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Abstract—Smart Contracts and transactions allow users to
implement elaborate constructions on cryptocurrency blockchains
like Bitcoin and Ethereum. Many of these constructions, in-
cluding operational payment channels and atomic swaps, use
a building block called Hashed Time-Locked Contract (HTLC ).

In this work, we distill from HTLC a specification (HTLC-
Spec), and present an implementation called Mutual-Assured-
Destruction Hashed Time-Locked Contract (MAD-HTLC ). MAD-
HTLC employs a novel approach of utilizing the existing
blockchain operators, called miners, as part of the design.
If a user misbehaves, MAD-HTLC incentivizes the miners to
confiscate all her funds. We prove MAD-HTLC ’s security using
the UC framework and game-theoretic analysis. We demonstrate
MAD-HTLC ’s efficacy and analyze its overhead by instantiating
it on Bitcoin’s and Ethereum’s operational blockchains.

Notably, current miner software makes only little effort to
optimize revenue, since the advantage is relatively small. How-
ever, as the demand grows and other revenue components shrink,
miners are more motivated to fully optimize their fund intake.
By patching the standard Bitcoin client, we demonstrate such
optimization is easy to implement, making the miners natural
enforcers of MAD-HTLC .

Finally, we extend previous results regarding HTLC vulnera-
bility to bribery attacks. An attacker can incentivize miners to
prefer her transactions by offering high transaction fees. We
demonstrate this attack can be easily implemented by patching
the Bitcoin client, and use game-theoretic tools to qualitatively
tighten the known cost bound of such bribery attacks in presence
of rational miners. We identify bribe opportunities occurring on
the Bitcoin and Ethereum main networks where a few dollars
bribe could yield tens of thousands of dollars in reward (e.g., $2
for over $25K).

I. INTRODUCTION

Blockchain-based cryptocurrencies like Bitcoin [1] and
Ethereum [2] are monetary systems with a market cap
of $400B [3]. They enable simple transactions of internal
tokens and implementation of more elaborate smart contracts.
The transactions create the smart contracts and interact with
them. Entities called miners create data structures called blocks
that contain transactions. They publish and order the blocks to
form a blockchain, thus confirming the included transactions
and achieving system progress. The system state is obtained
by parsing the transactions according to the block order.
Blockchain security relies on incentives, rewarding miners
with tokens for carrying out their tasks.

A prominent smart-contract design pattern is the Hashed
Time-Locked Contract (HTLC ), set up for two participants,
Alice, A, and Bob, B (§II). It asserts that A gets tokens
for presenting a hash preimage of a specific value before a
certain timeout, otherwise B gets them. A variety of more

elaborate smart-contract designs rely on HTLC as a building
block. These include high-frequency payment channels [4]–
[10], atomic swaps [11]–[15], contingent payments [16]–[20],
and vaults [21]–[24]. We identify the specification required by
the variety of contracts using HTLC and call it HTLC-Spec .

Unfortunately, HTLC is vulnerable to incentive manipula-
tion attacks [25]–[27]. Winzer et al. [28] showed that B can
bribe miners using designated smart contracts to ignore A’s
transactions until the timeout elapses. Similarly, Harris and
Zohar [29] show that B can delay A’s transaction confirmation
by overloading the system with his own transactions. Both of
these allow B to obtain the HTLC tokens while depriving A
of them, even if A published the preimage.

In this work, we provide a secure implementation of HTLC-
Spec , and further analyze HTLC ’s susceptibility to bribery.

We begin by describing the model (§III) for an underlying
blockchain mechanism like that of Bitcoin or Ethereum. The
system’s state is a set of contracts; each contract comprises
a token amount and a predicate; transactions redeem contract
tokens by providing inputs that satisfy their predicates. Users
publish transactions initiating new contracts, assigning them
with the redeemed tokens while also offering some as fees. In
each round one miner adds a block with a transaction to the
chain and receives its fee.

We proceed to present MAD-HTLC , our HTLC-Spec im-
plementation (§IV). MAD-HTLC relies on the fact that miners
can participate in a smart contract execution, and thus their
interests should be taken into account. MAD-HTLC utilizes
miners as enforcers of its correct execution, allowing and
incentivizing them to seize its contract tokens in case of
any bribery attempt. That, in turn, incentivizes A and B to
refrain from such attempts and to interact with MAD-HTLC
as intended. To the best of our knowledge, this is the first work
to utilize miner incentives in this way.

In addition to the preimage specified by HTLC-Spec , which
we denote prea, MAD-HTLC uses a second preimage, preb,
known only to B. MAD-HTLC comprises a main deposit
contract (MH-Dep) and an auxiliary collateral contract (MH-
Col ), which work as follows. MH-Dep has three so-called
redeem paths. First, it allows A to redeem it with a transaction
including the predefined preimage, prea. Alternatively, it al-
lows B to redeem it after a timeout with a transaction including
the other preimage, preb. This is essentially the specification,
but MH-Dep provides another option, allowing any user, and
specifically any miner, to redeem it herself with a transaction
including both prea and preb.
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Now, if both A and B try to redeem MH-Dep , then their
transactions must reveal preimages prea and preb, respectively.
Any miner can then simply take these preimages and issue
her own transaction that uses the third redeem path to seize
the tokens for herself. Specifically, if A tries to redeem MH-
Dep , then B is assured that she cannot do so – if she tries
to redeem the tokens then the miners would get them instead.
Assuming B is benign, i.e., rational but prefers to act honestly
for the same reward, then this construction is sufficient to
satisfy HTLC-Spec . But we can do better.

If B is spiteful, then he will prefer to reduce A’s reward if
it does not affect his. When A knows prea and tries to redeem
MH-Dep , B cannot redeem it as well, but he can publish
a redeeming transaction nonetheless allowing the miners to
collect the tokens instead of A.

We strengthen MAD-HTLC such that B is strictly incen-
tivized to refrain from such deviant behavior with the auxiliary
contract MH-Col . It can be redeemed only after the same
timeout as MH-Dep , either by a transaction of B, or by any
miner that provides both prea and preb. Now, if A knows prea
then she can redeem MH-Dep and B can redeem MH-Col .
If instead B contends with A for MH-Dep , both still lose
the MH-Dep for the miners; but now both prea and preb are
revealed, allowing miners to seize the MH-Col tokens as well.
B is therefore strictly incentivized not to contend, allowing A
to receive the MH-Dep tokens as required.

This means the MAD-HTLC construction is secure against
the known incentive manipulation attacks [25]–[29] – B cannot
incentivize miners to exclude A’s transaction and getting his
confirmed instead.

MAD-HTLC utilizes the mutual assured destruction [30],
[31] principle: If a party misbehaves then all parties lose
everything. Although penalizing the well-behaved party as
well, this mechanism design [32] technique ensures rational
players act as intended.

To prove the security of MAD-HTLC (§V), we first bound
the possible leakage and interactions of system entities using
the UC framework [33]. These interactions include the setup,
initiation and redeeming of MAD-HTLC . Then, we formalize
MAD-HTLC as a game played by A, B and the miners, where
the action space comprises the aforementioned possible inter-
actions. We model all parties as rational non-myopic players,
and show the prescribed behavior is incentive-compatible [34].

We prove the efficacy of MAD-HTLC by implementing
it both in the less expressive Bitcoin Script [35] and in the
richer Ethereum Solidity [36] smart-contract languages (§VI).
We deploy it on Bitcoin’s and Ethereum’s main networks,
and show it bears negligible overhead (e.g., 2.2e-6 BTC)
compared to the secured amount (e.g., 2.6 BTC). Specifically
for payment-channels [4]–[10], this negligible overhead is only
incurred in the abnormal case of a dispute.

MAD-HTLC relies on miners non-myopically optimizing
their transaction choices, often referred to as Miner Ex-
tractable Value (MEV) [37]–[39]. While such optimizations
are common in the Ethereum network, as of today, Bitcoin’s
default cryptocurrency client only offers basic optimization.

Changes in miners’ revenue structure will make better opti-
mizations more important. To demonstrate miners can easily
enhance transaction choice optimization once they choose to
do so, we patch the standard Bitcoin client [40] to create
Bitcoin-MEV infrastructure, allowing for easy additions of
elaborate logic. In particular, we implement the logic enabling
miners to benefit from enforcing the correct execution of
MAD-HTLC .

We then revisit the security of the prevalent HTLC im-
plementation and refine previous results [28] regarding its
vulnerability to bribing attacks (§VII). We show that HTLC
is vulnerable even in blockchains with limited Script-like
languages, and bribe can be made using the built-in transaction
fee mechanism. We analyze miners’ behavior as a game for
the HTLC timeout duration. Each suffix of the game can be
analyzed as a subgame, and all players have perfect knowledge
of the system state. B can take advantage of this setting to
incentivize miners to withhold A’s transaction until the time-
out, making this the single subgame perfect equilibrium [41].
So, in presence of rational non-myopic miners the required
bribe cost is independent of the timeout duration. This matches
the lower bound, and qualitatively tightens the exponential-in-
timeout upper bound, both presented by Winzer et al. [28].

In our Bitcoin-compatible attack variation, miners only
have to be non-myopic for the attack to succeed, a simple
optimization we implement by patching the standard Bitcoin
client with merely 150 lines of code. We identify several
potential bribe opportunities on the Bitcoin and Ethereum main
networks, including examples of a few dollars bribe would
have yielded tens of thousands of dollars in payout (e.g.,
payment channel where bribe of $2 could have yielded payout
of $25K).

We conclude by discussing future directions (§VIII), includ-
ing attacks and mitigations in a weaker model where A or B
have mining capabilities, and using MAD-HTLC to reduce
latency in systems using HTLC-Spec .

In summary, we make the following contributions:

• We formalize the specification HTLC-Spec of the preva-
lent HTLC contract;

• present MAD-HTLC that satisfies HTLC-Spec utilizing
miners as participants;

• prove MAD-HTLC is secure and incentive compatible;
• implement, deploy, and evaluate MAD-HTLC on the

Bitcoin and Ethereum main networks;
• patch the prevalent Bitcoin Client to create Bitcoin-

MEV infrastructure, and to specifically support enforcing
correct MAD-HTLC execution;

• prove HTLC is vulnerable to bribery attacks in limited
smart-contract environments; and

• qualitatively tighten the bound of Winzer et al. [28] and
implement the required rational miner behavior.

Open Source and Responsible Disclosure: We completed
a responsible-disclosure process with prominent blockchain
development groups. We intend to open source our code,
subject to security concerns of the community.
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II. RELATED WORK

We are not aware of prior work utilizing miners’ incen-
tives to use them as enforcers of correct smart contract
execution. We review previous work on bribing attacks in
blockchains (§II-A), detail exhibited and postulated mining
behavior with respect to transaction selection (§II-B), and
present systems and applications using HTLC-Spec (§II-C).

A. Bribery Attacks

Winzer et al. [28] present attacks that delay confirmation
of specific transactions until a given timeout elapses. Their
attacks apply to HTLC where B delays the confirmation ofA’s
redeeming transaction until he can redeem it himself. Their
presented attack requires predicates available only in rich
smart contract languages like Ethereum’s Solidity [36], [42]
and Libra’s Move [43], [44], but not Bitcoin’s Script [35].
Specifically, the attack requires setting a bribe contract that
monitors what blocks are created and rewards participants
accordingly.

