
KACHINA – Foundations of Private Smart Contracts
Thomas Kerber

The University of Edinburgh, IOHK
papers@tkerber.org

Aggelos Kiayias
The University of Edinburgh, IOHK

akiayias@ed.ac.uk

Markulf Kohlweiss
The University of Edinburgh, IOHK

mkohlwei@ed.ac.uk

Abstract—Smart contracts present a uniform approach for
deploying distributed computation and have become a popular
means to develop security critical applications. A major barrier to
adoption for many applications is the public nature of existing
systems, such as Ethereum. Several systems satisfying various
definitions of privacy and requiring various trust assumptions
have been proposed; however, none achieved the universality and
uniformity that Ethereum achieved for non-private contracts:
One unified method to construct most contracts.

We provide a unified security model for private smart contracts
which is based on the Universal Composition (UC) model
and propose a novel core protocol, KACHINA, for deploying
privacy-preserving smart contracts, which encompasses previous
systems. We demonstrate the KACHINA method of smart contract
development, using it to construct a contract that implements
privacy-preserving payments, along the lines of Zerocash, which
is provably secure in the UC setting and facilitates concurrency.

I. INTRODUCTION

Distributed ledgers put forth a new paradigm for deploying
online services beyond the classical client-server model. In
this new model, it is no longer the responsibility of a single
organization or a small consortium of organizations to provide
the platform for deploying relevant business logic. Instead,
services can take advantage of decentralized, “trustless” com-
putation to improve their transparency and security as well as
reduce the need for trusted third parties and intermediaries.

Bitcoin [23], the first successfully deployed distributed
ledger protocol, does not lend itself easily to the imple-
mentation of arbitrary protocol logic that can support this
paradigm. This led to many adaptations of the basic protocol
for specific applications, such as NameCoin [16], a distributed
domain registration protocol, or Bitmessage [28], a ledger-
based communications protocol. An obvious problem with this
approach is that, even though the Bitcoin source code can be
copied arbitrarily often, the Bitcoin community of software
developers and miners cannot, and hence such systems are
typically not sustainable. Smart contracts, originally posited
as a form of reactive computation [26], were popularized by
Ethereum [30], solving these problems by providing a uni-
form and standardized approach for deploying decentralized
computation over the same back-end infrastructure.

Smart contract systems rely on a form of state-machine
replication [24]: All nodes involved in maintaining the smart
contract keep a local copy of its state, and advance this copy
with a sequence of requests. This sequence of requests needs
to match for each node in the system – thus the need for
consensus over which requests are made, and their order. In
practice, this is achieved through a distributed ledger.

A seemingly inherent limitation of the decentralized com-
putation paradigm is the fact that protocol logic deployed
as a smart contract has to be completely non-private. This,
naturally, is a major drawback for many of the applications that
can potentially take advantage of smart contracts. Promising
cryptographic techniques for lifting this limitation are zero-
knowledge proofs [15], and secure-computation [14, 8]. Mo-
tivated by such cryptographic techniques, systems satisfying
various definitions of privacy – and requiring various trust
assumptions – have been proposed [2, 20, 31, 17], as we
detail in Subsection I-B. Their reliance on trust assumptions
nevertheless fundamentally limits the level of decentralization
which they can achieve, especially compared to their non-
private counterparts. For instance, a common restriction of
such systems is to assume a small, fixed set of participants
at the core of the system. This fundamentally clashes with
the basic principles of a decentralized platform like Bitcoin or
Ethereum (collectively classified as Nakamoto consensus). In
these systems, the set of parties maintaining the system can be
arbitrarily large and independent of all platform performance
parameters. This puts forth the following fundamental question
that is the main motivation for our work.

Is it feasible to achieve a privacy-preserving and
general-purpose smart contract functionality under
the same availability and decentralization charac-
teristics exhibited by Nakamoto consensus?

In this work we carve out a large class of distributed com-
putations that we express as smart contracts, which we col-
lectively refer to as “KACHINA core contracts”. In particular,
this includes contracts with privacy guarantees, which can
be implemented without additional trust assumptions beyond
what is assumed for Nakamoto consensus and the existence of
a securely generated common reference string. The latter is not
an assumption to be taken lightly – however it is a common
requirement for privacy-preserving blockchain protocols with
strong cryptographic privacy guarantees, and can be reduced to
the same assumptions as the distributed consensus algorithm
itself [19]. This class allows us to express the protocol logic
of dedicated privacy-preserving, ledger-based protocols such
as Zerocash [1] as smart contracts. Existing smart contract
systems such as Zexe [2], Hawk [20], Zether [4], Enigma [31],
zkay [25], and Arbitrum [17] can be expressed, preserving
their privacy guarantees, as KACHINA contracts. These pro-
tocols mainly rely on either zero-knowledge or signature au-
thentication for their security. KACHINA is flexible enough to

20
21

 IE
EE

 3
4t

h
C

om
pu

te
r S

ec
ur

ity
 F

ou
nd

at
io

ns
 S

ym
po

si
um

 (C
SF

) |
 9

78
-1

-7
28

1-
76

07
-9

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

C
SF

51
46

8.
20

21
.0

00
02

allow contract authors to express each of these systems, to-
gether with a concise description of the privacy they afford. It
does not supersede these protocols, but rather gives a common
foundation on which one can build further privacy-preserving
systems.

A. Our Contributions

We make four contributions to the area of privacy-preserving
smart contracts:

a) We model privacy-preserving smart contracts.
b) We realize a large class of such contracts.
c) We enable concurrent interactions with smart contracts,

without compromizing on privacy.
d) We demonstrate a general methodology to efficiently and

composably build smart contract systems.
Combined, they provide a method for both reasoning about

privacy in smart contracts, and construct an expressive foun-
dation to build smart contracts with good privacy guarantees
upon.

a) Our model: We provide a universally composable
model for smart contracts in the form of an ideal functionality
that is parameterized to model contracts both with and without
privacy, capturing a broad range of existing systems. The
expressiveness and relative simplicity of our model lends
itself to further analyses of smart contracts and their privacy.
Moreover, existing privacy-preserving systems benefit from the
model as a means to define their security, and contrast their
security with other systems.

We consider a smart contract to be specified by a transition
function ∆ and a leakage function Λ, which parameterize the
smart contract functionality F∆,Λ

sc . ∆ models the behavior of
the contract, were it to be run locally or by a trusted party.
It is a program that updates a shared state, and has its inputs
provided by, and outputs returned to, the calling party. F∆,Λ

sc

models network, ledger, and contract specific “imperfections”
that also exist in the ideal world by interacting with a Gledger-
GUC functionality [7], and captures the fundamental ideal-
world leakage through the parameterizing function Λ.

Some combinations of ∆ and Λ are not obviously realizable,
in particular the more restricted the leakage becomes. They
are able to capture existing smart contract systems however,
both privacy-preserving and otherwise. For instance, a leakage
function which leaks the input itself corresponds closely to
Ethereum [30], while a leakage function returning no leakage
makes many transition functions hard or impossible to realize.
This paper focuses on a more interesting middle ground. By
defining the ideal behavior to interact with Gledger, we avoid
having to duplicate the complex adversarial influence of ledger
protocols. We make few assumptions about this ledger, re-
quiring only the common prefix property, and interfaces for
submitting and reading transactions to be well defined.

b) Our protocol: We construct a practical protocol for re-
alizing many privacy-preserving smart contracts, utilizing only
non-interactive zero-knowledge. The primary goal of this pro-
tocol is to provide a sufficiently low-level and general purpose
basis for further privacy-preserving systems, without requiring

the underlying system to be upgraded with each new extension
or change. We focus on the Nakamoto consensus setting of
a shifting, untrusted set of parties. The protocol’s core idea
is to separate a smart contract’s state into a shared, on-chain,
public state, and an individual, off-chain, private state for each
party. Parties then prove in zero-knowledge that they update
the public state in a permissible way: That there exists a private
state and input for which this update makes sense.

