions have to be instrumented to protect sensitive data.

The instrumentation in this case consists of a lightweight

shadow memory lookup, which invokes the AES transformation

in case the data is indeed sensitive. Figure 7 shows the

percentage of memory instructions that are instrumented for

data protection. In the worst case (OpenVPN), only 16.62%

of all memory operations have to be instrumented.

2) Runtime Performance Benefit: Without scoped DFT, all

protected memory accesses (Figure 7) would always have

to undergo expensive AES transformation. By introducing

a lightweight label lookup, AES can be avoided when the

accessed data turns out to be non-sensitive.

To assess the performance benefit of this approach, we

first compare the cost of a shadow memory lookup with the

cost of the AES data transformation using a microbenchmark.

We performed three experiments by instrumenting one billion

single-byte memory accesses with i) a label lookup, ii) AES

encryption, and iii) AES decryption, which took 3.3, 14.2, and

16.5 seconds to complete, respectively. This means that the

cost of AES encryption and decryption is at least 430% and

500% that of a label lookup.

Then, we use a custom Pin [50] tool to record how many

memory accesses involve label lookups, and among those, how

many perform AES operations on the accessed data. As shown

in Figure 8, shadow memory lookups are performed only for

up to 24% of all memory accesses, while only up to 4% of

them undergo expensive AES cryptographic operations.

Without scoped DFT, all protected memory accesses would

always involve AES, resulting in a prohibitively high runtime

overhead. To demonstrate this, we applied DynPTA without
scoped DFT on MbedTLS. This required significant amount of

effort because applying AES to all potentially sensitive memory

instructions identified by the pointer analysis and value flow

analysis involves many unintended objects, such as file handles

and network sockets. These objects are passed directly to Libc

interfaces and used by the kernel. Ensuring that every Libc or

kernel interface appropriately decrypts (and re-encrypts) these

objects requires significant engineering effort and therefore we

did not attempt it for the rest of the (more complex) applications.

When removing scoped DFT, the runtime overhead for running

MbedTLS server increases from 4.1% to 56%. We provide

the details of this experiment and the rest of our performance

evaluation results in the following section.

C. Runtime Overhead

1) Real-world Use Cases: To evaluate the runtime overhead

of DynPTA, we harden the applications listed in Table I to

protect their sensitive data (listed in the second column), and

drive them using various workloads. For all applications we

use their default configuration. For web servers (Nginx, Httpd,

Lighttpd) we use ApacheBench [51] to perform five rounds of

10,000 requests, with each round requesting a file of increasing

size (from 4KB to 1MB).

Figures 9(a)–9(c) show the overhead of DynPTA when pro-

tecting the TLS key for Nginx and the authentication password

for Httpd and Lighttpd. In all cases, the in-memory protected

objects are accessed only during connection establishment, and

the AES transformations are performed only at that time. We

observe the highest overhead (19%) for Nginx, because the

TLS handshake involves multiple complex operations to derive

a new session key from the (protected) TLS private key per

connection. In contrast, password-based authentication involves

a one-time decryption and a short sequence of byte-by-byte

comparisons of the user-provided password with the password

on file. This results in a lower overhead ranging from 6.5% in

the worst case for the shortest response size, to an amortized

1.86% for 1MB responses. Nginx’s overhead is not amortized

as the response size increases, because many label lookups

(proportional to the response size) still have to be performed

(as shown in Figure 8, Nginx has at least twice as many label

lookups compared to other applications).

For the rest of the applications (Figure 9(d)), we used a

variety of workloads. For the MbedTLS server, we used its TLS

client to perform 100,000 requests for a 4KB file over the same

connection (default behavior), which has also been the main

use case in previous selective data protection works [31, 33].

The overhead in this case is just 4%, as the protected private

key is used only during the initial connection establishment.

Indicatively, although this result is not directly comparable to

previous works due to the different experimental environment,

for the same server application, workload, and protected data,

the reported overhead for in-memory encryption [33] is 13%

and for DataShield [31] is 35%.