In contrast, our attack variation works with Bitcoin’s Script
as well, as we demonstrate by implementation. It therefore
applies a wider range of systems [45]–[47].

Winzer et al. [28] present two results regarding the at-
tack costs. First, they show that B’s attack cost for making
miner’s collaboration with the attack a Nash-equilibrium grows
linearly with the size (i.e., the relative mining capabilities)
of the smallest miner. However, all miners not cooperating
with the attack is also a Nash equilibrium. Therefore, they
analyze B’s cost for making the attack a dominant strategy, i.e.,
to incentivize a to support the attack irrespective of the other
miners’ strategies. This bound grows linearly with relative
miner sizes, and exponentially with the HTLC timeout.

Our analysis improves this latter bound by taking into
account the miners all know the system state and each others’
incentives. This insight allows us to use the subgame perfect
equilibrium [31], [34], [41], [48]–[54] solution concept, a
refinement of Nash-equilibrium suitable for games of dynamic
nature. We consider the game played by non-myopic rational
participants aware of the game dynamics, and show that a
linear-in-miner-size cost (as in [28]) suffices for the existence
of a unique subgame perfect equilibrium.

Other work [25]–[27] analyzes bribing attacks on the con-
sensus mechanism of cryptocurrency blockchains. Unlike this
work, bribes in these papers compete with the total block
reward (not just a single transaction’s fee) and lead miners to
violate predefined behavior. These attacks are therefore much
more costly and more risky than the bribery we consider,
where a miner merely prioritizes transactions for confirmation.

A recent and parallel work [55] also suggests using Bitcoin’s
fee mechanism to attack HTLC. It assumes miners below a
certain hash-rate threshold are myopic (sub-optimal) while
those above it are non-myopic; it presents safe timeout values
given Bitcoin’s current hash-rate distribution. In this work,
we assume all miners are non-myopic and prove that in this
model the attack costs are independent of the timeout. We also

present MAD-HTLC, which is secure against these attacks
with both myopic and non-myopic miners.

B. Transaction-Selection Optimization

MAD-HTLC incentivizes rational entities to act in a desired
way. It relies on the premise that all involved parties are
rational, and specifically, that they monitor the blockchain state
and issue transactions accordingly.

Indeed, previous work [28], [37], [56]–[61] shows this
premise is prominent, and that system users and miners engage
in carefully-planned transaction placing, manipulating their
publication times and offered fees to achieve their goals. Other
work [62]–[68] asserts the profitability of such actions is
expected to rise as the underlying systems mature, enabling
constructions such as MAD-HTLC , which rely on these opti-
mizations.

C. HTLC-Spec usage

A variety of smart contracts [16]–[24] critically rely on
HTLC-Spec . To the best of our knowledge, all utilize HTLC ,
making them vulnerable once miners optimize their transaction
choices. We review some prominent examples.

a) Off-chain state channels: A widely-studied smart con-
tract construction [5]–[10], [12], [69]–[71] with implementa-
tions on various blockchains [4], [72]–[76] is that of an off-
chain channel between two parties, A and B.

The channel has a state that changes as A and B interact,
e.g., pay one another by direct communication. In the simplest
case, the state is represented by a settlement transaction
that B can place on the blockchain. The settlement transaction
terminates the channel by placing its final state back in the
blockchain. The transaction initiates an HTLC with a hash
digest of B’s choice. B can redeem the contract after the
timeout or, alternatively, A can redeem it before the timeout
if B had shared the preimage with her.

When A and B interact and update the channel state, B
revokes the previous settlement transaction by sending his
preimage to A. This guarantees that if B places a revoked
settlement transaction on the blockchain, A can redeem the
tokens within the timeout. Alternatively, if A becomes unre-
sponsive, B can place the transaction on the blockchain and
redeem the tokens after the timeout elapses.

Note that this scheme assumes synchronous access to
the blockchain – A should monitor the blockchain, identify
revoked-state transactions, and issue her own transaction be-
fore the revocation timeout elapses. To remove this burden,
services called Watchtowers [77]–[79] offer to replace A
in monitoring the blockchain and issuing transactions when
needed. However, these also require the same synchronous
access to the blockchain, and the placement of transactions
is still at the hands of bribable miners. MAD-HTLC can be
viewed as turning the miners themselves into watchtowers –
watchtowers that directly confirm the transactions, without a
bribable middleman.
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b) Atomic swaps: These contracts enable token exchange
over multiple blockchain systems [11]–[15], [80], where a set
of parties transact their assets in an atomic manner, i.e., either
all transactions occur, or none.

Consider two users, A and B, that want to have an atomic
swap over two blockchains. A picks a preimage and creates an
HTLC on the first blockchain with timeout T 1. Then, B cre-
ates an HTLC requiring the same preimage (B knows only its
hash digest) and a timeout T 2 < T 1 on the second blockchain.
A publishes a transaction redeeming the HTLC on the second
blockchain, revealing the preimage and claiming the tokens.
B learns the preimage from A’s published transaction, and
publishes a transaction of his own on the first blockchain.
If A does not publish her transaction before T 2 elapses, then
the swap is canceled.

III. MODEL

We start by describing the system participants and how
they form a chain of blocks that contain transactions (§III-A).
Next, we explain how the transactions are parsed to define the
system state (§III-B). Finally, we detail the required contract
specification HTLC-Spec (§III-C).

A. Blockchain, Transactions and Miners

We assume an existing blockchain-based cryptocurrency
system, facilitating transactions of internal system tokens
among a set of entities. All entities have access to a digital sig-
nature scheme [81] with a security parameter µ. Additionally,
they have access to a hash function H : {0, 1}∗ → {0, 1}µ,
mapping inputs of arbitrary length to outputs of length µ.
We assume the value of µ is sufficiently large such that the
standard cryptographic assumptions hold: the digital signature
scheme is existentially unforgeable under chosen message
attacks (EU-CMA) [81], [82], and that H upholds preimage
resistance [83], [84].

The blockchain serves as an append-only ledger storing the
system state. It is implemented as a linked list of elements
called blocks. A subset of the entities are called miners, who
aside from transacting tokens also extend the blockchain by
creating new blocks. We refer to non-mining entities as users.

There is a constant set of n miners. Each miner is associ-
ated a number representing its relative block-creation rate, or
mining power. Denote the mining power of miner i by λi,
where

∑n
i=1 λi = 1. Denote the minimal mining power

by λmin = min
i
λi. As in previous work [28], [64], [85], [86],

these rates are common knowledge, as in practice miners can
monitor the blockchain and infer them [87].

Block creation is a discrete-time, memoryless stochastic
process. At each time step exactly one miner creates a block.
As in previous work [4], [9]–[11], [64], we disregard miners
deliberately [85], [88], [89] or unintentionally [90]–[92] caus-
ing transient inconsistencies (called forks in the literature).

Blocks are indexed by their location in the blockchain. We
denote the first block by b1 and the j’th block by bj .

Transactions update the system state. An entity creates a
transaction locally, and can publish it to the other entities.

Transaction publication is instantaneous, and for simplicity
we abstract this process by considering published transactions
to be part of a publicly-shared data structure called the
mempool. As in previous work [9], [10], [64], all entities have
synchronous access to the mempool and the blockchain.

Unpublished and mempool transactions are unconfirmed,
and are yet to take effect. Miners can include unconfirmed
transactions of their choice when creating a block, thus con-
firming them and executing the stated token reassignment.

The system limits the number of included transactions per
block, and to simplify presentation we consider this limit to
be one transaction per block.

The system progresses in steps. Each step j begins with
system entities publishing transactions to the mempool. Then,
a single miner is selected at random proportionally to her
mining power, i.e., miner i is selected with probability λi. The
selected miner creates block bj , either empty or containing a
single transaction, and adds it to the blockchain. This confirms
the transaction, reassigning its tokens and awarding that miner
with its fee. The system then progresses to the next step.

B. System State

The system state is a set of token and predicate pairs called
contracts. Transactions reassign tokens from one contract to
another. We say that a transaction redeems a contract if it
reassigns its tokens to one or more new initiated contracts.

To redeem a contract, a transaction must supply input values
such that the contract predicate evaluated over them is true.
Transactions that result in negative predicate value are invalid,
and cannot be included in a block. We simply disregard such
transactions.

We say that an entity owns tokens if she is the only entity
able to redeem their contract, i.e., the only entity that can
provide input data in a transaction that results in positive
evaluation of the contract’s predicate.

Transactions reassign tokens as follows. Each transaction
lists one or more input contracts that it redeems, each with
its respective provided values. Each transaction also lists one
or more output contracts that it initiates. A transaction is only
valid if the aggregate amount in the output contracts is not
larger than the amount in its redeemed input contracts. The
difference between the two amounts is the transaction’s fee.
The fee is thus set by the entity that creates the transaction.

The system state is derived by parsing the transactions in the
blockchain by their order. Each transaction reassigns tokens,
thus updating the contract set. Transaction fees are reassigned
to a contract supplied by the confirming miner.

Two transactions conflict if they redeem the same contract.
Both of them might be valid, but only one can be placed in the
blockchain. Once one of them is confirmed, a block containing
the other is invalid. We disregard such invalid blocks, and
assume miners only produce valid ones.

There is always at least one unconfirmed valid transaction
in the mempool [64], [66], [68], [93], [94], and the highest
offered fee by any mempool transaction is f , referred to as
the base fee. Miners act rationally to maximize their received
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fees (see §II-B). Users are also rational, and offer the minimal
sufficient fee for having their transactions confirmed.

Predicates have access to three primitives of interest:
• vSig (sig; pk): validate that a digital signature sig pro-

vided by the transaction (on the transaction, exclud-
ing sig) matches a public key pk specified in the contract.

• vPreImg (pre; dig): validate that a preimage pre provided
by the transaction matches a hash digest dig specified in
the contract, i.e., that H (pre) = dig.

• vTime (T ): validate that the transaction trying to redeem
the contract is in a block at least T blocks after the
transaction initiating it.

A predicate can include arbitrary logic composing those
primitives. In predicates that offer multiple redeem options
via or conditions, we refer to each option as a redeem path.

We note that once a transaction is published, its content
becomes available to all entities. We say that an entity knows
data if it is available to it.

C. HTLC-Spec Specification

We formalize as HTLC-Spec the following contract spec-
ification, used in variety of blockchain-based systems and
algorithms [4], [7]–[14], [17]–[19]. HTLC-Spec is specified
for two users, A and B. It is parameterized by a hash digest
and a timeout, and contains a certain deposit amount, vdep. A
gets the deposit if she publishes a matching preimage before
the timeout elapses, otherwise B does.

In a blockchain setting, A and B redeem the deposit with a
transaction that offers a fee. We assume the contract token
amount vdep is larger than the base fee f , otherwise the
contract is not applicable.

The redeeming transaction by A or B (according to the
scenario) should require a fee negligibly larger than the base
fee f . Specifically, the fee amount is independent of vdep.

To construct HTLC-Spec ,A and B choose the included hash
digest, the timeout, and the token amount, vdep. Then either of
them issues a transaction that generates the contract with vdep

tokens and the parameterized predicate. Either A or B initially
knows the preimage, depending on the scenario.

For simplicity, we assume that A either knows the preimage
when the transaction initiating HTLC-Spec is confirmed on the
blockchain, or she never does.