c) Dealing with concurrency in a privacy-preserving man-
ner: There exists a fundamental conflict between concurrency
and privacy that needs to be accounted for to remain true to our
objective of providing a smart contract functionality as decen-
tralized as Nakamoto consensus. To illustrate, suppose an ideal
smart contract is at a shared private state ϕ and two parties
wish to each apply a function f and g respectively to this state.
They wish (in this specific case) the result to be independent
of the order of application – i.e. f(g(ϕ)) = g(f(ϕ)) = ϕ′.
In any implementation of the above in which parties do not
coordinate, the first party (resp. the second) should take into
account the publicly known encoding [ϕ] of ϕ and facilitate
its replacement with an encoded state [f(ϕ)] (resp. [g(ϕ)]) as
it results from the application of the desired transition in each
case. It follows that the encoded states [f(ϕ)], [g(ϕ)] must
be publicly reconciled to a single encoded state [ϕ′] which
necessarily must leak some information about the transitions
f and g. Being able to achieve this type of public reconcili-
ation while retaining some privacy requires a mechanism that
enables parties to predict transition conflicts and specify the
expected leakage.

We achieve this through the novel concept of state oracle
transcripts, which are records of which operations are per-
formed on the contract’s state, when interacting with it through
oracle queries. These allow contract authors to optimize when
transactions are in conflict: ensuring minimal leakage occurs
while still allowing reorderings. We provide a mechanism for
analyzing when reordering transactions is safe with respect
to a user’s individual private state, by specifying a sufficient
condition for when transactions must be declared as depen-
dencies.

d) Efficient modular construction: KACHINA is designed
to be deployed at scale: Previous works using zero-knowledge
do not explicitly maintain a contract state. If such a state ϕ was
modeled anyway, (e.g. as inputs to these systems), the zero-
knowledge proofs involved would scale poorly, with a proving
complexity of Θ(|ϕ|) before any computation is performed. A
naive approach to state cannot scale to handle systems with
a large state – such as a privacy-preserving currency contract,
without these being handled as special cases. Our abstracting
of state accesses solves this problem.

Regardless of the size of our state, the state is never accessed
directly, but only through oracles specified by the contract. As
a result the complexity of what must be proven is under the
full control of the contract author, and can be optimized for.
A proving complexity of Θ(|Tρ| + |Tσ|) prior to performing
any computation can be expected in KACHINA, where Tρ is
oracle transcript for the private state, and Tσ is the one for

2

the public state. This constitutes a clear improvement, as the
state of smart contracts deployed in practice may be very
large, however transcripts, similar to the inputs and outputs of
traditional public contracts, are generally short. This increase
in efficiency allows us to construct an entire smart contract
system, akin to Ethereum [30], as a KACHINA contract in
[18, Appendix J].

Not all contracts a user wishes to write will directly
match the requirements for realizing a smart-contract with the
KACHINA core protocol. However, our model is sufficiently
flexible to allow direct application of the transitivity of UC-
emulation to solve this: If the originally specified “objective”
contract (∆,Λ) is not in the class of KACHINA core contracts,
the author can find an equivalent (∆′,Λ′) which is. The author
can provide a proof that F∆′,Λ′

sc UC-emulates F∆,Λ
sc , and

by the transitivity of UC-emulation, can use the KACHINA
core protocol to realize (∆,Λ). We facilitate such proofs
by including adversarial inputs and leakages in our model,
which allow the simulator limited control over the objective
smart contract. This method to develop private smart contracts
is illustrated in Figure 1. It is further showcased by the
implementation of the salient features of Zerocash [1] as a
KACHINA contract in Section V, and the proof that it UC-
emulates a much simpler ideal payments contract.

Fig. 1. An overview of the KACHINA method to develop private smart
contracts: 1) An intuitive description of the objective smart contract is
developed in the form of F∆,Λ

sc . 2) A KACHINA compatible F∆′,Λ′
sc , from

the set of all equivalent contracts F∆′′,Λ′′
sc is selected, and the equivalence

proven. 3) Theorem 1 is applied to obtain its realization.

B. Related Work

There has been an increasing amount of research into smart
contracts and their privacy over the past few years. The results
of these often focus on specific use-cases or trust assumptions.
We briefly discuss the most notable of these.

a) Ethereum: As the first practically deployed smart con-
tract system, Ethereum [30] is the basis of a lot of our expecta-
tions and assumptions about smart contracts. Ethereum is not
designed for privacy, and hides no data by itself. We assume
that the reader is familiar with Ethereum.

b) Zexe: Zerocash [1] is a well-known privacy-preserving
payment system, allowing direct private payments on a public

ledger. Zexe [2] extends its expressiveness by allowing arbi-
trary scripts, reminiscent of Bitcoin-scripts, to be evaluated
in zero-knowledge in order to spend coin outputs. It is a
major improvement in expressiveness over Zerocash, which
only permits a few types of transactions.

c) zkay: zkay [25] extends Ethereum smart-contracts with
types for private data. It allows users to share encrypted data
on-chain, and prove that data is correctly encrypted and cor-
rectly used in subsequent interactions. These proofs are man-
aged through the ZoKrates [11] framework, which compiles
Ethereum contracts into NIZK-friendly circuits. Its usage is
limited to fixed size pieces of private data.

d) Hawk: One of the earliest works on privacy in smart
contracts, Hawk [20] is also one of the most general. It de-
scribes how to compile private variants of smart contracts,
given that all participants of the contract trust the same party
with its privacy. This party, the “manager”, can break the
contract’s privacy guarantees if they are corrupt, however they
cannot break the correctness of the contract’s rules. The con-
struction used in Hawk for the manager party relies of zero-
knowledge proofs of correct contract execution.

e) Zether: A lot of work on privacy in smart contracts
has focused on retro-fitting privacy into existing systems.
Zether [4], for instance, constructs a privacy-preserving cur-
rency within Ethereum, which can be utilized for a number
of more private applications, such as hidden auctions. As with
most retro-fitted systems, Zether is constrained by the system
it is built for, and does not generalize to many applications.

f) Enigma: There are two forms of Enigma: A paper
discussing running secure multi-party computation for smart
contracts [31], and a system of the same name designed to use
Intel’s SGX enclave to guarantee privacy [12]. The former
has a lot of potential advantages, but is severely limited by
the efficiency of general-purpose MPC protocols. The latter
is a practical construction, and can claim much better perfor-
mance than any cryptography-based protocol. The most obvi-
ous drawbacks are the reliance on an external trust assumption,
and the poor track record of secure enclaves against side-
channel attacks [3].

g) Arbitrum: Using a committee-based approach, Arbi-
trum [17] describes how to perform and agree on off-chain
executions of smart contracts. A committee of managers is
charged with execution, and, in the optimistic case, simply
posts commitments to state updates on-chain. In the case of
a dispute, an on-chain protocol can resolve the dispute with
a complexity logarithmic in the number of computation steps
taken. Arbitrum provides correctness guarantees even in the
case of a n−1 out of n corrupt committee, however relies on
a fully honest committee for privacy.

h) State channels: State channels, such as those discussed
in [10], occupy a similar space to Arbitrum, due to their
reliance on off-chain computation and on-chain dispute resolu-
tion. The dispute resolution process is different, more aggres-
sively terminating the channel, and typically it considers only
participants on the channel that interact with each other. The

3

privacy given is almost co-incidental, due to the interaction
being local and off-chain in the optimistic case.

i) Piperine: Piperine [21] uses a similar model and ap-
proach as presented in this paper, relying on zero-knowledge
proofs of correct state transitions, and modeling smart con-
tracts as replicated state machines. Piperine focuses on effi-
ciency gains from this approach, rather than privacy gains,
which it does not capture, while our work does not account
for the benefit of transaction batching. Our notion of state
oracles can be seen as a generalization of the state interactions
presented in [21].