For OpenVPN, we downloaded a 100KB file 10,000 times

over a VPN connection using ApacheBench, observing an

overhead of 10.47%. Similarly to Nginx, although most of

the expensive AES operations happen during connection

establishment, there is still a significant amount of label

lookups throughout the whole duration of the experiment. For

Memcached, we used its benchmarking tool Mutilate [52] to
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Fig. 9: Runtime overhead of DynPTA for popular web servers (a)–(c) and other applications (d).

generate five billion operations with its default configuration

(get/set ratio of 0.5, key size of 30 bytes, value size of 400

bytes). DynPTA’s overhead in this case is negligible (0.32%),

because the variable that stores the protected password is not

pointed to by any pointer and is not copied to any other variable,

requiring only a fraction (about 1%) of memory accesses to

be protected, as also shown in Figure 8.
For the two client-side utilities, we performed 500 logins to

another host in the same subnet that triggered ssh-agent, and

signed a 1GB file using Minisign. The overhead for ssh-agent

is just 3.15%, while Minisign exhibits the highest overhead

among all our use cases at 22%. Minisign operates by first pre-

hashing the file and then signing the hash value byte-by-byte,

with every iteration of the signing loop requiring a decryption

of the private key, resulting in such a high overhead—which

though is expected as a fully compute-bound use case.
2) Increasing the Amount of Sensitive Data: The key insight

behind selective data protection, and DynPTA in particular, is

that instead of protecting all data by spending as few extra

CPU cycles per memory access as possible, we protect only

data that is really security-critical, and thus afford to spend

more CPU cycles for only a fraction of memory accesses. As

expected, however, any performance benefits will diminish as

the amount of protected data increases, and for this reason we

performed some additional experiments to explore this tradeoff.
We used MbedTLS to explore a worst-case scenario by

marking additional non-critical data as sensitive. Specifically,

besides the SSL private key, we progressively mark other fields

of the mbedtls_ssl_context data structure as sensitive.

These include SSL handshake parameters, configuration options,

and input/output buffers. In each round we mark more fields as

sensitive, until the whole data structure is marked as sensitive.
Figure 10 shows how the overhead increases modestly from

4% to 11% in the first four measurement rounds, as we

keep marking mostly configuration-related fields as sensitive.

Marking the input and output buffers as sensitive in the final two

rounds increases the overhead considerably to 46%, because

these buffers are used as part of every transmission, in contrast

to the private key and the rest of the fields, which are accessed

only during the TLS handshake.
Besides MbedTLS, we also experimented with Nginx by

enabling HTTP password authentication and protecting the

in-memory passwords (in addition to the SSL private key),

Fig. 10: Runtime overhead of MbedTLS for an increasing

amount of protected (non-critical) data.

observing only a minor increase of 1% in the overall per-

formance overhead. We discuss in detail this experiment in

Appendix F. Finally, we also performed some microbenchmarks

to further study the benefits of scoped DFT as the percentage

of sensitive data in the program increases, the results of which

we provide in Appendix G. Our main finding is that once

sensitive data exceeds 70–80% of all data, the scoped DFT

and label lookups become more costly than simply encrypting

all objects identified by the points-to analysis.

VII. SECURITY EVALUATION

A. Heartbleed

Heartbleed [5] is a heap overflow vulnerability due to a

missing bounds check in the TLS Heartbeat feature of OpenSSL.

An attacker can send a malicious request that causes a buffer

over-read in the server’s memory and allows the leakage of

sensitive data, including the private server SSL keys, back to

the attacker through the generated response.

We compiled Nginx with OpenSSL v1.0.1f and verified

that the PoC exploit [53] was indeed capable of leaking the

private TLS key. We observed that the leakage of the key was

dependent on the heap allocations, that is, the address of the

private key and the address of the vulnerable request buffer that

is over-read. The private key is initialized during server startup

and typically occupies a low address on the heap. To leak the

private key, the vulnerable request buffer must be allocated

below this address. During experimentation, we observed that

there are “holes” below the address of the private key on the
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heap that occasionally would be allocated to the vulnerable

request buffer, allowing the exfiltration of the private key.