IV. MAD-HTLC DESIGN

We present MAD-HTLC , an implementation of HTLC-
Spec . MAD-HTLC comprises two sub contracts1 — MH-
Dep , the core implementation of the HTLC-Spec functionality,
and MH-Col , an auxiliary contract for collateral, used to
disincentivize spiteful behavior by B.

MAD-HTLC includes additional variables and parameters
along those of HTLC-Spec , facilitating its realization. It
includes two preimages, prea and preb; the former corresponds
to the preimage of HTLC-Spec; the latter is an addition in

1Separating MAD-HTLC into two sub contracts is for Bitcoin compatibil-
ity; these can be consolidated to a single contract in blockchains supporting,
richer smart-contract languages, see §VI.

MAD-HTLC , chosen by B, used in the various redeem paths.
It also includes the HTLC-Spec deposit token amount vdep,
but also utilizes vcol collateral tokens.

Essentially, MH-Dep lets either A redeem vdep with preim-
age prea, or B after the timeout with preimage preb, or any
party with both preimages prea and preb. MH-Col has vcol

redeemable only after the timeout, either by B, or by any
party with both preimages prea and preb.

We present protocol Πmad-htlc for setup, initiation and re-
deeming of a MAD-HTLC (§IV-A), and detail the specifics
of MH-Dep (§IV-B) and MH-Col (§IV-C).

A. Protocol Πmad-htlc

Recall that HTLC-Spec is used in several scenarios differing
in which party chooses the preimage, when that chosen
preimage is shared, and who initiates the contract on the
blockchain (§II-C). However, in all scenarios, once the contract
is initiated, A can redeem vdep by publishing the preimage
before the timeout elapses, and B can redeem them only after.

So, there are several variants for any protocol that imple-
ments HTLC-Spec, and we focus on the variant where B picks
the first preimage prea, potentially shares it with A, either A
or B can initiate the contract on chain, and either can redeem
it using the various redeem paths. This corresponds to the off-
chain payment channels scenario (§II-C).

Protocol Πmad-htlc (Protocol 1) progresses in phases, and is
parameterized by the timeout T and the token amounts vdep

and vcol. First, in the setup phase, B randomly draws (denoted
by R←) the two preimages prea and preb. He then derives their
respective hash digests diga ← H (prea) and digb ← H (preb),
shares diga and digb with A. Upon A’s confirmation B
creates a transaction txinit that initiates a MAD-HTLC with
parameters T, diga, digb, v

dep, vcol and shares txinit with A.
In the following initiation phase, B can share prea with A.

Additionally, either A or B can publish txinit to the mempool,
allowing miners to confirm it and initiate the MAD-HTLC.

In the final redeeming phase, once the MAD-HTLC is
initiated, A and B can redeem vdep and vcol from MH-Dep
and MH-Col, respectively. Specifically, A redeems vdep only
if she received prea from B, and otherwise B redeems vdep.
Either way, B redeems vcol.

B. MH-Dep

The MH-Dep contract is initiated with vdep tokens. Its
predicate is parameterized with A’s and B’s public keys, pka
and pkb, respectively; a hash digest of the predefined preim-
age diga = H (prea) such that any entity other than A
and B does not know prea, and A or B know prea according
to on the specific use case; another hash digest digb such
that H (preb) = digb, where only B knows preb; and a
timeout T . The contract has three redeem paths, denoted
by dep-A, dep-B and dep-M, and presented in Predicate 1.
Table I shows the possible redeeming entities of MH-Dep .

In the dep-A path (line 1), A can redeem MH-Dep by
creating a transaction including prea and siga, a signature
created using her secret key ska. Such a transaction can

1234



Protocol Πmad-htlc run by A and B details the setup, initiation and redeeming
of a MAD-HTLC in the scenario where B picking prea. It is parameterized
by timeout T , and token amounts vdep and vcol.

setup
B draws prea

R← {0, 1}µ , preb
R← {0, 1}µ and sets diga ←

H (prea) , digb ← H (preb). Then B sends diga and digb to A for confirma-
tion. Afterwards B, compiles a transaction txinit that initiates a MAD-HTLC
(both MH-Dep and MH-Col ) with diga, digb, T, v

dep, vcol as parameters and
shares it with A. txinit is not published yet.

initiation
B can send prea to A. If so, A expects to receive pre such that diga =
H (pre), and ignores other values.
Either A or B publish txinit to the mempool, and it is eventually included in
a block bj , initiating MAD-HTLC.

redeeming
If A had received prea, she creates and publishes txdep

a , a transaction
redeeming MH-Dep using the dep-A redeem path.
B waits for the creation of block bj+T−1. If by then A did not pub-
lish txdep

a then B publishes txdep+col
b , redeeming both MH-Dep and MH-Col

through dep-B and col-B redeem paths, respectively. If A did publish txdep
a

then B publishes txcol
b , redeeming only MH-Col using the col-B redeem path.

Protocol 1: Πmad-htlc

Predicate 1: MH-Dep
Parameters: pka, pkb, T, diga, digb
MH-Dep (pre1, pre2, sig) :=

1 (vPreImg (pre1; diga) ∧ vSig (sig; pka)) ∨ // dep-A
2 (vPreImg (pre2; digb) ∧ vSig (sig; pkb) ∧ vTime (T )) ∨ // dep-B
3 (vPreImg (pre1; diga) ∧ vPreImg (pre2; digb)) // dep-M

Table I: Possible redeeming entity of MH-Dep .
preb published preb not published

prea published Any entity A
prea not published B —

Table II: Possible redeeming entity of MH-Col .
preb published preb not published

prea published Any entity B
prea not published B B

be included even in the next block bj+1. This path is only
available to A, since only she ever knows ska.

In the dep-B path (line 2), B can redeem MH-Dep by
creating a transaction including preb and sigb, a signature
created using his secret key skb. Such a transaction can be
included in a block at least T blocks after MH-Dep’s initiation,
that is, not earlier than block bj+T . This path is only available
to B, since only he ever knows skb.

In the dep-M path (line 3), any entity can redeem MH-
Dep by creating a transaction including both prea and preb. A
transaction taking this redeem path does not require a digital
signature, and can be included even in the next block bj+1.
This path is therefore available to any entity, and specifically
to any miner, that knows both prea and preb.

C. MH-Col

The MH-Col contract is initiated with vcol tokens. Its
predicate is parameterized with B’s public key pkb; the hash
digest of the predefined secret diga = H (prea) such that any
entity other than A and B does not know prea, and A and B
know prea based on the specific use case; the hash digest digb
such that H (preb) = digb, where only B knows preb; and
a timeout T . It has two redeem paths, denoted by col-B

Predicate 2: MH-Col
Parameters: pkb, T, diga, digb
MH-Col (pre1, pre2, sig) :=

1 vTime (T )∧
2

[
vSig (sig; pkb) ∨ // col-B

3 (vPreImg (pre1; diga) ∧ vPreImg (pre2; digb))
]

// col-M

and col-M, and presented in Predicate 2. Table II shows the
possible redeeming entities of MH-Col .

Both paths are constrained by the timeout T , meaning a
redeeming transaction can only be included in a block at
least T blocks after the MH-Col initiation (line 1).

In the col-B path (line 2), B can redeem MH-Col by
creating a transaction including sigb, a signature created using
his secret key skb. Only B can redeem MH-Col using this path
as he is the only one able to produce such a signature. This
path allows B to claim the collateral tokens in case either he
or A, but not both, publish a transaction redeeming MH-Dep .

The col-M path (line 3) allows any entity to redeem MH-
Col by creating a transaction including both prea and preb,
not requiring any digital signature. This path allows miners
to claim the MH-Col tokens in case B tries contesting A on
redeeming MH-Dep , thus disincentivizing his attempt.

V. MAD-HTLC SECURITY ANALYSIS

To prove the security of MAD-HTLC we first show what
actions the participants can take to interact with it (§V-A). We
prove with the UC framework [33] the security of the setup,
initiation and redeeming of a MAD-HTLC . This analysis
yields a set of conditions on which entity can redeem tokens
from MAD-HTLC .

Then, we move to analyze how the entities should act
to maximize their gains. We formalize the redeeming of an
initiated MAD-HTLC as a game played by A, B and the
miners (§V-B), and show that they are all incentivized to act
as intended (§V-C).

A. Setup, Initiation and Redeeming Transactions Security

Our first goal is to prove the setup and initiation
of MAD-HTLC are secure and to show which valid transac-
tions each participant can generate based on the mempool and
blockchain state. We present an overview of the security claims
and proofs, and bring the details in the extended report [95].

Like prior work [4], [9], [28], [31], [64], [81], [84], [96]–
[107], we assume the blockchain and predicate security holds,
including the digital signature scheme and the hash function.

We make the following observation: Transaction invalidity
due to vTime is temporal; this predicate becomes true once
sufficiently many blocks are created. In contrast, two valid
transactions can conflict, so only one of them can be con-
firmed. We neglect both invalidity reasons and show which
valid transactions can be created; clearly, any transaction that
is invalid under this relaxation is also invalid without it.
Additionally, we consider only transactions relevant to our
protocol, ignoring unrelated transactions.

We formalize parties’ ability to redeem the contract un-
der this relaxation using the rPred () function (Eq. 1): De-
note path ∈ {dep-A, dep-B, dep-M, col-B, col-M}; P the
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redeeming party; ha = 1 if the redeeming party has a
suitable preimage for diga, and 0 otherwise; and hb = 1 if
the redeeming party has a suitable preimage for digb, and 0
otherwise. Then the relaxed contract predicate is expressed
by the function rPred (path,P, ha, hb). We note redeeming
transactions are published in the mempool, hence publish any
included preimages.

rPred (path,P, ha, hb) =
(P = A) ∧ ha path = dep-A
(P = B) ∧ hb path = dep-B
ha ∧ hb path ∈ {dep-M, col-M}
P = B path = col-B

(1)

We move to consider the setup, initiation, and redeeming
of a single (relaxed) contract with respect to the mempool
and the blockchain. We focus on a mempool and blockchain
projection (mbp) functionality of a relaxed MAD-HTLC ,
and we model it as a single ideal functionality, Gmbp. This
functionality captures the parameter setup of a single contract
by A and B, its initiation, and redeeming transaction validity
due to the vPreImg and vSig predicates, disregarding conflicts
and timeouts. To facilitate the vPreImg predicate and its
underlying preimage-resistant hash function H , we model the
latter as a global random oracle ideal functionality H [33],
[108], [109]. We abstract away digital signatures by consider-
ing authenticated channels among parties and functionalities.
We consider an adversary that learns messages sent to Gmbp and
that messages were sent between parties but not their content.
This modeling is similar to previous work [8], [9], [84], [98].

We then define the (H,Gmbp)-hybrid world [33] (hereinafter,
simply the hybrid world), where the H and Gmbp ideal
functionalities reside. In this hybrid world we then define
the relaxed MAD-HTLC (rmh) protocol Πrmh that is similar
to Πmad-htlc (Protocol 1), but (1) it is defined with H and Gmbp;
(2) it considers system entities other than A and B, and
specifically miners, represented as a third party M; and (3) it
disregards timeouts and transaction conflicts.

The transition from Πrmh to Πmad-htlc is straightforward, and
we bring Πrmh in the extended report [95].