II. TECHNICAL OVERVIEW

We first informally establish the goals and core technical
ideas of this paper. These will be fleshed out in the remainder
of the paper’s body, with some of the technical details – pri-
marily in-depth UC constructions and proofs – in the technical
report [18]. We will discuss each of our contributions in turn,
and discuss how, combined, they present a powerful tool for
constructing privacy-preserving smart contract systems.

a) Our model: We model smart contracts as reactive
state machines, which users interact with by submitting trans-
actions to a distributed ledger. A user submits a transaction,
with the intention to issue some high-level command to the
smart contract, e.g. to cast a vote, or withdraw funds. Once
the transaction is confirmed by the distributed ledger, the user
obtains information about the results of this high-level com-
mand: both whether it has been processed, and any information
it may have computed using the contract’s state.

As multiple users can interact with the same smart contract
system concurrently, users cannot always predict the effect of
their actions; a vote may end before a user’s voting transaction
is processed, for instance. As a result the user may not be able
to predict the outcome of the command, or even if it can be
carried out.

To capture privacy, the act of creating a transaction to post
on the distributed ledger is the only point at which we permit
privacy leakage. As a user may go offline at any point, any
private information they reveal – a bid during an opening phase
of an auction for instance – must be revealed in the on-chain
transaction itself. Formally, we model this with a leakage func-
tion Λ, which describes what information is leaked if a user,
seeing a specific contract state, issues a specific command.
This function can also fix choices that an interaction may make
– for instance if the command is “send a coin to Bob”, it may
decide which coin to send to Bob. To give users full control
over their privacy, even when these decisions are complex
or randomized, we ask them to sign off on a description of
the leakage before the transaction is broadcast. The leakage
in KACHINA captures information which a user purposely
decides to reveal, as the functionality they gain by doing so is
worth whatever damage they take to their private information.
It is further worth noting that nothing prevents a malicious
contract from finding clever ways to leak information without
being observable. This highlights the importance of interacting

only with trustworthy contracts, and the importance of the
leakage descriptor being accurate.

Similarly to the leakage function, the semantics of the con-
tract itself are largely dictated by a transition function ∆. It
describes how the state of a smart contract evolves given a
command and a few auxiliary inputs (such as the choice of
coin alluded to above).

b) The core protocol idea: The KACHINA core protocol
restricts itself to contracts which divide their state into a pub-
lic state σ, and, for each party p, a private state ρp. These
correspond to the shared ledger, and a party’s local storage
respectively. Transition functions are over pairs (σ, ρp) instead
of over all private states – a party may only change their own
private state. Honest users maintain their own private state in
accordance with the contracts’ rules, while the contract must
anticipate that dishonest parties may set it arbitrarily (this can
be circumvented by committing to private states, as descripted
in [18, Appendix G], although it comes at the cost of increased
public state sizes, and loss of anonymity).

A natural construction to achieve privacy in smart contracts
utilizing zero-knowledge proof systems is apparent: On cre-
ating a transaction, a user p evaluates the transition function
against the current contract state (σ, ρp), resulting in a state
(σ′, ρ′p). He creates a zero-knowledge proof that σ 7→ σ′ is a
valid transition of public states (i.e. there exists a correspond-
ing private state and input such that this transition takes place),
and posts the proof and transition as a transaction. Locally, the
user updates his private state to ρ′p.

We can also clearly describe the leakage of this sketched
protocol: The transition σ 7→ σ′ is precisely the information
which is revealed!

c) State oracles: The core protocol sketched above has
two major problems:

1) Due to each transaction containing a proof of transition
from one state to another, concurrent transactions will
almost certainly fail once the state is changed.

2) The size of the statement being proved, and therefore the
size of transactions, grows linearly with the overall size
of the contract’s state.

These drawbacks are especially notable in systems with
many users and a high frequency of transactions: On Ethereum
a transaction is almost certainly applied after many other trans-
actions the author never knew about, nor should need to know
about. The state the contract will be in once it executes a
transaction, is something the transaction’s author cannot pre-
dict accurately. In the naive system proofs only succeed in the
state they were originally created for, as Figure 2 suggests.
Instead of capturing a transition from σ 7→ σ′, we would rather
want to capture a (partial) function from states to successor
states.

To solve these issues, we add a layer of indirection for
accessing and updating contract states: Instead of the state
being a direct input to the transition function, the contract has
access to oracles operating on the public and private states.
The contract makes queries to these oracles: functions which
update the state, and return information about it. To prove

4

∅ σo

σπ σn

σπ σn

σ1 7

σ2 7

· · ·

σπ 7→σn

σπ 7→σn

σπ 7→σn

σπ 7→σn

··
·

· · ·
· · ·
· · ·

Transaction creation

Transaction
application(s)

Fig. 2. Direct state-transition based transactions can be applied only in the
state σπ they were proven for.

the interaction with the public state correct, users capture the
queries they made, and the responses they expect, in a se-
quence ((q1, r1), . . . , (qn, rn)): a transcript of oracle interac-
tions. The user proves that, given the responses expected, they
know an input which will make this series of queries.

Conversely, a user validating this transcript can verify this
proof, and evaluate the queries in turn against the public state,
ensuring the responses match. This defines a partial function
over public states, which is defined wherever the responses
recorded in the transcript match the results obtained by eval-
uating the queries on the current state.

Selecting what queries a contract makes provides a great
deal of control over the domain of the function: a query which
has an empty response will always succeed! In limiting queries
to returning only essential information, many conflicts can be
avoided. Transcripts can also be concise about what changes
are made, assuming the queries are encoded in a sufficiently
succinct language, such as most Turing-complete languages.

While not all conflicts are resolved through this as the re-
sponses may not match those expected, it allows the proof to
focus on the relevant parts of the state, being compatible with
more concurrent transactions, as pictured in Figure 3.

∅ σo

σπ σn

σπ σn

σ1 σ′
1

σ2 7

· · ·

T

T

T

T

··
·

· · ·
· · ·
· · ·

Transaction creation

Transaction
application(s)

Fig. 3. Oracle-transcript based transactions can be applied in any compatible
state. The transcript T defines a partial function {σπ 7→ σn, σ1 7→ σ′

1, . . .}.

In order to be able to model partial transaction success,
which is crucial for modeling transaction fees, we allow for
a special query to be made, COMMIT. COMMIT queries mark
checkpoints in a transaction’s execution, such that if an error
occurs after it, the execution up to this point is still meaningful.
This effectively partitions the transcript into atomic segments.
We primarily use this to construct transaction fees within a
smart contract itself, the details of which can be seen in [18,
Appendix J.5].

d) High-level usage: Even when using state oracles, this
protocol is limited to contracts which have their state fit neatly
into accessing only shared public state, and local private state.
The natural description of many contracts does not match
this. For instance: a private currency contract is most directly
described through a shared private state tracking the balances
of all parties.

However, it is simple to express the Zerocash [1] protocol
in terms of interactions with shared public, and local private
states. This provides a practical means to achieve what we
can describe using a shared private state. It is important to
have both the most natural description of a contract, and the
realization. The former provides a good understanding of the
features and security properties of a contract, while the latter
realizes it.

This idea is nothing but the notion of simulation-based se-
curity itself! We use multiple stages of UC-emulation: First
moving from our objective contract (a private payments con-
tract) to a contract within the KACHINA constraints on state
(a Zerocash contract), and second moving on to the KACHINA
core protocol. Due to the transitivity of UC emulation, we may
therefore use this “KACHINA method” to construct the objec-
tive of private payments. This process is outlined in Figure 1.

Our model is designed to facilitate this usage. Specifically
for modeling objective contracts the model allows the adver-
sary to provide an additional adversarial input to each transac-
tion. This input allows the simulator to control some parts of
the ideal behaviour similar to the simulator’s influence on an
ideal functionality, for instance to ensure ideal world addresses
match real-world public keys.