We then marked the private key as sensitive, as described in

Section VI-A, and hardened the server using DynPTA. Using

the above PoC exploit, we repeatedly verified that whenever

the private key was leaked, it was always encrypted.

B. Spectre

Transient execution vulnerabilities allow the leakage of

otherwise inaccessible data from memory, and are thus another

class of attacks DynPTA can defend against. We evaluated

DynPTA against this type of attacks using two Spectre [18]

variants for which we could obtain PoC exploits [40, 41].

Intel CPUs contain a pattern history table (PHT) that

uses the history of past taken/not-taken branches for branch

prediction. The Spectre-PHT variant poisons the PHT, causing

mispredictions in the direction of conditional branches, which

can be used by attackers to bypass bounds checks in the

program, and speculatively load sensitive data into the cache.

From there, data can be leaked via various cache side-channel

attacks. The Spectre-PHT PoC [40] contains a bounds check

which is bypassed to leak a secret string.

Besides the PHT, CPUs also contain a branch target buffer
(BTB) that uses the history of past branch targets for branch

target prediction. The Spectre-BTB variant poisons the BTB

to steer transient execution to special “gadgets” found in the

program, which can be used to leak sensitive data. Similarly

to the previous exploit, the Spectre-BTB PoC [41] contains

a secret string that is leaked by redirecting the speculative

execution to an appropriate gadget.

For both PoCs, we marked the secret string as sensitive, and

used DynPTA to harden the exploit program (more details and

the code for both PoCs are provided in Appendix E). When the

string is speculatively accessed, its encrypted form is loaded in

the cache. Therefore, the confidentiality of the string is always

preserved when being leaked through a cache side channel.

VIII. LIMITATIONS AND DISCUSSION

a) Performance Optimizations: Although DynPTA allows

us to scale selective data protection to larger applications

with modest overhead, there is still opportunity for further

optimizations that will lower the overhead even further. Label

lookups can disrupt cache locality, resulting in a higher number

of cache misses. We plan to investigate this issue further and

adapt the shadow memory implementation accordingly.

DynPTA performs context-sensitive modeling only for heap

analysis. Other regions in the program code, such as code

hotspots and critical objects, could also benefit from selective,

summary-based, context sensitivity. Smaragdakis et al. [54,

55] discussed selective context sensitivity with respect to Java

programs. Similarly, Sridharan et al. [56] proposed refinement-

based context sensitive pointer analysis. In their current form,

these techniques are applicable only to Java programs, but we

plan to investigate their adaptation for C/C++ programs.

Our DFT-based optimization is not limited to Steensgaard’s

algorithm, and can improve the precision of any static pointer

analysis algorithm. In particular, TeaDSA [57] is a promising

unification-based pointer analysis algorithm that aims to limit

oversharing and thus improve scalability. Despite our efforts,

however, we could not successfully use it to run larger

applications such as Nginx with OpenSSL.

Iodine [58] successfully uses profiling to improve the

performance of DFT. Similarly, various works have presented

techniques to optimize dynamic flow tracking [59, 60, 61, 62,

63]. We plan to investigate the application of these techniques

to improve the performance of our system.

b) Ensuring Data Integrity: DynPTA protects all memory

operations to sensitive objects with strong AES encryption.

Encryption is not enough though to fully guarantee data

integrity, as the attacker may be able to swap encrypted objects,

or corrupt existing values (altering protected data with arbitrary

values is still not possible, as the encryption key remains

inaccessible to the attacker) [33]. To that end, we plan to

extend our data protection mechanism with an HMAC-based

scheme to ensure data integrity.

c) Leaking Register Contents via Vector Register Sam-
pling: Vector Register Sampling [64] is a recent speculative

execution vulnerability that might allow partial data values to

be leaked from vector registers under certain microarchitectural

conditions. Although this vulnerability could affect the security

of our system, as we rely on vector registers to store the AES

round keys, it was patched via a microcode update [65].