Then, our goal is to prove the following lemma, detailing the
possible valid transactions the entities can create and publish.

Lemma 1. Let there be a contract setup and initiated as
described by Πrmh, let puba and pubb be indicators whether
the preimages prea and preb were published in Gmbp, respec-
tively, and let shared indicate if B shared prea with A. So,
initially puba ← 0, pubb ← 0 and shared ← 0. Then,
parties A, B andM can only create and publish the following
valid redeeming transactions:
• B can publish a valid redeeming transaction using

the dep-B, dep-M, col-B or col-M redeem paths. Doing
so with either dep-M or col-M sets puba ← 1, and
with either dep-B, dep-M, or col-M sets pubb ← 1. In
addition to transaction creation and publication, B can
share prea with A (and by doing so sets shared← 1).

Ideal functionality Frmh in the ideal world represents the setup, initiation
and redeeming transaction publication of the contract for session id sid.
It interacts with parties A,B,M, and simulator Sim. It internally stores
indicators setupmh

a , setupmh
b , sharedmh, publishedmh, initmh, pubmh

1 and pubmh
2 ,

all with initial value of 0.
• Upon receiving (setup-B, sid) from B when setupmh

b = 0, set setupmh
b ← 1

and leak (setup-B, sid) to Sim.
• Upon receiving (setup-A, sid) from A when setupmh

b = 1 ∧ setupmh
a = 0,

set setupmh
a ← 1 and leak (setup-A, sid) to Sim.

• Upon receiving (share, sid) from B when setupmh
a = 1 ∧ sharedmh = 0,

set sharedmh ← 1, and leak (share, sid) to Sim.
• Upon receiving (publish, sid) from either A or B when setupmh

a = 1 ∧
publishedmh = 0, set publishedmh ← 1, and leak (publish, sid) to Sim.

• Upon receiving (init, sid) from M when publishedmh = 1 ∧ initmh = 0,
set initmh ← 1, and leak (init, sid) to Sim.

• Upon receiving (redeem, sid, path) from any party P such
that path ∈ {dep-A, dep-B, dep-M, col-B, col-M} when initmh = 1,
set pubmh

1 ← pubmh
1 ∨

(
(P = A) ∧ sharedmh ∧ (path = dep-A)

)
∨

((P = B) ∧ path ∈ {dep-A, dep-M, col-M}) and pubmh
2 ←

pubmh
2 ∨ ((P = B) ∧ path ∈ {dep-B, dep-M, col-M}), de-

note resmh ← rPred
(
path,P, pubmh

1 , pubmh
2

)
, leak (redeem, sid, path,P)

to Sim, and return resmh to P .
• Upon receiving (update, sid, i) for i ∈ {0, 1} from Sim through the

influence port, set pubmh
i ← 1.

Functionality 1: Frmh in the ideal world.

• If puba∨shared = 1 thenA can publish a valid redeeming
transaction using the dep-A redeem path (and by doing
so she sets puba ← 1). If (puba ∨ shared) ∧ pubb = 1,
then A can publish a valid redeeming transaction with
either the dep-M or col-M redeem paths (and by doing
so sets puba ← 1 and pubb ← 1).

• If puba∧pubb = 1 thenM can publish a valid redeeming
transaction with either dep-M or col-M.

To prove Lemma 1 we consider an ideal world, where we
define a relaxed MAD-HTLC ideal functionality Frmh (Func-
tionality 1) that implements the setup, initiation and redeeming
of a relaxed MAD-HTLC contract.
Frmh maintains indicators setupmh

a , setupmh
b , sharedmh,

publishedmh, initmh, and pubmh
1 and pubmh

2 , corresponding to
execution of MAD-HTLC (Protocol 1): setupmh

a and setupmh
b

correspond to to A and B completing their setup; sharedmh is
set if B shared prea with B; publishedmh and initmh indicate
if the execution reached the initiation and redeeming phases,
respectively; and pubmh

1 and pubmh
2 are set if prea and preb are

published with a transaction.
Frmh leaks messages to Sim and receives a special update

instruction that sets either pubmh
1 or pubmh

2 . Looking ahead,
this allows the simulator to notify Frmh of a publication by a
corrupted party.

The construction of Frmh and the definition of rPred (Eq. 1)
imply that the properties described by Lemma 1 trivially hold
in the ideal world.

We then prove Πrmh UC-realizes Frmh, i.e., for any PPT
adversary Adv, there exists a PPT simulator Sim such that for
any PPT environment Z , the execution of Πrmh in the hybrid
world with Adv is computationally indistinguishable from the
execution of Frmh in the ideal world with Sim.

We prove the aforementioned by showing how to construct
such a Sim for any Adv, and the derived indistinguishability
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towards Z . Sim internally manages two preimages on its
own, which are indistinguishable from to those chosen by B
in the hybrid world: for an honest B, Sim draws these two
preimages from the same distribution as in the real world; for
a corrupted B, Sim learns the chosen preimages throughout the
execution. Additionally, Sim internally-simulates H and Gmbp,
and interacts with Frmh through leakage and influence ports.

The existence of these simulators shows Lemma 1 applies
to the hybrid world as well, meaning it details the possible
valid redeeming transactions of a relaxed MAD-HTLC .

Recall the relaxed version considers only the vPreImg
and vSig predicates while disregarding vTime and transactions
conflicts, which we now move to consider.

B. MAD-HTLC Game

The MAD-HTLC construction within the blockchain sys-
tem gives rise to a game: the participants are A, B and the
system miners; their utilities are their tokens; and the action
space is detailed by Lemma 1 while considering the timeout
constraints and transaction conflicts.

Note that Lemma 1 considers party M representing any
system miner, while the upcoming analysis considers all the
miners and their individual rewards.

The MAD-HTLC game begins when the MH-Dep and MH-
Col contracts are initiated in some block bj . The game, which
we denote by ΓMH, comprises T rounds, representing the
creation of blocks bj+1, ..., bj+T . Each round begins with A
and B publishing redeeming transactions, followed by a miner
creating a block including a transaction of her choice.
A and B’s strategies are their choices of published trans-

actions – which transactions to publish, when, and with what
fee. Miner strategies are the choices of which transaction to
include in a block if they are chosen to create one.

To accommodate for the stochastic nature of the game [110]
we consider entity utilities as the expected number of tokens
they own at game conclusion, i.e., after the creation of T
blocks. A and B’s utilities depend on the inclusion of their
transactions and their offered fees, and miner utilities on their
transaction inclusion choices.

We present the game details (§V-B1) and the suitable
solution concept (§V-B2).

1) Game Details: The game progresses in rounds, where
each round comprises two steps. First, A and B alternately
publish transactions, until neither wishes to publish any more.

Note that all published transactions of the current and
previous rounds are in the mempool. Since miners prefer
higher fees, for the analysis we ignore any transaction tx if
there is another transaction tx’ such that both were created by
the same entity, both redeem the same contracts, and tx’ pays
a higher fee than tx or arrives before tx.

Tokens are discrete, hence there is a finite number of fees A
and B may offer, meaning the publication step is finite.

Then, a single miner is picked at random proportionally
to her mining power and gets to create a block including a
transaction of her choice, receiving its transaction fees. She
can also create a new transaction and include it in her block.

Rounds:

ΓMH (1, red) ΓMH (2, ·) · · · ΓMH (T − 1, ·) ΓMH (T, ·)

1 2 · · · T − 1 T

Figure 1: ΓMH subgames.

a) Subgames: The dynamic and turn-altering nature of
the game allows us to define subgames, representing suffixes
of ΓMH. For any k ∈ [1, T ] we refer to the game starting just
before round k as the k’th subgame (Fig. 1).

Note that as miners create blocks and confirm transactions,
the system state, including the state of MAD-HTLC , changes.
Specifically, if the MH-Dep is already redeemed, future blocks
do not allow inclusion of conflicting transactions that redeem
the MH-Dep as well.

Hence, when considering MAD-HTLC states we distinguish
whether MH-Dep is redeemable or irredeemable, which we
denote by red and irred, respectively. We also note that MH-
Col cannot be redeemed until the very last T ’th subgame.

Consequently, each subgame k ∈ [1, T ] is defined by the
number of remaining blocks to be created k, and the MH-
Dep state s ∈ {red, irred}. We denote such a subgame
by ΓMH (k, s).

We use · to denote sets of subgames, e.g., ΓMH (·, red)
denotes the set of subgames where the contract state s is red.

We refer to ΓMH (T, ·) as the final subgames, as once played,
the full game ΓMH is complete. We refer to all other subgames
as non-final.

The game begins when there are T blocks to be created, A
and B did not publish any transactions, and the MH-Dep is
redeemable. Thus, the initial, complete game is ΓMH (1, red).

Once the first round of a non-final subgame is complete,
the system transitions to the subsequent subgame.

b) Actions: A and B’s actions are the publication of
transactions in any ΓMH (·, ·) subgame.
A can only redeem MH-Dep and only if she has prea

(shared = 1), hence has a single transaction of interest txdep
a ,

offering fee of f dep
a tokens. Note txdep

a has to outbid unrelated
transactions and thus has to offer a fee f dep

a > f , however, can-
not offer more tokens than the redeemed ones, so f dep

a < vdep.
This transaction utilizes the dep-A redeem path of MH-Dep ,
hence publishing it also publishes prea.
B can redeem MH-Dep , MH-Col or both. We thus consider

three transactions of interest: txdep
b , redeeming MH-Dep while

offering fee f dep
b ; txcol

b , redeeming MH-Col while offering
fee f col

b ; and txdep+col
b , redeeming both MH-Dep and MH-

Col while offering fee f dep+col
b . To redeem MH-Dep B uses

the dep-B redeem path, hence publishing transactions txdep
b

or txdep+col
b also publishes preb. Redeeming MH-Col is by

the col-B redeem path. Similarly to A’s fee considerations, B’s
transactions have to outbid unrelated transactions, and cannot
offer more tokens than they redeem, so f < f dep

b < vdep, f <
f col
b < vcol and f < f dep+col

b < vdep + vcol.
A miner’s action is the choice of a transaction to include if

she is chosen to create a block. First, she can include a trans-
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action unrelated to MAD-HTLC in any ΓMH (·, ·) subgame.
She can also include any of the following transactions,

assuming they were previously published by A or B, and as a
function of the contract state: txdep

a if MH-Dep is redeemable,
that is, in any ΓMH (·, red); txcol

b if the timeout has elapsed, that
is, in any ΓMH (T, ·); and txdep

b or txdep+col
b if the timeout has

elapsed and MH-Dep is redeemable, that is, in ΓMH (T, red).
Conditioned on knowing prea and preb through published

transactions, a miner can also create and include the following
transactions, redeeming the contracts herself:
• Transaction txdep

m redeeming MH-Dep , using the dep-M
redeem path, and getting the vdep tokens of MH-Dep as
reward. This action is only available if the miner knows
both prea and preb, and if MH-Dep is redeemable, that
is, in any ΓMH (·, red) subgame where txdep

a and either
of txdep

b or txdep+col
b were published.

• Transaction txcol
m redeeming MH-Col , using the col-M

redeem path, and getting the vcol tokens of MH-Col as
reward. This action is only available if the miner knows
both prea and preb, and the timeout has elapsed, that is, in
any ΓMH (T, red) subgame where txdep

a and either of txdep
b

or txdep+col
b were published.