III. DEFINING SMART CONTRACTS

Smart contracts are typically implemented as replicated state
machines. If a replicated state machine is the implementation,
the natural model is that of the state machine itself. Inputs are
drawn from a ledger of transactions, and passed to this state
machine.

This definition is unsuitable for privacy-preserving smart
contracts: If the state machine’s behavior is known, and its
inputs are on a ledger, there is no privacy. A simple tweak can
solve this: Inputs are replaced with identifiers on the ledger,
with the smart contract functionality tracking what their cor-
responding inputs are.

A. Interactive Automata Interpretation

Smart contracts are a form of reactive computation: Parties
supply an input to the contract, the latter internally performs
a stateful computation, and returns a result to the original
caller. The result is returned asynchronously, and may depend
on interactions with other users. This is quite close to the
concept of a trusted third party, although real-world systems
have caveats:

• They leak information about the computation performed.
• They allow some adversarial influence, partly due to re-

lying on the transaction ordering of an underlying ledger.

5

• They may carry some impure execution context: A trans-
action may depend on what the state is at the time it is
created, for instance.

Often when talking about smart contracts, only the “on-
chain” component is considered. This is insufficient for pri-
vacy, as by its nature, everything on-chain is public. We there-
fore model the off-chain component of the interaction as well.
This can be as simple as placing inputs directly on the ledger,
but can involve more complex pre-computation. Even without
the need for privacy, the need to model off-chain computation
of smart contracts had been observed [9], and we believe a
formal model should account for it.

To represent a contract, we use a transition function, op-
erating over the contract’s state. We denote the initial state
as ∅. Transition functions are deterministic, although limited
nondeterminism can be simulated by including randomness
in the execution context. Notably, such randomness is fixed
on transaction creation, allowing the creator to input (poten-
tially biased) randomness, which is subsequently used in the
(replicated) execution of the contract’s state machine. Poten-
tial uses include the creation of randomized ciphertexts or
commitments. The transition function will also output if a
transaction should be considered “confirmed” or not, with the
latter indicating failure or only partial success, which depen-
dant transactions should not build on.

A contract transition function ∆ is a pure, deterministic
function with the format (ϕ′, c, y) ← ∆(ϕ, p, w, z, a), with
the following inputs and outputs:

• The current state ϕ
• The calling party p
• The input w
• The execution context z

• The adversarial input a
• The successor state ϕ′

• The output y
• The confirmation state c

In addition to the transition function, it is necessary to
capture what leakage an interaction with the contract has. The
two are separated due to the asynchronous nature of smart
contracts – a transaction is made, and leaks information, before
the corresponding transition function is run on-chain.

The leakage is captured by a leakage function, which re-
ceives the same input, and further receives the creating user
p’s “view” ω of the contract as an input. ω = (ℓ, Up, T, ϕ)
consists of four items: a) The length of p’s view of the ledger ℓ.
b) p’s unconfirmed transactions Up. c) A map T from τ ∈ Up

to (p, w, z, a,D). These are ∆’s inputs, and the transaction’s
dependencies, which we will introduce shortly, D. d) The con-
tract’s state according to p’s view of the ledger, ϕ. This “view”
may be used to avoid attempting double-spends by selecting a
coin to spend which no other unconfirmed transaction uses, for
instance. For this purpose the leakage function can also abort
by returning ⊥, refusing to create a transaction. The function
returns a leakage value lkg, which is passed to the adversary,
a description of the leakage which occurred, desc, a list of
transactions to depend on, D, and the context z. While lkg
may be arbitrary, it is important that desc provides an accurate
and readable description of this leakage. Its primary purpose is
to allow parties to decide not to go ahead with a transaction if

they notice the leakage is more than expected. With complex
contracts, anticipating what will be leaked should not be relied
upon. The usage of a descriptor highlights that Λ should not
be maliciously supplied, and facilitates simulation, as shown
in Section V.

It is worth emphasising that the leakage discussed in this
paper is deliberate; this is not leakage observed over a network,
which can be hard to identify, but is instead information which
users accept to reveal. For instance, a leakage in Zerocash [1]
is the length of the ledger at the time a transaction is created,
with the security of the protocol guaranteeing that this – but
nothing more – is revealed to an adversary.

The list of dependencies D is a list of transactions, which
must occur in the same order before the newly created transac-
tion can be applied. This can be used to enforce basic ordering
constraints between transactions. Finally, the context z allows
information about the state at the time of transaction creation
to be passed to the transition function. This may include the
current state, unconfirmed transactions, and a source of ran-
domness. Its content is left arbitrary at this point.

A leakage function Λ is a pure, non-deterministic function
with the format (desc, lkg, D, z) ← Λ(ω, p, w), with the fol-
lowing inputs and outputs:

• p’s contract view ω
• The calling party p
• The input w
• The leaked data lkg

• The leakage descriptor
desc

• The tx dependencies D
• The context z

We consider the pair (∆,Λ) to define a smart contract. The
ideal world interaction with a smart contract follows the below
pattern:

1) A party submits a contract input w.
2) The corresponding context and leakage are computed.
3) The party agrees to the leakage description, or cancels

(in the latter case, the transaction never takes place, and
no information is revealed).

4) The adversary is given (lkg, D), and provides the adver-
sarial input a.

5) The submitting party can retrieve the output of ∆ (if any),
while other parties can interact with the modified state.

The level of privacy guaranteed depends greatly on the
leakage function Λ: A leakage function which returns its in-
put directly as leakage provides no privacy, while one which
returns no leakage at all provides almost total privacy (notably
the fact some interaction was made is still leaked). By tuning
this, the privacy of Ethereum, Zerocash, and everything in
between can be captured.

Our model relies on users querying the result of transac-
tions manually – they are not notified of the acceptance of a
transaction, and can not modify it once made. If a transaction
is not yet confirmed by the ledger, the user gets the result
NOT-FOUND, if the transaction depends on failed transactions,
⊥ is returned, and otherwise the result is provided by the
contract itself (which may also inform of partial success).

6

B. UC Specification

The ideal smart contract functionality F∆,Λ
sc captures the

notion of a contract as a leaky state machine whose inputs
are drawn from a ledger. It is parameterized by the transition
function ∆ and the leakage function Λ, and it operates in
a hybrid world with a global ledger functionality Gledger. A
candidate for such a ledger is GsimpleLedger, as provided in
[18, Appendix B], although any compatible functionality is
sufficient. Its privacy guarantees stem from only revealing
explicitly leaked data, i.e. lkg, and only allowing the creator
of a transaction to access the result.

Functionality F∆,Λ
sc (sketch)

The smart contract functionality F∆,Λ
sc allows parties to query a

deterministic state machine determined by ∆ and Λ in a ledger-
specified order.

Executing a ledger view:
Starting with an initial state ϕ ← ∅, and an empty set

of confirmed transactions: For each transaction in the ledger’s
view, if the transaction is unknown, allow the adversary to
supply its inputs. Next, verify the transaction’s dependencies,
and that, for (ϕ′, c, y) ← ∆(ϕ, . . .), ϕ′ ̸= ⊥. If both are
satisfied, update ϕ to ϕ′, and record the transaction as confirmed
if c is⊤. If an execution output is requested, return y, or⊥ if the
execution failed. If, on the other hand, one of the preconditions
is not satisfied, skip this transaction.

Prior to any interaction by p:
Compute which transactions have been rejected in p’s view

of the ledger state, and remove any unconfirmed transactions
for p that (directly or indirectly) depend on them.

When receiving a message (POST-QUERY, w) from an honest
party p:

Retrieve p’s current view ω of the contract. Feed this, to-
gether with the party identifier, and the input w to Λ.