IX. RELATED WORK

Data-only attacks were introduced more than a decade

ago [1], but have only recently started gaining popularity [2,

3, 4, 6, 66, 67]. On the other hand, transient execution attacks

such as Spectre [18] are more recent, and can leak secrets from

a process’s memory through microarchitectural side channels.

In the following, we discuss various types of defenses that can

be used against these attacks.

a) Memory Safety: Defenses based on memory safety

ensure that all pointers access their intended referents, thus

ensuring spatial safety. SoftBound [14] and CCured [68]

maintain bounds information for each pointer and ensure

spatial safety by performing bounds checks during all pointer

dereferences. AddressSanitizer (ASan) [69] and Baggy Bounds

Checking [15] associate metadata with each object and detect

out-of-bounds memory accesses. In general, defenses based on

memory safety use whole-program instrumentation to protect

all program data and require every memory instruction to be

instrumented with bounds checks. Therefore, they incur a very

high runtime overhead. Moreover, these techniques do not

protect against transient execution attacks.

DataShield [31] enforces memory safety at an object

granularity by partitioning process memory into sensitive and

non-sensitive regions. It then performs fine-grained bounds

checks for sensitive pointers and coarse-grained bounds checks

for non-sensitive pointers. Similarly, ConfLLVM [70] partitions

the memory into private and public regions and ensures that

every pointer points to its own memory region. Moreover,

ConfLLVM requires the programmer to classify all arguments
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of a function as public or private, whereas we only require

annotating the initial sensitive data. As these are software-based

defenses, they can protect against data leakage attacks, but not

against transient execution attacks.

b) Data Flow Integrity: Dataflow Integrity (DFI) [16]

ensures that all memory accesses adhere to valid data flow

paths identified by static analysis. Therefore, any static analysis

imprecision results in false negatives. DFI requires every
memory instruction to be instrumented with software checks,

leading to high overhead (up to 104% for SPEC [71]).

Hardware-based DFI techniques [72, 73] have lower overhead,

but require custom hardware. Moreover, DFI cannot protect

against transient execution attacks.

c) Isolation-based Defenses: Many works rely on memory

isolation to protect security-critical data [30, 32, 42, 74, 75,

76, 77, 78]. Glamdring [32] moves all sensitive-annotated data

into SGX enclaves, and uses static dataflow analysis [79] and

static backward slicing [80] to transform all functions that

may access the sensitive data to use the appropriate SGX

entry and exit routines. ERIM [42] and LibMPK [81] provide

hardware-enforced isolation for sensitive code and data using

Intel Memory Protection Keys (MPK) [82]. However, Intel

MPK is vulnerable to transient execution attacks [7], therefore

these solutions cannot protect against them. Donky [83] is

a hardware-software codesign for the RISC-V [84] Ariane

CPU, offering strong in-process isolation based on memory

protection domains. The xMP [30] system relies on Xen [85]

to protect selective sensitive data. However, the programmer

has the burden of manually inserting the xMP domain switches,

making the process cumbersome and error-prone. Overall,

unlike DynPTA, which provides fine-grained protection, these

isolation-based approaches provide page-level protection and

this requires refactoring the data layout.

Ginseng [74] ensures that sensitive data is always stored in

registers and relies on ARM TrustZone to protect against an

untrusted operating system. PT-rand [75] protects kernel page

tables by randomizing and hiding their locations.

For Android applications, FlexDroid [86] introduces an

isolation mechanism that provides fine-grained access control

for third-party Android libraries. On the browser front, privilege

separation techniques such as Chrome’s Site Isolation [87] and

Firefox’s RLBox [88] are being widely deployed [89].

Various works have presented techniques to assist program

partitioning and privilege separation [21, 90, 91, 92, 93, 94].

These techniques cannot be easily applied to the problem

of tracking sensitive memory operations because they are

specific to privilege separation. PtrSplit [92] is a type-based

technique that allows the use of only intra-procedural analysis

instead of requiring global interprocedural analysis. However, it

assumes that void pointers are not used as function arguments.