• Transaction txdep+col
m redeeming both MH-Dep and MH-

Col , using the dep-M and col-M redeem paths, and
getting the vdep +vcol tokens of MH-Dep and MH-Col as
reward. This action is only available if the miner knows
both prea and preb, the MH-Dep is redeemable, and the
timeout has elapsed, that is, in subgame ΓMH (T, red)
where txdep

a and either of txdep
b or txdep+col

b were published.
We disregard actions that are trivially dominated [52], such

as A and B sharing their secret keys or publishing the relevant
preimages not via a transaction; a miner including a transaction
of another entity that redeems either of the contracts using the
two preimages instead of redeeming it herself; and a miner
creating an empty block instead of including an unrelated
transaction.

c) Strategy: A strategy σ is a mapping from each sub-
game to a respective feasible action, stating that an entity takes
that action in the subgame. We call the strategy vector of all
entities in a game a strategy profile, denoted by σ̄.

d) Utility: Recall an entity’s utility is her expected ac-
cumulated token amount at game conclusion. We define the
utility of an entity in a subgame as the expected token amount
she accumulates within the subgame until its conclusion. We
denote the utility of entity i when all entities follow σ̄ in
subgame ΓMH (k, s) by ui

(
σ̄,ΓMH (k, s)

)
.

2) Solution Concept: Note that block-creation rates, entity
utilities and their rationality are all common knowledge, and
that when choosing an action an entity is aware of the current
system state. That means any subgame ΓMH (k, s) is of perfect
information [111], [112]. We are thus interested in strategy
profiles that are subgame perfect equilibria [41], [48]–[54].

A strategy profile σ̄ is a subgame perfect equilibrium
in ΓMH (k, s) if, for any subgame, no entity can increase her
utility by deviating to a different strategy, where it knows how

the other players would react based on their perfect knowledge.
This implies that for each subgame, the actions stated by σ̄
are a Nash equilibrium.

We say that a prescribed strategy profile is incentive com-
patible [34] if it is a subgame perfect equilibrium, and the
utility of each player is not lower than her utility in any other
subgame perfect equilibrium. So an entity cannot deviate to
increase her utility, and there are no other more favorable
equilibria.

Our analysis utilizes the common technique of backward
induction [54], [113]–[115], suitable for perfect-information
finite games. Intuitively, to determine her best action, a player
analyzes the game outcome for each possible action, repeating
the process recursively for each possible game suffix.

C. MAD-HTLC Incentive Compatibility

We now show the MAD-HTLC prescribed behavior (Pro-
tocol 1) is incentive compatible and implements HTLC-Spec .

We first analyze A’s and B’s utilities when both follow the
prescribed strategy, starting with the scenario where A knows
the preimage prea (i.e., when shared = 1).

Lemma 2. In ΓMH (1, red), if A knows prea and A and B both
follow the prescribed strategies, then miners’ best-response
strategy leads to A redeeming MH-Dep for vdep−f dep

a tokens,
and B redeeming MH-Col for vcol − f col

b tokens.

Proof. The prescribed strategy states that A publishes txdep
a

during the first T − 1 rounds, and that B publishes txcol
b in

round T .
Note that B does not publish txdep

b and txdep+col
b , hence miners

do not know preb. The transactions txdep
a and txcol

b offer f dep
a

and f col
b fees, respectively, both greater than the base fee f .

The induced subgames therefore enable miners to in-
clude txdep

a in one of the first T −1 blocks, and including txcol
b

in the last one. Using backward induction shows the subgame
perfect equilibrium is to include txdep

a in its published round,
and txcol

b in the last.
So both txdep

a and txcol
b are included in blocks, and A and B

get vdep − f dep
a and vcol − f col

b tokens, respectively.

We now consider A that does not know prea (i.e.,
when shared = 0).

Lemma 3. In ΓMH (1, red), if A does not know prea and A
and B both follow the prescribed strategies, then miners’ best-
response strategy leads to B redeeming both MH-Dep and
MH-Col for vdep + vcol − f dep+col

b tokens, and A gets none.

Proof. As A does not know prea she does not publish any
transaction, hence redeems no contract and receives no tokens.

By the prescribed strategy B publishes txdep+col
b , offering

fee f dep+col
b > f and revealing preb. However, prea is not

published, so miners cannot redeem MH-Dep and MH-Col
themselves. Therefore, miners maximize their utility by in-
cluding txdep+col

b in the last round.
That means txdep+col

b is included in a block, and A and B
get 0 and vdep + vcol − f dep+col

b tokens, respectively.
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We now present three lemmas, considering potential de-
viations from the prescribed strategy, and showing that any
such deviation is strictly dominated. We provide the gist of
the proofs, with the details deferred to Appendix A.

We first show that if A and B contend then the miners do
not take their transactions in the last round.

Lemma 4. In the last round of the game, i.e. sub-
game ΓMH (T, ·), if txdep

a and either txdep
b or txdep+col

b are
published then miners’ best-response strategy is not to include
any of A’s or B’s transactions in this round.

This holds because in the described scenario any miner can
simply redeem all the tokens herself. Then we showA’s cannot
deviate to increase her utility.

Lemma 5. In ΓMH (1, red), A cannot increase her utility by
deviating from the prescribed strategy.

This holds as publishing at the last round or not publishing
at all results with A not getting any tokens. Similarly, we
claim B does not gain from deviating.

Lemma 6. In ΓMH (1, red), B cannot increase his utility by
deviating from the prescribed strategy.

Intuitively, if B publishes when A also does then B loses
all the tokens, whilst refraining from doing so earns him the
collateral.

Following directly from Lemma 5 and Lemma 6), we
obtain:

Corollary 1. The prescribed strategy of MAD-HTLC is a
unique subgame perfect equilibrium, and as such, incentive
compatible.

We are now ready to prove our main theorem:

Theorem 1. MAD-HTLC satisfies HTLC-Spec with rational
PPT participants.

Proof. Lemma 1 shows the possible redeeming transactions
for PPT participants, disregarding invalidity due to timeouts
and transaction conflicts. Consequently, the game description
considering the timeouts and conflicts (§V-B) captures the
possible redeeming transactions of PPT participants.

The game analysis (Corollary 1) shows the prescribed
strategy (Protocol 1) is incentive compatible, and Lemma 2
and Lemma 3 show the prescribed strategy matches HTLC-
Spec . Note that matching HTLC-Spec , Protocol 1 states the
redeeming transaction fee should be negligibly larger than f ,
and is independent of vdep.

Myopic Miners: MAD-HTLC ’s design deters B from
bribe attempts as he knows rational non-myopic miners will
seize his funds if he acts dishonestly.

However, even in the presence of unsophisticated, myopic
miners, MAD-HTLC still satisfies HTLC-Spec . The common
transaction selection logic [116]–[119] as of today has miners
myopically optimize for the next block. Since B’s transaction
can only be confirmed in the last round, these miners will
simply include A’s transaction, achieving the desired outcome.

Table III: Bitcoin contract and redeeming transaction sizes.
Contract Size [bytes] Redeem path Redeeming tx [bytes]

HTLC 99 htlc-A 291
htlc-B 259

MH-Dep 129
dep-A 323
dep-B 322

dep-M 282

MH-Col 88 col-B 248
col-M 241

Only miners that are sophisticated enough to be non-myopic
but not sophisticated enough to take advantage of the dep-M
path would cooperate with the attack. But even in the presence
of such miners, it is sufficient for one miner (or user) to take
advantage of the dep-M path during the T rounds in order to
thwart the attack.

VI. MAD-HTLC IMPLEMENTATION

We demonstrate the efficacy of MAD-HTLC by evaluating
it in Bitcoin and Ethereum. We discuss the deployment of
MAD-HTLC and its overhead (§VI-A), and our implemen-
tation of a framework for implementing MEV infrastruc-
ture [37]–[39] on Bitcoin (§VI-B), used to facilitate MAD-
HTLC guarantees.

A. Contract Implementation, Overhead and Deployment

We implement MH-Dep and MH-Col in Bitcoin’s
Script [35] and Ethereum’s Solidity [36], [42] smart contract
languages. We also implement a version of the standard HTLC
for reference. We bring the code in Appendix B.

We briefly discuss these implementations, show their
transaction-fee overhead is negligible compared to the secured
amounts, and present main network deployments.

Bitcoin implementation: Bitcoin’s transaction fees are
determined by the transaction sizes. Our contracts use
P2SH [120] (non SegWit [121]) addresses, so the initiating
transactions contain only the hashes of the scripts, and each
contract initiation within a transaction requires 28 bytes. The
redeeming transactions provide the full predicate script along
with its inputs. Table III presents the script and redeeming
transaction sizes of HTLC , MH-Dep and MH-Col .

A transaction redeeming MH-Dep is about 50 bytes larger
than one redeeming HTLC . At the current Bitcoin common
fees [122] and exchange rate [123] implies an additional cost
of a mere $0.02. Including the auxiliary MH-Col implies an
additional cost of about $0.10.

Further size-reduction optimizations such as using SegWit
transactions and merging multiple transactions can also be
made, but are outside the scope of this work.

Ethereum implementation: Compared to Bitcoin’s Script,
Solidity [36], [42] is a richer smart contract language, allowing
MAD-HTLC to be expressed as a single contract consolidating
MH-Dep and MH-Col .

On the Ethereum platform transactions pay fees according
to their so-called gas usage, an inner form of currency de-
scribing the cost of each operation the transaction performs.
We compare the initiation and redeeming costs of HTLC and
MAD-HTLC . Note that MAD-HTLC contains about twice the
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Table IV: Ethereum gas for contract initiation and redeeming.
Contract Initiation [gas] Redeem path Redeeming [gas]

HTLC 362,000 htlc-A 34,734
htlc-B 32,798

MAD-HTLC 600,000

dep-A 58,035
dep-B 58,885

dep-M 59,043
col-B 41,175

col-M 44,887

code of HTLC , and as expected, its operations are more gas-
consuming. We bring the details in Table IV.

We stress these numbers regard the most basic, straight-
forward implementation, and that Ethereum and Solidity en-
able further optimizations – for example, deploying a more
elaborate library contract once [124], and simpler contract
instances that use the library, achieving significantly reduced
amortized costs. More importantly, the additional fee costs
are independent of (e.g., $0.2 [125]), and can be negligible
compared to, the secured amounts (e.g., $6.2K [125]).

Recall that for off-chain channels this overhead is incurred
only in the abnormal unilateral channel closure.

Main network deployment: We deployed MAD-HTLC on
both blockchains (Appendix C details the transaction IDs).

For Bitcoin, we deployed three MH-Dep instances on the
main network and redeemed them using its three redeem paths.
We also deployed two MH-Col instances and redeemed using
its two redeem paths.

For Ethereum, we deployed a consolidated MAD-HTLC ,
and posted transactions redeeming the vdep through both dep-A
and dep-B. These transactions offered relatively low fees,
so were not included in a block by any miner, and only
revealed prea and preb. At this point there were no other
transactions trying to redeem the MAD-HTLC , although users
and miners monitoring the blockchain could have created a
transaction redeeming the vdep using the dep-M with the
revealed prea and preb. We deduce this optimization currently
does not take place on the Ethereum main network.