Ask p if the leakage description returned is acceptable. If
so, query the adversary for a unique transaction ID τ , and
some adversarial input corresponding to the leakage, and the
transaction’s dependencies. Record the original input, the ad-
versarial input, the context returned by Λ, and the transaction’s
dependencies as being associated with τ and p. Record the
transaction as unconfirmed for p, send (SUBMIT, τ) to Gledger,
and finally return τ .

When receiving a message (CHECK-QUERY, τ) from an honest
party p:

If τ is owned by p, and is in their current view of the ledger,
compute and return the output by executing the ledger view up
to τ . If τ is not in their ledger view, return NOT-FOUND.

IV. THE KACHINA PROTOCOL

As mentioned in Section II, a naive construction divides a
contract’s state into a shared public state, and a local private
states for each party. Specifically, the ideal state ϕ is defined
as the tuple (σ,ρ), where ρ consists of ρp for each party p.
A user proves the validity of any public state transition – that
there exists a private state and input, such that this transition
takes place. This clearly does not scale well, as it assumes

that the ledger state does not change between the submission
and processing of a transaction, and requires zero-knowledge
proofs about potentially large states – hundreds of Gigabytes
in systems like Ethereum [13]!

In reality, a user’s query may not be evaluated immediately,
and the ledger may change drastically in the meantime. Simply
proving a direct state transition would lead to a high proportion
of queries being rejected. To solve both problems, we require
contracts to access their state through a layer of abstraction
which both tolerates reordering interactions, and allows for
more efficient proofs. We further allow for partial transaction
success, by introducing transaction checkpoints. Our primary
purpose for this notion is to be able to capture the payment
of transaction fees, such as gas. We detail our approach to do
this in [18, Appendix J.5].

A. State Oracles and Transcripts
We introduce state oracles and state oracle transcripts to

abstract interaction with a contract’s state. We choose this
abstraction primarily for its flexibility, and many other ap-
proaches are possible, such as byte-level memory accesses,
or specific data structures such as set of unspent transactions.
These can be seen as instances of state oracles. We make use
of the notation [a, b, c] to denote a list of a, b, and c, with the
concatenation operator ‖ , and the empty list ϵ. We use the
function last to retrieve the last element of a list, and L[i] to
denote the ith element of the list L.

a) An example: To better motivate the need to abstract
interactions with a contract’s state, we will use a representative
example smart contract, and discuss how different abstractions
of its state will affect it.

Our example is a sealed bid auction contract1, which we
assume has some means of interacting with two on-chain as-
sets, one public and one private. These may be constructed
similarly as in Section V, however should be holdable and
spendable by other contracts. We do not go into detail of this
construction; this idea is fleshed out in detail in Zether [4].
The auction is opened by the seller party, and multiple buyer
parties may bid on it. The auction has three stages: Bidding,
opening, and withdrawing. The auction contract allows for the
following interactions:

• At initialization, the seller transfers ownership of the pub-
lic asset A to the auction contract.

• In Stage 1, buyers submit their bids, transferring some
amount of the private asset B to the auction contract,
which remains anonymous.

• In Stage 2, buyers reveal their bid. If the buyer’s bid
exceeds the currently maximum revealed bid, they reveal
their committed asset, increase the maximum bid, and
they record themselves as the winning bidder. Otherwise,
they withdraw their bid from the contract without reveal-
ing its value.

• In Stage 3, buyers withdraw any assets they own after the
auction – either their (losing) bids, or the sold asset (for

1This contract is designed to make a good example, not a good auction –
we do not recommend using it as presented.

7

the highest bidder). The seller withdraws the highest bid,
or the original asset if no bids were made.

• In Stage 1 and 2, the seller may advance the stage.

This contract needs to maintain in its state:

• The current stage the auction is in.
• A reference to the asset being sold.
• A set of bids made.
• The winning bid, its value, and who made it, during the

reveal phase.
• A set of losing bids, which have not yet been withdrawn,

during the reveal phase.
• Privately, a user remembers which bids are theirs, and

how to reveal them.

Suppose we adopted a naive approach to state transitions,
and proved the transitioning from one state to another directly,
with no abstraction of any kind. During the bidding phase it
is easily possible for multiple users to attempt to bid simul-
taneously (especially considering the delay until transactions
become confirmed by an underlying ledger). In this case, only
one of these transactions will succeed – as soon as this trans-
action changes the state by adding its own bid, the proof of
any other simultaneous transaction becomes invalid.

The simple abstraction of byte-level access would allow a
buyer and a seller to withdraw concurrently, as their with-
drawals affect different parts of the state. It does not do so
well in allowing concurrent bids to be made, however. If the
set is implemented with a linked list, for instance, two users
attempting to add their own bid simultaneously will change
the same part of the state: the pointer to the next element.

A smart abstraction should realize that whichever user bids
first, the resulting set of bids is the same, even if its binary
representation may not be. Even if the order of the interactions
matters, a smart abstraction may allow concurrent interactions.
When claiming the maximum bid in the auction, Alice may
increase it to 5, while Bob may increase it to 7 concurrently.
It should not matter to Bob’s transaction if the maximum bid
is currently 3, or 5 – although Alice’s must be rejected if the
bid is increased to 7 first.

b) General-purpose state oracles: The abstraction we
propose is that of programs. Appending a value to an linked
list can be encoded as a program which a) traverses to the
end of the current list, b) creates a new cell with the input
value, and c) links this from the end of the list. Formally,
these programs are executed by a universal machine called a
state oracle with access to the current (public or private) state
α, and potentially an additional context z.

Definition 1. A state oracle O = U(α0, z), given an initial
state α0, and context z, is an interactive machine internally
maintaining a state α, a transcript T , and a vector of fallback
states α⃗ (initially set to the input α0, ϵ, and [α0] respectively),
which permits the following interactions:

• Given a COMMIT query, set α⃗ ← α⃗ ‖ [α], and append
COMMIT to T .

• Given a query q while α is ⊥, return ⊥.

• Otherwise, given a query q, compute (α′, r) ← q(α, z).
Update α to α′, append (q, r) to T , and return r.

• state(O) returns (α⃗ ‖ [α], T).

The context z is empty (∅) for state oracles operating on
the public state, and is used in state oracles operating on
the private state for fine-grained read-only access to the state
during transaction creation, e.g. to allow private state oracles to
read the public state. Specifically, the oracle operating on the
private state can read both the public and private states for: a)
the confirmed state at the time the transaction was created (σo

and ρo), and b) the projected state, an optimistic state in which
all of the user’s unconfirmed transactions are executed, at the
time the transaction was created (σπ and ρπ). This can be used
to make sure new transactions do not conflict with pending
ones: Selecting which coin to spend uses the confirmed state to
ensure the coin can be spent, and the projected state to ensure
a coin is not double spent. The context is also used to provide
a source of randomness η to the private state oracle. In total,
the context of the private state oracle is (σo, ρo, σπ, ρπ, η).
The context to the public state oracle is empty (∅), and we
will sometimes omit it.

We say that the oracle aborts if it sets its state to ⊥. The
state will then be rolled back to a safe point, specifically the
last COMMIT where the state was non-⊥. Looking forward,
we will decompose the transition function ∆ into three com-
ponents: An oracle operating on the public state σ, an oracle
operating on p’s private state ρp, and a “core” transition func-
tion Γ. This process is described in detail in Subsection IV-D,
with an overview of the interactions of Γ with public and
private state oracles given in Figure 4.

U Γ U

qσ1
rσ1

qσn
rσn

qρ1
rρ1

qρn
rρn

z ρ w σ

σ′ρ′ y

...
...

Private

Trusted

Fig. 4. The interaction of the core contract Γ, with two universal machines
U , acting as state oracles over the public state σ, and the private state ρ,
together with the context z.

The notion of oracle transcripts is crucial in the functioning
of KACHINA, as it provides a means to decouple the part of a
transaction which is proven in zero-knowledge from both the
public and private states entirely: We only prove that given
some input, and a sequence of responses recorded in the pub-
lic state transcript, the smart contract must have made the
recorded queries.