Based on experience with codebases such as OpenSSL, this

assumption does not always hold.

d) In-memory Transformation: Defenses based on in-

memory transformation [33, 95] change the representation

of memory-resident objects using encryption. Data space

randomization [95] transforms in-memory data using simple

XOR, and was originally designed to defend against code

injection attacks. It thus cannot prevent data leakage, as the

memory-resident XOR keys can be leaked as well, and the

XOR transformation can be reversed. CoDaRR [96] extends

DSR to periodically rerandomize the masks used to provide

probabilistic guarantees against disclosure attacks, but suffers

from the same weaknesses as DSR due to the use of XOR.

HARD [97] is an ISA extension to the RISC-V architecture to

support DSR at the hardware level.

e) Defenses against Transient Execution Attacks: Ret-

poline [98] mitigates Spectre [18] by hardening all branch

instructions against speculative execution. ConTExT [99]

proposes a backwards-compatible architectural change that

mitigates transient execution attacks. SpecFuzz [100] performs

fuzzing to determine which branches are benign and which

can lead to speculative execution, and removes hardening from

the benign ones, thus lowering the overhead. SPECCFI [101]

proposes a hardware extension that uses CFI [102] to determine

whether speculative execution targets a legal destination or not.

Blade [103] stops the leakage of sensitive data via speculative

execution by cutting the dataflow (e.g., using memory fences)

from expressions that speculatively introduce secrets, to those

that leak them through the caches. Swivel [104] hardens

WebAssembly [105] applications against Spectre attacks.

The above defenses focus on hardening all or a subset of all

branches in a program, without considering whether speculative

execution might actually leak sensitive data. In comparison,

DynPTA focuses on preventing the leakage of only sensitive

data, obviating the need for the above mitigations.

X. CONCLUSION

DynPTA combines static and dynamic analysis to provide a

practical defense against data leakage attacks due to memory

disclosure or transient execution vulnerabilities. DynPTA

requires developers to just mark certain objects in the program’s

memory as sensitive, and automatically derives all sensitive

memory operations, which are then protected using encryption.

To ameliorate the inherent overapproximation of static pointer

analysis, DynPTA uses a scoped form of data flow tracking that

maintains sensitivity labels and tracks their flow over the set

of instructions identified by the pointer analysis. This allows

DynPTA to ensure the confidentiality of sensitive data in real-

world applications with modest overhead. As part of our future

work, we plan to implement support for data integrity, and also

investigate further optimizations to our scoped DFT logic that

will reduce the runtime overhead even further.
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APPENDIX

A. Imprecision Introduced by Steensgaard’s Algorithm

To compare the precision of Steensgaard’s pointer analysis

algorithm with that of Andersen’s algorithm, we consider

the function ngx_rbtree_rotate from Nginx’s codebase.

This function accepts as input an argument root, which is of

type ngx_rbtree_node**. Two different call sites invoke

this function with two different arguments (cache->rbtree
and cf->cycle->conf->rbtree). Figure 11 shows how

the use of Steensgaard’s analysis in this case leads to impre-

cision. Because Steensgaard’s algorithm uses unification to

resolve constraints, it unifies all pointer targets for the pointer

root, and concludes that the cf pointer “may” point to both

the cache_rbtree and the cycle_cf_rbtree objects.

However, because Andersen’s analysis is inclusion-based, it

correctly infers that the cycle field of the cf pointer can

point only to the cycle_cf_rbtree object.

B. Constraints and Constraint Resolution Rules

In this section we discuss the various types of constraints

and constraint resolution rules that are relevant to pointer

analysis. Instructions that deal with pointer operations generate

constraints of the four types shown below. The constraint

associated with an instruction remains the same, irrespectively

of whether an inclusion-style (Andersen’s) pointer analysis
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Fig. 11: Imprecision introduced by Steensgaard’s Analysis.