Then, we published a transaction of our own using dep-M,
revealing (again) prea and preb, offering a relatively-high fee.
Nevertheless, our transaction was slightly out-bid by another
transaction, which also used dep-M, and took the deposit.
It was likely published by a front-running bot [37], [56],
[60], presenting yet another example of entities monitoring the
blockchain looking for MEV opportunities [37], [56], [60], as
required for MAD-HTLC security.

B. Bitcoin-MEV Infrastructure

By default, cryptocurrency clients [116]–[119] only perform
myopic transaction-inclusion optimizations, trying to generate
a single maximal-fee block each time. As recently shown [37],
[56], [60] (including in our deployment above), miners and
other entities perform more sophisticated optimizations on the
Ethereum network.

In contrast, we are not aware of similar optimizations
taking place on the Bitcoin network. Specifically, Bitcoin Core,
which is used by roughly 97% of current Bitcoin nodes [40],
maintains a local mempool data structure that only contains un-
confirmed transactions whose timeouts (if any) have elapsed.

New tx

Patched Bitcoin Core (C++)

mempool

Tx Queue

Tx Buffer

1

MEV Logic (Python)2
New txs

4
Buffer 

instructions5
Insert tx to mempool

Insert 
generated 

tx

3
Choose txs for

mempool1

Figure 2: Bitcoin-MEV, new components shaded.

This implementation prevents miners from optimizing based
on transaction pending on a timeout. However, this limitation
is not a consensus rule, but an implementation choice. Taking
more elaborate considerations into account when choosing
transactions is not a violation of legitimate miner behavior.

As noted (§II-B), optimizing transaction revenue is becom-
ing more important for miners over time. To demonstrate the
ease of achieving broader optimizations, including non-myopic
considerations, we implemented Bitcoin-MEV, an infrastruc-
ture allowing to easily incorporate any logic over Bitcoin Core
received transactions.

Bitcoin-MEV’s main design goal is to enable users to deploy
their own optimization algorithms. It comprises a patched
(140 LoC) C++ Bitcoin Core node with additional RPCs, and
a Python script (Fig. 2, new components shaded), working as
follows.

When the node receives a new transaction, instead of
directly placing it in its mempool, it pushes the transaction to a
designated new transaction queue. The Python script monitors
this queue with a dedicated RPC, fetches new transactions and
parses them. Then, based on the implemented optimization
algorithm, it can instruct the node how to handle the transac-
tion – insert it to the mempool, discard it, or keep it for future
use. The Python script can also generate new transactions and
send them to the node.

We implemented and locally tested a Python script
(350 LoC) for enforcing MAD-HTLC by taking advantage of
the opportunities it provides miners to increase their revenue.
We screen received transactions, tease out A and B’s preim-
ages, and create a transaction redeeming the MAD-HTLC
contracts using the extracted preimages.

VII. HTLC

The prevalent implementation of HTLC-Spec is a di-
rect translation of the specification to a single contract
called HTLC (§VII-A).

It relies on the premise that miners benevolently enforce
the desired execution, namely include A’s transaction in a
block before the timeout elapses. However, this assumption
contradicts the core principle of cryptocurrency permissionless
systems — miners operate to make profit [57], [58], [62]–[67],
and include transactions that benefit their personal gains [37],
[56], [59], [61]. Specifically, B can incentivize miners with a
bribe [26]–[28] to exclude A’s transaction until the timeout
elapses, and then redeem the HTLC himself.
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Predicate 3: HTLC
Parameters: pka, pkb, T, diga
HTLC (pre, sig) :=

11 (vPreImg (pre; diga) ∧ vSig (sig; pka))∨ // htlc-A
22 (vSig (sig; pkb) ∧ vTime (T )) // htlc-B

We analyze the security of HTLC by formalizing the game
played by the entities (§VII-B), and showing how cheap B’s
required bribe is (§VII-C). We show miner fee optimization
is easy by implementing a bribery-accepting (i.e., rational
and non-myopic) miner (§VII-D), and conclude by estimating
the actual attack cost using numbers from operational con-
tracts (§VII-E).

A. Construction

A and B execute HTLC-Spec by having an HTLC con-
tracted with vdep tokens placed in some block bj . The HTLC ’s
predicate is parameterized with A’s and B’s public keys, pka
and pkb, respectively; a hash digest of the predefined se-
cret diga = H (prea) such that any entity other than A and B
does not know prea (A or B know prea based on the specific
use case); and a timeout T .

HTLC has two redeem paths, denoted htlc-A and htlc-B,
and presented in Predicate 3. In htlc-A (line 1), A can redeem
with a transaction including prea and siga, a signature with
her secret key ska. In htlc-B (line 2), B can redeem with a
transaction including sigb, a signature with his secret key skb.
This transaction can only be included in a block at least T
blocks after HTLC ’s initiation, that is, block bj+T .

As only A and B know their respective secret keys, other
entities cannot redeem the contract.

The intended way A and B should interact with HTLC
is as follows. If A knows the predefined preimage prea, she
publishes a transaction txh

a offering a fee f h
a > f that redeems

the HTLC . She publishes this transaction right after the
creation of block bj , that is, before the creation of block bj+1.
If A does not know the predefined preimage prea she does
not publish any transactions.
B observes the published transactions in the mempool,

watching for txh
a. If by block bj+T−1 A did not publish txh

a

then B publishes txh
b with a fee f h

b > f , redeeming the HTLC .
If A did publish txh

a by block bj+T−1 then B does not publish
any transactions.

B. HTLC Game

HTLC operation gives rise to a game, denoted by ΓH,
played among A, B and the miners. It is similar to that of
the MAD-HTLC game (§V-B), so we present the differences.

a) Subgames: The game state is simply the number of
blocks (k) created so far and state of the HTLC , which
can be either redeemable (red) or irredeemable (irred), so
denoted ΓH (k, red/irred).

The game begins when one block (initiating the HTLC )
was created, A and B did not publish any transactions, and
the HTLC is redeemable. Thus, the initial, complete game
is ΓH (1, red).

b) Actions: A can redeem the HTLC with a transac-
tion txh

a, offering f h
a tokens as fee. Note txh

a has to outbid
unrelated transactions and thus has to offer a fee f h

a > f ,
however, cannot offer more tokens than the redeemed ones,
so f h

a < vdep. A redeems HTLC using the htlc-A redeem
path, so txh

a can be confirmed in any round.
B can redeem HTLC with a transaction txh

b, offering f h
b

tokens as fee. Similarly, f h
b is bounded such that f < f h

b <
vdep. B redeems HTLC using the htlc-B redeem path, so txh

b

can only be confirmed in the last round.
Any miner can include the following transactions: an

unrelated transaction in any ΓH (·, ·) subgame; txh
a in

any ΓH (·, red) subgame; and txh
b in the ΓH (T, red) subgame.

C. Bribe Attack Analysis

We now show the HTLC prescribed strategy (§VII-A) is not
incentive compatible. Specifically, we show that if A commits
to the prescribed strategy, then B strictly gains by publishing a
conflicting transaction, outbidding A’s fee, thus incentivizing
miners to exclude A’s transaction and include his instead.

Let A publish txh
a with fee f h

a in the first round, and B
publish a transaction txh

b with fee f h
b >

f h
a−f
λmin

+ f . Focusing
on miner actions, we show through a series of lemmas they
are incentivized to include txh

b and to exclude txh
a, resulting

with lower utility for A, higher utility for B, and a violation
of the HTLC-Spec .

First, we show miner utilities for subgames where the HTLC
is irredeemable. Denote by σ̄ the best response strategy of all
miners in this setting.

Lemma 7. For any k ∈ [1, T ], the utility of miner i
in subgame ΓH (k, irred) is ui

(
σ̄,ΓH (k, irred)

)
=

λi (T − k + 1) f .

Proof. Since HTLC is irredeemable, the only available action
for miners is to include an unrelated transaction, yielding a
reward of f .

Consider any ΓH (k, irred) subgame. There are T − k + 1
remaining blocks to be created, and miner i creates any of
them with probability λi. This scenario can be viewed as
a series of T − k + 1 Bernoulli trials with success proba-
bility λi. The number of successes is therefore Binomially
distributed, and the expected number of blocks miner i creates
is λi (T − k + 1). The reward for each block is f , so miner i’s
utility is ui

(
σ̄,ΓH (k, irred)

)
= λi (T − k + 1) f .

We now consider miner utilities for ΓH (·, red) subgames,
where the HTLC is redeemable. We begin with the final
subgame ΓH (T, red), creating block Bj+T .

Lemma 8. Choosing to include txh
b is a unique subgame

perfect equilibrium in ΓH (T, red), and miner i’s utility when
doing so is ui

(
σ̄,ΓH (T, red)

)
= λif

h
b.

Proof. In the ΓH (T, red) subgame, the miner that creates
the block has three transactions to pick from: an unrelated
transaction for the base fee f , txh

a for f h
a, or txh

b for f h
b.
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As f h
b >

f h
a−f
λmin

+ f , 0 < λmin < 1 and f h
a > f , it follows

that f h
b > f h

a and f h
b > f . That means including txh

b yields
strictly greater reward than all other actions, thus being a
unique subgame perfect equilibrium in this subgame.

Miner i creates the block with probability λi, and so her
expected profit, i.e. utility, is ui

(
σ̄,ΓH (T, red)

)
= λif

h
b.

We now move on to consider any earlier (k ∈ [1, T − 1])
subgame (Blocks Bj+1 to Bj+T−1 ) where the HTLC is
redeemable.

Lemma 9. For any k ∈ [1, T − 1], the unique subgame
perfect equilibrium is that every miner includes an unrelated
transaction in ΓH (k, red), and miner i’s utility when doing so
is ui

(
σ̄,ΓH (k, red)

)
= λi

(
(T − k) f + f h

b

)
.

To prove this lemma we show that for any k ∈ [1, T − 1],
including A’s transaction in subgame ΓH (k, red) results with
lower overall utility at game conclusion – intuitively, it re-
deems the contract, so in the last subgame miners cannot
include B’s transaction. The proof is by induction on k, and
we bring it in full in Appendix D.

We conclude with the main theorem regarding HTLC sus-
ceptibility to bribing attacks:

Theorem 2. Alice’s prescribed behavior of HTLC allows B
to bribe miners at a cost of f h

a−f
λmin

+ f .

Proof. The proof follows directly from Lemma 8 and
Lemma 9, both showing that if A naively follows the pre-
scribed strategy then subgame perfect equilibrium of the initial
subgame is for all miners to place unrelated transactions until
round T and then place B’s transaction.

Note that by Theorem 2, the bribing cost required to attack
HTLC is independent in T , meaning that simply increasing
the timeout does contribute to HTLC ’s security.

Of course once A sees an attack is taking place she can
respond by increasing her fee. In turn, this could lead to B
increasing his fee as well, and so forth. Instead of focusing
on these bribe and counter-bribe dynamics, we conclude by
showing that A can preemptively prevent the attack, or assure
winning with a counter-bribe, by paying a high fee dependent
on vdep,. We note that such a high fee is in violation of the
HTLC-Spec .

Corollary 2. B cannot bribe the miners in this manner
if A’s txh

a offers at least f h
a > λmin

(
vdep − f

)
+ f .