8

c) Revisiting our example: As an illustration, we show
how our auction example interacts with state oracles. We de-
fine the auction’s states more precisely first, where users are
identified by public keys, denoted with pk:

• The current stage, stage ∈ {1, 2, 3}.
• A reference to the asset being sold and who is selling it:
a, pks.

• A set of bids made S.
• The winning bid, its value, and who made it: b, v, pkb.
• A set of not yet withdrawn losing bids: R.
• Privately, a user remembers openings to their bids, the

committed bid itself, and its value: bidOpen, bidComm, v.
Overall, the public state is defined as σ := (stage, pks, a, b,

v, pkb, S,R), and the private state is defined as ρ := (bidOpen,
bidComm, v). The public state is initialized by the seller to
(1, pks, a,∅, 0,∅,∅,∅).

The oracle queries corresponding to each interaction with
the contract are given as closures, i.e. sub-functions which
make use of some of their parents local variables. To clarify
where this is the case, we place such variables in the subscript
of the function name. These functions are passed to either the
public or private state oracle as the input q, as specified in
Definition 1.

• Bidding: Given a asset opening bidOpen, with value v,
corresponding to an asset commitment bidComm, which
has been bound to the auction contract, Γ first makes the
following public oracle query:

function makeBidbidComm((stage, pks, a, b, v, pkb, S,R))
assert stage = 1
return ((stage, pks, a, b, v, pkb, S∪{bidComm} , R),⊤)

Further, it makes the following private oracle query:
function recordBidbidOpen,bidComm,v(·, ·)

return ((bidOpen, bidComm, v),⊤)

• Revealing: Given a public key to redeem the funds to in
case of losing the auction, Γ first makes a private oracle
query to retrieve which bid is owned:

function retrieveBid((bidOpen, bidComm, v), ·)
return ((bidOpen, bidComm, v),

(bidOpen, bidComm, v))

Next, the contract makes a further private oracle query for
the expected maximum bid, to determine if the buyer’s
bid is higher:

function projMax(ρ, z = (·, ·, σπ = (. . . , v′, . . .), ·, ·))
return (ρ, v′)

If this query returns v′ < v, the contract attempts to claim
the maximum bid with the public oracle query2:

function claimMaxbidOpen,bidComm,v,pk(σ)
let (stage, pks, a, bo, vo, pko, S,R)← σ
assert bidComm ∈ S ∧ v > vo ∧ stage = 2
return ((stage, pks, a, bidOpen, v, pk, S \ {bidComm},

R ∪ {(bo, pko)}),⊤)

If the original value test fails, on the other hand, instead
the contract transfers the ownership of bidComm via the

2Note that the claim may fail if the maximum bid increased from the one
projected at the time of transaction creation.

underlying asset system to pk, and runs the public oracle
query:

function claimLossbidComm((stage, pks, a, b, vo, pko, S,R))
assert bidComm ∈ S ∧ stage = 2
return (⊤, (stage, pks, a, b, vo, pko, S \ {bidComm} ,

R))

• Withdrawing: Given a public key pk, which the caller
knows the corresponding secret key for, the contract will
make an oracle query to determine which assets to trans-
fer ownership of, and to un-record them in a public oracle
query:

function withdrawpk((stage, pks, a, b, v, pkb, S,R))
assert stage = 3
if pk = pks ∧ b ̸= ∅ then

return ((stage,∅, a,∅,∅, pkb, S,R), (B, b))
else if pk = pkb ∧ a ̸= ∅ then

return ((stage, pks,∅, b, v,∅, S,R), (A, a))
else if ∃c : (c, pk) ∈ R then

return ((stage, pks, a, b, v, pkb, S,R \ {(c, pk)}),
(B, c))

• Advancing the stage: The seller (given their public key
pk) may advance the contracts stage from 1 or 2 to 2 or
3 respectively with a public oracle query:

function advanceStagepk((stage, pks, a, b, v, pkb, S,R))
assert pk = pks ∧ stage ∈ {1, 2}
return ((stage+ 1, pks, a, b, v, pkb, S,R),⊤)

This example does not handle corner cases (such as buyers
bidding multiple times), and is not intended for practical use.
Instead, its purpose is to illustrate the advantages state oracles
provide: The query an interaction will make, and the response
it will receive, are often not affected by other interactions.
Concurrent bids do not conflict, for instance. The represen-
tation of data is also not crucial, as the state oracles may
themselves interact with abstract data types.

We complete our example by specifying the core transition
function Γ, under the assumptions that a means to call into
a separate asset management system (a contract that permits
transferring ownership of assets between public keys), such as
presented in [18, Appendix J.4], exists. We also assume that
a user’s public key can be retrieved with a shared “identity”
contract.

Transition Function Γauction

A simple private auction contract.

When receiving an input (BID, v):
send (BIND, v,Γauction) to ΓB and

receive the reply (bidOpen, bidComm, v)
send makeBidbidComm to Oσ and receive the reply ⊤
send recordBidbidOpen,bidComm,v to Oρ and

receive the reply ⊤
When receiving an input REVEAL:

send retrieveBid to Oρ and
receive the reply (bidOpen, bidComm, v)

send IDENTITY to Γid and receive the reply pk
send projMax to Oρ and receive the reply v′

if v′ < v then

9

send (ASSERTVALIDFOR, bidOpen, bidComm, v, pk,
Γauction) to ΓB

send claimMaxbidOpen,bidComm,v,pk to Oσ and
receive the reply ⊤

else
send (UNBIND, bidOpen, pk) to ΓB

send claimLossbidComm to Oσ and receive the reply ⊤
When receiving an input WITHDRAW:

send IDENTITY to Γid and receive the reply pk
send withdrawpk to Oσ and receive the reply (X,x)
if X = A then

send (TRANSFER, x, pk) to ΓA

else
send (UNBIND, x, pk) to ΓB

When receiving an input ADVANCE-STAGE:
send IDENTITY to Γid and receive the reply pk
send advanceStagepk to Oσ and receive the reply ⊤

d) Using transcripts: KACHINA relies on a few key ob-
servations on how transcripts relate to the original state oracle
execution. To begin with, we define a few ways in which
transcripts may be used.

Definition 2. A state oracle transcript T may be applied to a
state α in a context z. We write α⃗ ← T (α, z), or if z = ∅,
α⃗ ← T (α), the operation of which is defined through the
following loop:

function T (α, z)
let O ← U(α, z)
for (qi, ri) in T do

send qi to O and receive the reply r
if r ̸= ri then return ⊥

let (α⃗, ·)← state(O)
return α⃗

If a transcript is malformed, applying it will result in [α,⊥].

The returned α⃗′ is indistinguishable from the internal state
α⃗ ‖ [α] of the state oracle U(α0, z), given the same sequence
of queries. This allows users to replicate the effect other users’
queries have on the public state, without knowing why these
queries were made.

Definition 3. A sequence of transcripts and contexts X =
((T1, z1), . . . , (Tn, zn)) is applied by applying each transcript
in order. We write T ∗

X(α), which has the recursive definition:
• T ∗

ϵ (α) := α
• T ∗

X ‖ [(T ,z)](α) := last(T (T ∗
X(α), z))

Definition 4. A transcript T = ((q1, r1), . . . , (qn, rn)) (poten-
tially including COMMIT messages) induces a transcript oracle
O(T), which behaves as follows:

• Recorded COMMIT messages are ignored.
• For the ith query q′i, return ri if q′i = qi, otherwise abort

by returning ⊥ for this, and all subsequent queries.
• When consumed(O) is queried, return > if exactly n

queries were made, otherwise return ⊥.
If in an interaction with the oracle, consumed holds, the tran-
script was minimal for this interaction.