Solid arrows indicate actual points-to relationships. Dashed

arrows indicate fields-of relationships. Circles indicate pointers

and rectangles indicate memory objects. Steensgaard’s pointer

analysis forms three sets (S1, S2, S3), and derives that S1

→ S2, and S2 → S3. Therefore, according to Steensgaard’s

pointer analysis, cf->cycle->conf_tree may point to

both objects in set S3, and cache->rbtree also may point

to both objects in set S3.

algorithm, or a unification-style (Steensgaard’s) algorithm is

used to solve them.

The constraints that are relevant to pointer analysis are:

1) p := &x (Address-of )

2) p := q (Copy)

3) p := ∗q (Dereference)

4) ∗p := q (Assign)

Note that p and q in these examples can be single-indirection

(int *p) or multi-indirection (int **p) pointers.

We assume that the relationship pts(p) represents the points-

to set for the pointer p. Then, the constraint resolution rules

for Andersen’s inclusion-style analysis are as follows:

1) p := &x ⇒ x ∈ pts(p)
2) p := q ⇒ pts(p) ⊇ pts(q)
3) p := ∗q ⇒ pts(p) ⊇ pts(pts(q))
4) ∗p := q ⇒ pts(pts(p)) ⊇ pts(q)

Steensgaard’s analysis is a unification-based pointer analysis

algorithm. Every pointer and memory object belongs to a

single “set.” We assume that the operation set can be used to

find the set membership of a pointer (i.e., which set a pointer

belongs to). Constraints in Steensgaard’s analysis are resolved

by unifying these sets and we assume that the operation join
finds the union of two sets. The constraint resolution rules for

Steensgaard’s unification-style analysis are as follows:

1) p := &x ⇒ join(pts(set(p)), set(x))
2) p := q ⇒ join(pts(set(p)), pts(set(q)))
3) p := ∗q ⇒ join(pts(set(p)), pts(pts(set(q))))
4) ∗p := q ⇒ join(pts(pts(set(p))), pts(set(q)))

C. Steensgaard Constraint Graph Representation Details

As discussed in Appendix B, different instructions generate

constraints of different types. For example, LLVM instructions

of type AllocaInst, which create and return the address
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of an object, generate Addr-of constraints. Type casting in-

structions, such as BitCastInst and TruncInst, generate

Copy constraints. LoadInst instructions, which dereference

an IR pointer and return the value stored at the target location,

generate Deref constraints, and StoreInst instructions

generate Assign constraints.

SVF first models these instructions and their constraints as

nodes on a graph, called the pointer assignment graph (PAG).

Instruction operands that are pointers or objects are modeled

as nodes in the PAG, and the IR instructions that represent the

constraints are modeled as edges. SVF then clones the PAG into

a constraint graph and begins solving the constraints. During

solving, the nodes and edges of the graph are modified to reflect

the constraint resolutions. While we reuse the functionality

provided by SVF to build the PAG and to model calls to external

functions, we use our own constraint graph implementation,

which we call the PTSGraph.

In Steensgaard’s analysis, pointers are members of points-

to sets. Therefore, we need a quick way to perform set

membership tests. Moreover, when the constraint solving

process encounters a copy constraint, representing a statement

of the form p := q, where p and q are pointers, we need a way

to quickly unify the two points-to sets of p and q.

In PTSGraph, we represent each points-to set with a unique

identifier. A points-to set can contain multiple objects and other

pointers (in case of double pointers, such as int **p). To

ensure fast set membership tests and set unification operations,

we represent set membership as a BitVector, a data structure

provided by LLVM that is optimized for set operations. The set

operations take time proportional to the size of the bit vector,

and operations are performed one word at a time, instead of

one bit at a time, improving performance further.

Second, points-to relationships are represented by a one-

to-one, directed relationship between two sets. To im-

prove efficiency, we represent these relationships as a

std::unordered_multi_map. After processing each con-

straint in the PTSGraph, this map contains a unique map-

ping from one set identifier to another. However, because

the intermediate processing of these constraints can occa-

sionally result in having to store a 1:M mapping, we use

an unordered_multi_map, to store this mapping. Be-

cause unordered_multi_map uses a hash table internally,

lookup has an average complexity of O(k), where k is the

number of set identifiers returned by the lookup operation.