Proof. In order to achieve the attack, B ought to make placing
unrelated transactions until T and placing his transaction at T
a subgame perfect equilibrium. As shown (Theorem 2), the
threshold to incentivize the smallest miner is f h

b >
f h
a−f
λmin

+ f .
Recall the fee f h

b of the bribing transaction txh
b is upper

bounded by the HTLC tokens vdep. Therefore, to achieve
the attack it must hold that vdep >

f h
a−f
λmin

+ f . By choos-
ing f h

a > λmin
(
vdep − f

)
+ f , A can prevent B from paying

a fee adhering to the bounds.

Myopic Miners: This bribery attack variant relies on
all miners being rational, hence considering their utility at
game conclusion instead of myopically optimizing for the next
block. If a portion of the miners are myopic and any of them
gets to create a block during the first T −1 rounds, that miner
would include A’s transaction and B’s bribery attempt would
have failed.

In such scenarios the attack succeeds only with a certain
probability – only if a myopic miner does not create a block
in the first T − 1 rounds. The success probability therefore
decreases exponentially in T . Hence, to incentivize miners
to support the attack, B has to increase his offered bribe
exponentially in T .

The analysis relies on assumptions on the mining power
distribution, and is outside the scope of this work. Notably, for
the simpler case when all other miners are myopic, miner i is
incentivized to support the attack only when it is her dominant
strategy, matching the upper bound of Winzer et al. [28].

D. Non-Myopic Bribery-Accepting Miner Implementation

Aside from the Bitcoin-MEV infrastructure (§VI-B), we
also implemented a simpler Bitcoin Core patch supporting the
mentioned bribe attack on HTLC .

When the patched client receives transactions with an
unexpired timeout (waiting transactions) it stores them in
a data structure instead of discarding them. When creating
a new block, the client first checks if any of the timeouts
have elapsed, and if so, moves the relevant transactions to
the mempool. When receiving conflicting transactions, instead
of accepting the first and discarding the second, it accepts
the transaction that offers a higher fee. In case of a conflict
with a waiting transaction, it chooses based on the condition
described in Theorem 2.

The simplicity of this patch (150 LoC, no external modules)
demonstrates that miners can trivially achieve non-myopic
transaction selection optimization.

E. Real-World Numbers

We conclude this section by presenting three examples of
HTLC being used in running systems, and show the substantial
costs to make them resistant against bribery attacks.

Table V presents for each example the HTLC tokens vdep,
the base fee f , and the ratio of required tokens for bribery

resistance (Theorem 2) and the base fee
λmin(vdep−f)+f

f . To es-
timate the base fee we conservatively take the actual paid fee,
which is an upper bound. We conservatively estimate λmin =
0.01 [87]; miners with lower mining power are less likely due
to economy-of-scale [126].

The first example is of a Bitcoin Lightning channel [127],
[128], where the required fee to secure the contract against a
bribery is 1.34e4 times the actual fee. Plugging in $10K as the
average Bitcoin price at the time [123], we get that an attack
requires about a $2 bribe for a payoff of over $25K. Note
this is just an arbitrary example, and there are plenty of such
low-fee, high-capacity channels, in all a few dollars bribe is
sufficient to yield tens of thousands of dollars as reward [127].
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Table V: HTLC bribe resistance cost examples.

Name vdep f λmin

(
vdep − f

)
+ f

f

Lightning channel
(BTC) [127], [128] 2.684 2.22e-6 1.34e4

Litecoin atomic swap
(LTC) [129] 1.337 3.14e-4 435.7

Liquality [130] atomic swap
(ETH) [125] 12 0.0004 301

Liquality [130] atomic swap
(BTC) [131] 0.278 5.76e-6 483.63

The second example is of a Litecoin atomic swap [129],
requiring 436 times higher fee to be secured against bribes.
The last two examples are the two sides of a BTC-ETH atomic
swap conducted by Liquality [130], requiring more than 300X
and 480X fees to be secure, respectively.

VIII. FUTURE DIRECTIONS

We briefly present two future research directions. First, we
discuss attacks and mitigations in a weaker model, where
either A or B have significant mining power (§VIII-1). Then,
we discuss how using MAD-HTLC can reduce latency in
systems utilizing HTLC-Spec (§VIII-2)

1) Mining A or B: As in previous work [26], [28], the
security analysis of MAD-HTLC assumes that A and B have
no mining capabilities and do not collude with any miner.
Indeed, acquiring mining capabilities (or forming collusion
agreements) requires a significant investment, substantially
higher than necessary for a simple bribe. Removing this
assumption extends the game space considerably, and brings
in timing and probability considerations that are outside the
scope of this work. Nevertheless, we briefly present the issue
and a potential low-overhead modification that disincentivizes
such attacks.
A with mining capabilities that knows prea can stall until

the timeout elapses and B publishes preb, and then redeem
both MH-Dep (using either dep-A or dep-M) and MH-Col
(using col-M). This requires A to create the block right after
the timeout elapses, otherwise another miner would include
B’s transactions. The potential profit is the vcol tokens, whose
number is in the order of a transaction fee.
B with mining capabilities can redeem MH-Dep (us-

ing dep-M) if he knows prea. This requires B to create the
first block after the MAD-HTLC initiation, otherwise another
miner would include A’s transaction. The potential damage
for this case is similar to the HTLC bribery (Winzer et
al. [28] and §VII-C), and note that any miner will be able
to redeem MH-Col once the timeout elapses.

Both variants require the miner to reveal prea and preb
by creating a block at a specific height, meaning they only
succeed with some probability. As such, their profitability
depends on the relative mining size of the miner, the deposit
and collateral amounts, and the transaction fees.

Nevertheless, these are vulnerabilities of MAD-HTLC , and
we propose the following countermeasure: Instead of having a
single MH-Dep and a single MH-Col , have multiple of each,
all with the same diga and digb, but each with a different
timeout T , and split vdep and vcol among them.

As one of the timeouts elapse, if the miner attacks then she
loses her advantage, as once she exposes prea and preb, any
miner can compete for the remaining contracts. Therefore, this
mechanism diminishes the attack profitability.

This adjustment’s overhead is only due to the fees for
creating and redeeming more contracts. However, those can
be small, independent of the secured amount.

2) Latency Reduction: Systems utilizing HTLC-Spec must
set the timeout parameter T , facing a trade-off. Too short
timeouts result in a security risk – B might get the tokens
unjustly because A’s transaction was not yet confirmed. Too
long timeouts imply an opportunity cost due to the unavailabil-
ity of the locked coins, and increase susceptibility to various
attacks [12], [132], [133].

MAD-HTLC can allow for significantly reduced timeouts
compared to HTLC , since instead of waiting for confirmation,
it now suffices to consider transaction publication. The anal-
ysis depends on mempool and congestion properties that are
outside the scope of this work.

IX. CONCLUSION

We introduce a novel approach of utilizing miner’s ratio-
nality to secure smart contracts, and use it to design MAD-
HTLC , a contract implementing HTLC-Spec . We show using
the UC framework and with game-theoretic analysis that
MAD-HTLC is secure. We also show the prevalent HTLC
is vulnerable to cheap bribery attacks in a wider variety of
systems, and qualitatively tighten the known cost bound in
presence of rational miners. We demonstrate the efficacy of
our approach by implementing and executing MAD-HTLC on
Bitcoin and Ethereum. We also demonstrate the practicality
of implementing a rational miner by patching the standard
Bitcoin client.

Both the attack against HTLC and the secure alternative
MAD-HTLC have direct impact on a variety of contracts using
the HTLC-Spec design pattern. As miners’ incentives to act
rationally increase, those systems will become vulnerable and
can directly adopt MAD-HTLC as a plug-in alternative.
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[21] M. Möser, I. Eyal, and E. G. Sirer, “Bitcoin covenants,” in Financial
Cryptography and Data Security, 2016.
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[105] I. Nikolić, A. Kolluri, I. Sergey, P. Saxena, and A. Hobor, “Finding the
greedy, prodigal, and suicidal contracts at scale,” in Proceedings of the
34th Annual Computer Security Applications Conference, 2018.

[106] L. Breidenbach, P. Daian, A. Jules, and E. G. Sirer, “An in-
depth look at the parity multisig bug,” 2017. [Online]. Available:
https://hackingdistributed.com/2017/07/22/deep-dive-parity-bug/

[107] K. Bhargavan, A. Delignat-Lavaud, C. Fournet, A. Gollamudi,
G. Gonthier, N. Kobeissi, N. Kulatova, A. Rastogi, T. Sibut-Pinote,
N. Swamy et al., “Formal verification of smart contracts: Short
paper,” in Proceedings of the 2016 ACM Workshop on Programming
Languages and Analysis for Security, 2016.

[108] R. Canetti, A. Jain, and A. Scafuro, “Practical uc security with a global
random oracle,” in Proceedings of the 2014 ACM CCS, 2014.

[109] J. Camenisch, M. Drijvers, T. Gagliardoni, A. Lehmann, and G. Neven,
“The wonderful world of global random oracles,” in Annual Interna-
tional Conference on the Theory and Applications of Cryptographic
Techniques, 2018.

[110] J.-F. Mertens and A. Neyman, “Stochastic games,” International Jour-
nal of Game Theory, 1981.

[111] Y. Shoham and K. Leyton-Brown, Multiagent systems: Algorithmic,
game-theoretic, and logical foundations, 2008.

[112] M. J. Osborne and A. Rubinstein, A course in game theory, 1994.
[113] E. Zermelo, “Über eine anwendung der mengenlehre auf die theorie

des schachspiels,” in Proceedings of the fifth international congress of
mathematicians, 1913.

[114] R. J. Aumann, “Backward induction and common knowledge of
rationality,” Games and Economic Behavior, 1995.
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APPENDIX A
MAD-HTLC INCENTIVE COMPATIBILITY LEMMA PROOFS

This section presents the proofs for Lemma 4, Lemma 5
and Lemma 6. We recall the lemmas for readability.

Lemma (4). In the last round of the game, i.e. sub-
game ΓMH (T, ·), if txdep

a and either txdep
b or txdep+col

b are
published then miners’ best-response strategy is not to include
any of A’s or B’s transactions in this round.

Proof. Since A and B published their transactions, both prea
and preb are available to all miners. Therefore, any miner can
create a transaction redeeming MH-Dep and MH-Col herself.

If MH-Dep is irredeemable
(
ΓMH (T, irred)

)
, then miners

can create txcol
m and redeem MH-Col themselves in round T ,

getting vcol tokens as reward. Alternatively, if txcol
b is published

they can include it in a block, getting a fee of f col
b tokens.

As f col
b < vcol, including txcol

b is strictly dominated by
including txcol

m . In this case miners can also not include txdep
a

as the MH-Dep is irredeemable.
If MH-Dep is redeemable

(
ΓMH (T, red)

)
, miners can also

create txdep+col
m , include it in a block, and get vdep + vcol in

reward. Alternatively, they can include either txdep
a , txdep

b , txcol
b

or txdep+col
b (whichever was published). However, any of these

offers fees lower than vdep + vcol, making them strictly-
dominated by including txdep+col

m .
Either way, including any of A’s or B’s transactions results

with a strictly lower reward, hence miners avoid doing so.

Lemma (5). In ΓMH (1, red), A cannot increase her utility by
deviating from the prescribed strategy.

Proof. First, if A does not know prea, she can take no action,
hence trivially complies with the prescribed strategy.