If the transcript oracle O(T) doesn’t abort when used as an
oracle in some function, then it behaves identically to the orig-

inal universal oracle that was used to generate the transcript.
We use this fact to generate zero-knowledge proofs about
transactions – we prove that each oracle query in a transcript
was made, and that the behavior is correct, given the responses
the transcript claims. We also prove that consumed(O) holds,
ensuring the transcript doesn’t just start with the queries an
honest execution would make, but that it matches them exactly.

These are used together to define how a transaction is made,
and how it is applied: Alice generates a transcript for the
oracle accesses her transaction will perform, and proves this
transcript both correct and minimal. She sends the transcript
and proof to Bob, who is convinced by the proof of correctness
and minimality, and can therefore reproduce the effect of the
transaction by applying the transcript to the state directly.

e) Inherent conflicts: Abstracting the interaction with the
state has many benefits, but it is not a panacea. Some conflicts
are inherent, and unavoidable – a contract may operate on a
first-come first-serve basis, and no trick will ease the pain of
coming second. A contract may also simply be badly designed,
not making good use of the abstractions provided – at the
most extreme, it can make only queries retrieving or setting
the entire state, negating all benefit of using oracles.

B. Interaction Between Smart Contracts

The example in Subsection IV-A, makes the natural assump-
tion (in the setting of smart contracts), of being able to interact
with other components – in this case with an asset system.
Most interesting applications of smart contracts seem premised
on such interactions. We consider how multiple contracts may
interact in [18, Appendix J.3], however we stress that a full
treatment is left as future work.

In particular, how various contracts can be independently
proven secure and composed in a general system alongside
other, potentially malicious contracts, is not handled in this
paper. Instead, where we assume interaction, we limit our-
selves to a closed smart contract system with a small set of
non-malicious contracts, such as the auction contract and the
asset system in Subsection IV-A.

While it is tempting to delegate such interactions to the
native compositionality and interactiveness of UC, this does
not reflect the reality of smart contract interactions, where the
executions of multiple contracts are atomically intertwined.
While related issues of interaction with the environment have
been considered in the literature, for instance in [6, 5], they do
not fully address our scenario, in which multiple branches can
be executed in projection. We therefore believe that studying
the interaction and composition of smart contract transition
and leakage functions requires further work, with this work
providing a foundation.

C. The Challenge of Dependencies

If a transaction τ1 moves funds from Alice to Bob, and τ2
moves funds from Bob to Charlie, the order τ2 . . . τ1 may not
be valid, if τ2 relies on the funds Bob received from Alice.
When a dependency like this is violated in interacting with

10

the public state, attempting to apply the dependent transaction
first will fail, and the transaction is rejected.

How such interactions affect a user’s private state is more
tricky to handle. While two different parties cannot conflict
with each other on private state changes due to domain sepa-
ration, parties may encounter internal dependencies.

A party starting with the private state ρ1, makes a transac-
tion τ1 which advances their private state to ρ2. Afterwards,
they make the transaction τ2, their private state ending up as
ρ3. If these transactions are made shortly after each other, τ2
may be placed before τ1 on the ledger. It is possible that τ2
uses information from τ1, such as a secret key, and that it
makes no sense without it.

Should a user ignore the reordering, and stick with the
state ρ3? This can introduce inconsistencies between the public
state and private state. Should the user apply the private state
transcript of τ2 and hope for the best – but risk a catastrophic
failure if it cannot be applied? Neither are ideal. Instead, we
propose that τ2 should publicly declare that it depends on τ1,
and rely on on-chain validation to ensure they are applied in
the correct order.

If a user has a set of unconfirmed transactions U , and is
adding the new transaction τ in the ledger state, dependencies
should ensure that any permutation of U ∪ {τ} results in a
consistent interaction with the user’s private state – i.e. result
in a non-⊥ private state. Further, this should even be the case
if these transactions are only partially successful – regardless
as to which COMMIT point was reached.

An overeager approach would be to ensure all unconfirmed
transactions are dependencies, and in the order that they were
made. With domain separation and sufficiently abstract inter-
actions it is likely that only few transactions actually depend
on each other. This can be application specific, and to account
for this we allow for contracts to specify a function dep to
declare dependencies. We constrain how this function may
behave, and provide the all-purpose fallback of all unconfirmed
transactions.

For most practical cases that we have observed, private state
oracles do not conflict or enter into complex dependencies
with each other. Most often, their state management is simple:
sampling and storing secrets. The formal machinery presented
in this section is to allow this intuition that the transactions
do not depend on each other to be justified in many cases.

a) Formal definition: The formal definition of depen-
dency functions is complex; we begin by introducing some
mathematical notations. In addition to this notation, we make
use of the following functions: a) the higher-order function
map. b) an index function, which returns the index of an
element in a list, idx. c) the tuple projection functions proji,
which return the ith element of a tuple. d) the list flattening
function flatten, which, given a list of lists, returns a list of
the inner lists concatenated. e) the function take, which returns
the prefix of a list containing a specified number of items. f)
the function zip, which combines n lists into a list of n-tuples.

Definition 5. For any finite set X , SX is the set of all per-

mutations of X , where each permutation is a list.

Definition 6. The subsequence relation X v Y indicates that
each element of the list X is present in Y , in the same order:

X v Y := X ⊆ Y ∧ (∀a, b ∈ X : idx(X, a) < idx(X, b)

=⇒ idx(Y, a) < idx(Y, b))

We define an expansion of transactions into useful compo-
nents: As a transaction has no private data within it, we use
this to refer to this data.

Definition 7. A transcript T ’s corresponding commit-sepa-
rated transcript T⃗ is a list of lists of query/response pairs,
corresponding to splitting T at each COMMIT. We write T⃗ =
split(T , COMMIT).

Definition 8. A secret-expanded transaction is a tuple (τ, T⃗ , z,
D), consisting of the transaction object τ , the commit-separat-
ed private state transcript T⃗ , the context z, and the dependen-
cies D.

We define the format of transactions handled by the depen-
dency function. We make use of “confirmation depth”, the
vector of which is denoted c⃗. This is a vector of natural
numbers, representing how many parts of the corresponding
commit-separated transcript executed successfully.

Definition 9. A list X of secret-expanded transactions’ de-
pendencies may be satisfied given a set of still unconfirmed
transaction U and a list of confirmation depths c⃗, denoted by
sat(X, c⃗, U), which is defined formally below. Informally, it
states that each transaction in X must be preceeded by its
dependencies, in order, and that each of these dependencies
should have executed fully, rather than partially.

• sat(ϵ, c⃗, U) := >
• sat(X ‖ (·, ·, ·, D), c⃗ ‖ ·, U) := sat(X, c⃗, U)∧(D∩U) v
map(proj1, X) ∧ ∀d ∈ D, T⃗ , z,D′, i : (d, T⃗ , z,D′) =
X[i] =⇒ |T⃗ | = c⃗[i]

We write sat∗(X,U) as a shorthand for the case where c⃗
are maximal: i.e. c⃗[i] = |proj2(X[i])|.

We define what transcripts will actually be executed for a given
sequence of confirmation levels.

Definition 10. The effective sequence of transcripts (denoted
ES(X, c⃗)), given a list of secret-expanded transactions and a
list of confirmation depths of equal length, is the sequence of
confirmed transcript parts, along with their contexts, defined
as:
ES(X, c⃗) := flatten(map(λ((·, T⃗ , z, ·), c) : map(λT : (T , z),
take(T⃗ , c)), zip(X, c⃗)))

We write ES∗(X) as a shorthand for the case where c⃗ are
maximal: i.e. proji(⃗c) = |proj2(proji(X))|.

We define the central invariant the dependencies must pre-
serve: That the private state can always be advanced.

Definition 11. The dependency invariant J(X, ρ), given a
set X of secret-expanded transactions, states that any per-
mutation of a subset of X’s private state transcripts which

11

have their dependencies satisfied can be successfully ap-
plied to ρ. J(X, ρ) := ∀Y ⊆ X,Z ∈ SY , c⃗ : sat(Z,
c⃗,map(proj1, X)) =⇒ T ∗

ES(Z,⃗c)(ρ) 6= ⊥

Finally, we define the constraints on the dependency function.