Because after processing of each constraint k is always 1, the

lookup operation has an average complexity of O(1).

D. DFT Loop Optimizations for Array Accesses

Sensitive label lookups are significantly less expensive than

cryptographic operations (our experiments in Section VI-B

show that AES encryption is 430% more expensive than a label

lookup), and reduce the imprecision of Steensgaard’s analysis,

as shown in Figure 1. However, label lookups still involve

a memory read and have a non-negligible runtime overhead,

especially when they are repeatedly invoked in a loop. We

observed that most label lookups that occur within loops are

due to byte-by-byte array traversals (either on the stack or the

heap) through partially sensitive pointers—as the pointer is

partially sensitive, a lookup is needed before accessing each

element. Our static analysis does not distinguish between the

individual elements of an array, and thus even if one element

is sensitive, then all elements of the array become sensitive.

Given that these in-loop lookups incur considerable runtime

overhead, we optimize them as follows. First, we use LLVM’s

Loop Analysis pass to retrieve all loops in the bitcode of the

program. For each loop, we inspect each instruction to check

if it performs a memory load or store indexed by an offset

from a base pointer, of the form v = *(ptr+i) or v =
ptr[i], where i is the loop counter. For every such loop,

we clone it and specialize the clone to unconditionally perform

the required AES transformation on the identified memory

operations, while the original loop body remains unchanged.

The sensitive label lookup is then hoisted outside the loop,

and checks only the first element of the array. A conditional

branch then transfers control to either the specialized or the

unmodified loop, depending on the presence or absence of

a sensitive label. This allows us to perform a single label

lookup to ascertain the sensitivity of the entire array, instead

of performing multiple byte-by-byte lookups, thus reducing

the performance overhead.

E. Spectre Exploit Details

1) Spectre-PHT (Bounds Check Bypass): The Spectre-PHT

PoC [40] contains a bounds check which is bypassed to leak

a secret string. Listing 2 shows the bounds check in the

function victim_function, that is speculatively bypassed

to overflow array2 and load the secret string from memory

into the cache. We mark this string as sensitive and use

DynPTA to harden the program. This encrypts the in-memory

representation of the secret. When the secret is speculatively

accessed, by overflowing array2, only the encrypted contents

are loaded into the caches. Therefore, only the encrypted

contents can be leaked and the confidentiality of the secret is

preserved.

1 void victim_function(size_t x) {
2 ...
3 if (x < array1_size) {
4 temp &= array2[array1[x] * 512];
5 }
6 ...
7 }
8

9 int main(void) {
10 char* secret = "This is a secret";
11 mark_sensitive(secret);
12 ...
13 }

Listing 2: Code snippet for Spectre Variant-1 vulnerability

2) Spectre-BTB (Indirect Branch Poisoning): The Spectre-

BTB PoC [41] contains a secret string that is leaked by

redirecting the speculative execution to an appropriate gadget.

Listing 3 shows the relevant snippet of code from the PoC. The

function victim_function contains the indirect branch

that can be poisoned to redirect (speculative) execution to

the gadget that leaks the in-memory secret. Similarly to the
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Fig. 12: Runtime overhead of Nginx for protecting passwords

along with SSL private key when HTTP password authentica-

tion is enabled.

Spectre-PHT exploit, we mark this secret as sensitive and use

DynPTA to harden the program. This encrypts the in-memory

representation of the secret, ensuring that only the encrypted
contents are loaded into (and potentially leaked from) the cache,

while the plaintext secret remains confidential.