If A does know prea, then her possible deviations are not
publishing txdep

a at all, or publishing it only in the last round T .
Not publishing txdep

a at all is strictly dominated — she gets
no tokens; if she instead abides by the prescribed strategy then

she cannot get a lower revenue but can get more, e.g., if B
also follows the prescribed strategy (Lemma 2).

The inclusion of txdep
a in the last block depends on what

transactions B publishes throughout the game (Lemma 4).
That is, if B published either txdep

b or txdep+col
b then miners’

best-response is not to include txdep
a , and A gets no tokens.

Otherwise, miners’ best response is to include the transaction
that offers the highest fee, which can be either txdep

a or
another, resulting with A receiving vdep − f dep

a and 0 tokens,
respectively.

So, A cannot gain, and in several scenarios strictly lose, by
deviating from her prescribed strategy.

Lemma (6). In ΓMH (1, red), B cannot increase his utility by
deviating from the prescribed strategy.

Proof. Consider all of B’s possible actions. His potential
maximal utility is from having txdep+col

b included, which he
obtains by following the prescribed strategy in the scenario
where A does not know prea (Lemma 3). So, he has no
incentive to deviate in this case.

Now, consider the case where A knows prea, hence accord-
ing to Lemma 5 publishes txdep

a in the first T − 1 rounds.
B can publish txdep

b , txdep+col
b and txcol

b throughout the game.
If he publishes txdep

b or txdep+col
b in any round then none of his

transactions are included (Lemma 4) and he gets no reward.
However, if he only publishes txcol

b then by Lemma 2 he
receives vcol − f col

b > 0 tokens.
Not publishing txcol

b at all results with the minimal utility
of 0, and an earlier publication still leads miners to include
both txcol

b and txdep
a (cf. 6), obtaining the same utility as of the

prescribed behavior.

APPENDIX B
MAD-HTLC BITCOIN AND ETHEREUM IMPLEMENTATIONS

Fig. 3 shows the Bitcoin Script implementation of MH-Dep ,
MH-Col and HTLC . It also presents the required input data
for each redeem path.

Script is stack-based, and to evaluate input data and a
contract the latter is concatenated to the former, and then
executed: constants are pushed into the stack, instructions
operate on the stack. For a successful evaluation the stack must
hold exactly one element with value 1 after all operations are
executed.

a) MH-Dep: The script expects either two or three data
elements. It hashes the first two and checks if they match diga
and digb.

If the first matches diga but the second does not match digb
(dep-A), then the script verifies the existence of a third data
element, and that it is a signature created with A’s secret key.

If the first does not match diga but the second matches digb
(dep-B), then the script verifies the existence of a third data
element, and that it is a signature created with B’s secret key.
It also verifies the timeout has elapsed.

If both the first and the second data elements match diga
and digb (dep-M), respectively, then the script expects no third
data element and evaluates successfully.

1246



MH-Dep MH-Col HTLC
OP_HASH160
diga
OP_EQUAL
OP_SWAP
OP_HASH160
digb
OP_EQUAL
OP_IF

OP_IF
OP_1

OP_ELSE
T
OP_CHECKSEQUENCEVERIFY
OP_DROP
pkb
OP_CHECKSIG

OP_ENDIF
OP_ELSE

OP_VERIFY
pka
OP_CHECKSIG

OP_ENDIF

T
OP_CHECKSEQUENCEVERIFY
OP_DROP
OP_HASH160
diga
OP_EQUAL
OP_IF

OP_HASH160
digb
OP_EQUAL

OP_ELSE
pkb
OP_CHECKSIG

OP_ENDIF

OP_HASH160
diga
OP_EQUAL
OP_IF

pka
OP_ELSE

T
OP_CHECKSEQUENCEVERIFY
OP_DROP
pkb

OP_ENDIF
OP_CHECKSIG

Redeem path Input data
1 siga OP_0 prea
2 sigb preb OP_0
3 preb prea

Redeem path Input data
1 sigb OP_0
2 preb prea

Redeem path Input data
1 siga prea
2 sigb OP_0

Figure 3: MH-Dep , MH-Col and HTLC Bitcoin Script implementations.

Table VI: Bitcoin main-net experiment transaction IDs.

Description Transaction ID

Initiate MH-Dep d032175260145055860296cbca8f7462
4f30334ddf948d5da12f0c7414d80cc0

MH-Dep path 1 33c957bb2f75e797d240a38504ce49a3
aeaaceb72f8577096b4f2ff23f5b3a1e

MH-Dep path 2 cd090c90afaacc0e2648834fe96f6177
ec2f967b7e50245537afdaf0d5a80263

MH-Dep path 3 505c7f1f3862b7f5c6b78f72cce5e37a
655b946fbdc7d03526055f7ea206781a

Initiate MH-Col ea830dba56000b3486cf1c5122fedcf8
8169ab596536fd406b4f989e7761c1b4

MH-Col path 1 4c06ebff8de6bb56242c75849767a633
9e40a0442f815a2487fd9d6237c51b9f

MH-Col path 2 68270b94ca80281e31e193dac6779d3a
22d2799fe2afff8cef66c0ec6b420c88

b) MH-Col: The script expects exactly two data ele-
ments. It begins by verifying timeout has elapsed, and then
hashes the first element and checks if it matches diga.

If not (col-B), the script then verifies the second data is
a signature created with B’s secret key. Otherwise (col-M),
the script hashes the second data element and verifies it
matches digb.

We bring the Ethereum Solidity implementation of MAD-
HTLC and HTLC in the extended report [95].

APPENDIX C
MAD-HTLC BITCOIN AND ETHEREUM DEPLOYMENT

Tables VI and VII show the transaction IDs in our Bitcoin
and Ethereum deployments (§VI-A), respectively. Their details
can be viewed with online block explorers.

APPENDIX D
HTLC BRIBE ATTACK ANALYSIS PROOF

We recall Lemma 9 and prove it.

Lemma (9). For any k ∈ [1, T − 1], the unique subgame
perfect equilibrium is that every miner includes an unrelated
transaction in ΓH (k, red), and miner i’s utility when doing so
is ui

(
σ̄,ΓH (k, red)

)
= λi

(
(T − k) f + f h

b

)
.

Table VII: Ethereum main-net experiment transaction IDs.

Description Transaction ID

Initiation f10be5e53b9ad8a6f10d7e9b9bfbd63a
b8737c50274885182a67e7adc3fa59c2

dep-A 36e349b4fdc5385ef57a88d077837223
b3a26b0e6afc75f90bbaf2860d9295fd

dep-B 84aa626d659b63e0554f8de1a3d6e204
41d8d778b7e1e79d0a36ded325afedb4

dep-M (ours) ebdb267e8b612d59910bc2348a95eec8
388e62dbd6d64458c982f0cdacea67d9

dep-M (other) 74e87bba99ccd7a0bd794b793f108674
5b462390df01594ce057a430c122635a

Proof. Note that in ΓH (k, red) there are two actions available,
either include an unrelated transaction and receive f reward,
or include txh

a and receive f h
a reward.

Consider any miner i. Denote by λku the accumulated block-
creation rates of miners, excluding miner i, that choose to
include an unrelated transaction in ΓH (k, red). Therefore, the
accumulated probabilities of miners that choose to include txh

a,
excluding miner i, is 1− λku − λi.

If miner i chooses to include an unrelated transaction
then either of the following occurs. First, with probability λi
miner i gets to create a block, includes an unrelated trans-
action and receives a reward of f . The subsequent subgame
is ΓH (k + 1, red). Alternatively, with probability λku another
miner that includes an unrelated transaction gets to create a
block, miner i gets no reward and the subsequent subgame
is ΓH (k + 1, red). Finally, with probability 1−λku−λi another
miner that includes txh

a gets to create a block, miner i gets no
reward and the subsequent subgame is ΓH (k + 1, irred).

Therefore, miner i’s utility when including an unrelated
transaction in these subgames is

ui
(
σ̄,ΓH (k, red)

)
=

λi ·
(
f + ui

(
σ̄,ΓH (k + 1, red)

))
+

λku · ui
(
σ̄,ΓH (k + 1, red)

)
+(

1− λi − λku
)
· ui
(
σ̄,ΓH (k + 1, irred)

)
.

(2)

Similarly, if miner i chooses to include txh
a than either of the
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following occurs. First, with probability λi miner i gets to
create a block, includes txh

a and receives a reward of txh
a.

The subsequent subgame is ΓH (k + 1, irred). Alternatively,
with probability λku another miner that includes an unrelated
transaction gets to create a block, miner i gets no reward
and the subsequent subgame is ΓH (k + 1, red). Finally, with
probability 1 − λku − λi another miner that includes txh

a gets
to create a block, miner i gets no reward and the subsequent
subgame is ΓH (k + 1, irred).

Therefore, miner i’s utility when including txh
a in these

subgames is
ui
(
σ̄,ΓH (k, red)

)
=

λi ·
(
f h
a + ui

(
σ̄,ΓH (k + 1, irred)

))
+

λku · ui
(
σ̄,ΓH (k + 1, red)

)
+(

1− λi − λku
)
· ui
(
σ̄,ΓH (k + 1, irred)

)
.

(3)

To prove the lemma we need to show that for any k ∈
[1, T − 1] the utility from including an unrelated transac-
tion (Eq. 2) exceeds that of including txh

a (Eq. 3). This reduces
to showing that

f + ui
(
σ̄,ΓH (k + 1, red)

)
>

f h
a + ui

(
σ̄,ΓH (k + 1, irred)

)
,

(4)

which we do inductively.
a) Base: First, consider k = T −1. Using Lemma 8 and

Lemma 7 we get the condition presented in Eq. 4 is f+λif
h
b >

f h
a + λif , or alternatively,

f h
b >

f h
a−f
λi

+ f . (5)

Since λmin ≤ λi and f h
b >

f h
a−f
λmin

+ f , the condition
(Eq. 5) holds, meaning that in any subgame perfect equilibrium
miner i is strictly better by including an unrelated transaction
in subgame ΓH (T − 1, red).

Therefore, all miners choose to include unrelated transac-
tions in such subgames, meaning λju = 1−λi and 1−λi−λju =
0. Therefore, miner i’s utility (Eq. 2) is ui

(
σ̄,ΓH (k, red)

)
=

λi
(
f + f h

b

)
.

b) Assumption: Consider any k ∈ [1, T − 2] and assume
that the claim holds for k + 1. That is, the unique subgame
perfect equilibrium in subsequent games ΓH (k + 1, red) is
for all miners to include an unrelated transaction, and the
utility of miner i when doing so is ui

(
σ̄,ΓH (k + 1, red)

)
=

λi
(
(T − k) + f h

b

)
.

c) Step: Using the inductive assumption and Lemma 7
the condition of Eq. 4 translates to f +λi

(
(k + 1) f + f h

b

)
>

f h
a + λi (k + 1) f , or alternatively,

f h
b >

f h
a−f
λi

+ f . (6)

Again, since λmin ≤ λi and f h
b >

f h
a−f
λmin

+ f , the condition
(Eq. 6) holds, meaning that in the subgame perfect equilibrium
miner i’s strict best response is to include an unrelated
transaction in subgame ΓH (k, red).

Since all miners include unrelated transactions, we get λju =
1−λi and 1−λi−λju = 0. Therefore, miner i’s utility (Eq. 2)
is ui

(
σ̄,ΓH (k, red)

)
= λi

(
(T − k) f + f h

b

)
.
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