1 int gadget(char *addr) {
2 return channel[*addr * 1024];
3 }
4

5 int safe_target() {
6 return 42;
7 }
8

9 int victim_function( *addr, int input) {
10 ...
11 (*addr)();
12 ...
13 }
14

15 int main(void) {
16 char* secret = "This is a secret";
17 mark_sensitive(secret);
18 ...
19 victim(...);
20 }

Listing 3: Code snippet for Spectre Variant-2 vulnerability

F. Nginx with Password Authentication

In addition to protecting the SSL private key, we enabled

HTTP password authentication for Nginx and also protect the

in-memory passwords. Although this is a rarely encountered

use case in real-world deployments, marking these two different

types of data as sensitive results in additional instrumentation at

different parts of the code. During authentication, the provided

user password is checked against a list of credentials loaded in

memory from a file, which we mark as sensitive. Using the same

set of experiments described in Section VI-C1, we observed

only a minor increase of 1% in the overall performance

overhead, as shown in Figure 12. This is in line with our

experience with protecting the HTTP password for Httpd and

Lighttpd (Figure 9(b)–(c)).

During startup, the SSL private key is read from a file, and

thus its plaintext form is briefly exposed on the stack, before

being encrypted by DynPTA. In practice, these stack frames

are destroyed (overwritten) right after the server’s initialization

Fig. 13: Microbenchmark results of DynPTA’s run-time over-

head with and without scoped-DFT, for an increasing ratio

of sensitive vs. non-sensitive data in the program. As the

percentage of sensitive data exceeds 70–80%, the scoped DFT

and label lookups become more costly than simply encrypting

all objects identified by the points-to analysis.

completes (and the called function returns). For our work, we

assume that the system starts from a clean state, and because

the server has not started handling requests yet, this window of

opportunity does not represent a vulnerability. Still, to illustrate

that sensitive data can be protected right upon their initial

introduction in memory from external sources, we marked as

sensitive the stack objects in which the SSL private key is

loaded temporarily during program initialization (specifically,

buf, data, and dataB in function PEM_read_bio). The

data in these objects is read via the fread Glibc call. Marking

these objects as sensitive, using the mark_sensitive
primitive, encrypts them in memory. Because PEM_read_bio
is invoked only during program startup and these objects are

never referenced again, we did not observe any performance

impact due to these additional sensitive objects.

G. Microbenchmarks

To further study the performance characteristics of DynPTA

as an increasing amount of application data is marked as

sensitive, we implemented two microbenchmark programs and

hardened them using DynPTA. The data in both programs

comprise a list of 100 arrays, with each array initialized with

100,000 random integers. In each round, we can vary the

percentage of arrays that are marked as sensitive. The first

microbenchmark computes the largest number of all items in

the list of arrays, and the second microbenchmark sorts all

integers in the list of arrays using the merge sort algorithm.

For our experiments, we varied the ratio of sensitive to

non-sensitive arrays in each microbenchmark and measured

the run-time overhead at each point. As shown in Figure 13,

as the ratio of sensitive to non-sensitive arrays increases, the

overhead increases linearly as well (from 5.4% to 401% for

largest number, and from 6% to 393% for merge sort).

To study the performance benefits of scoped DFT, we

repeated the above experiments by disabling scoped DFT and

label lookups, i.e., using the results of Steensgaard’s analysis

directly to encrypt all objects identified by the points-to analysis.

As shown in Figure 13, without scoped DFT the overhead is
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significantly higher and overall remains constant, irrespectively

of how many arrays are actually marked as sensitive. Both

microbenchmarks consist of a tight loop that reads the items

from each array in the list and performs an operation on

them. Because the same pointer is used to perform the indirect

memory read access from each arrays, pointer analysis infers

that this is a sensitive pointer, and thus applies the AES

transformations to it. This results in all arrays being treated

as sensitive (and requiring to be encrypted in memory), even

though the programmer explicitly annotated only a fraction of

them as sensitive. This results in high performance impact even

though only a fraction of the arrays are marked as sensitive.

Although DynPTA performs better than this “naive” approach

as long as the amount of sensitive data remains below 70–80%,

scoped DFT actually becomes more costly once the amount of

sensitive data exceeds this threshold. The main reason is that the

cost of the excessive number of DFT label lookups at that point

becomes higher than the benefit of eliding AES operations, as

only a fraction of data at that point is non-sensitive.
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