Definition 12. A dependency function dep(X, T , z) is a pure
function taking as inputs a set of secret-expanded unconfirmed
transactions X , a new private state transcript T , and a new
context z, returning a list of transaction objects. It must satisfy
the following conditions:

1) If called with non-honestly generated transcripts or con-
texts, no constraints need to hold.

2) The result must be a subsequence of the transactions in
X: dep(X, T , z) v map(proj1, X)

3) When adding a new transaction τ , with the corresponding
private state transcript T (where its commit-separated
form is T⃗) and context z, the dependency invariant J is
preserved: let Y = X ‖ (τ, T⃗ , z = (·, ρo, ·, ·, ·), dep(X,
T , z)) in T ∗

ES∗(Y)(ρ
o) 6= ⊥ ∧ J(X, ρo) =⇒ J(Y, ρo)

The dependency function dep(X, T , z) = map(proj1, X)
can always be used, as it maximally constraints the possible
permutations which satisfy dependencies.

D. The Contract Class

The core KACHINA protocol can realize a class of smart
contracts, with each contract being primarily defined by a re-
stricted transition function Γ. This transition function is given
oracle access to the calling user’s private state ρp and the
shared public state σ, as described in Definition 1. In addition
to these oracle accesses, Γ can make (COMMIT, y) queries,
which a) send COMMIT to both oracles, and b) record the value
y in a vector of partial results y⃗. We write y⃗ ← ΓOσ,Oρ

(w) as
running the transition function against input w, with oracles
Oσ and Oρ, returning the vector of partial results y⃗. The final
output of Γ is appended to y⃗ when it returns. The adversary
can program its own private state oracle – it corresponds to
local computation, after all! Two minor functions are also used
to define the corresponding ideal contract:

• The leakage descriptor desc, which receives the time t,
the sequence of secret-expanded unconfirmed transactions
X , transcripts Tσ, Tρ, original input w, and context z of
new transactions as inputs, and returns a description of
what leakage this interaction will incur.

• A dependency function dep satisfying Definition 12.

Definition 13. CKACHINA is the set of all pairs (∆KACHINA(Γ),
ΛKACHINA(Γ, desc, dep)), for any parameters Γ, desc and dep,
satisfying Definition 12.

∆KACHINA and ΛKACHINA operate as follows, with a full descrip-
tion in [18, Appendix C]. We assume the set of honest parties
H – in the ideal world, this is known by the functionality, while
in the real world we assume each party p will use H = {p}.

Transition Function ∆KACHINA(Γ) (sketch)

When receiving an input ((σ,ρ), p, w, (Tσ, z), ·):
let (σ⃗, T ′

σ, ρ⃗, ·, y⃗)← run-Γ(σ,ρ[p], w, z, p ∈ H)
let σ′ ← σ; y ← ⊥;C ← ⊤
let T⃗ ← split(Tσ, COMMIT); T⃗

′
← split(Tσ, COMMIT)

for (Ti, Tc, σ′, ρ′, y′) in zip(T⃗ , T⃗
′
, σ⃗, ρ⃗, y⃗) do

if σ′ = ⊥ ∨ ρ′ = ⊥ ∨ Tr ̸= Tc then
let C ← ⊥
break

let σ ← σ′;ρ[p]← ρ′; y ← y′

return ((σ,ρ), C, y)

Where run-Γ(σ, ρ, w, z, ·) runs ΓOσ,Oρ(w), and returns (σ⃗,
Tσ, ρ⃗, Tρ, y⃗) (see [18, Appendix C] for a full specification).

Leakage Function ΛKACHINA(Γ, desc, dep) (sketch)

When receiving an input (ω = (ℓ, U, T, ϕ = (σo,ρo)), p, w):
Simulate applying all unconfirmed transactions in order, for

a new projected state (σπ,ρπ). Select a randomness stream
η, and set the context z to the old state (σo,ρo[p]), the pro-
jected state (σπ,ρπ[p]), and η. Run Γ against this projected
state and context, and retrieve the new states and transcripts
Tσ , Tρ. Compute the dependencies D and leakage description
description, and return (description, Tσ, D, (Tσ, z)).

E. The Core KACHINA Protocol

The construction of the core protocol itself is now fairly
straightforward. We use non-interactive zero-knowledge to
prove statements about transition functions interacting with
an oracle. When creating a transaction, users prove that the
generated transcript is consistent with the transition function
and initial input. Instead of evaluating transactions, users apply
the public (and, if available, private) state transcripts associated
with them. We sketch the protocol here, the full details can
be found in [18, Appendix C].

Formally, the language L of the NIZK used is defined as fol-
lows, for any given transition function Γ: ((Tσ, ·), (w, Tρ)) ∈
L if and only if, where Oσ ← O(Tσ), and Oρ ← O(Tρ),
last(ΓOσ,Oρ(w)) 6= ⊥, and after it is run, consumed(Oσ) ∧
consumed(Oρ) holds. This is efficiently provable provided that
Tσ , w, and Tρ are short, and Γ itself is efficiently expressible
in the underlying zero-knowledge system.

Protocol KACHINA (sketch)

The KACHINA protocol realizes the ideal smart contract func-
tionality when parameterized by a transition function Γ, a leak-
age descriptor desc, and a dependency function dep, satisfy-
ing Definition 12. It operates in the (FL

nizk,GsimpleLedger)-hybrid
model.

Executing a ledger state:
Starting with an initial state (σ, ρ)← (∅,∅), and an empty

set of confirmed transactions, for each transaction in the ledger
verify their dependencies and proofs. If they are satisfied, apply
Tσ in commit-separated parts, up to (not including) the first ⊥

12

result, if any. If available, execute Tρ to the same depth, and if
this depth is the full depth of the transcript, mark the transaction
as confirmed. If an output is requested, and the transaction’s
output vector y⃗ is available, return the output indexed with the
confirmation depth. Otherwise, skip it.

Prior to any interaction:
Compute which transactions have been rejected in the ledger

state, and remove any unconfirmed transactions that – directly
or indirectly – depend on them.

When receiving a message (POST-QUERY, w) from a party p:
Read the ledger state, and compute the corresponding smart-

contract state (σo, ρo). Create a projected contract state (σπ, ρπ)
by applying in order the transcripts from unconfirmed transac-
tions to the already computed contract state.

Select a randomness stream η, and set the context z to the
old state (σo, ρo), the projected state (σπ, ρπ), and η. Run Γ
against against this projected state and context, and retrieve
the new states and transcripts Tσ , Tρ, as well as the output
vector y⃗. Compute the dependencies D and leakage description
description.

Ask p if description is an acceptable leakage. If so, create a
NIZK proof π that ((Tσ, D), (Tρ, w)) ∈ L. Record Tρ and z,
and the result vector y⃗, and publish τ = (Tσ, D, π) on Gledger.
Record τ as unconfirmed, and return it.

When receiving a message (CHECK-QUERY, τ) from a party p:
If τ is in the current view of the ledger, execute the ledger

to retrieve the output associated with τ , if any.

Theorem 1. For any contract (∆,Λ) ∈ CKACHINA, KACHINA
UC-emulates F∆,Λ

sc , in the FL
nizk-hybrid world, in the presence

of GsimpleLedger.

We prove Theorem 1 through a detailed case-analysis of
any action an environment, in conjunction with the dummy
adversary, may take. The full case analysis may be found in
[18, Appendix D]. We define an invariant I between the real
and ideal executions in the UC security statement, roughly
encoding that “the real and ideal states are equivalent”. This
ranges from simple equivalences, such as them having the
same ledger states, or the same NIZK proofs considered valid,
to complex invariants, such as all unconfirmed honest trans-
actions satisfying the sub-invariant J of Definition 11. This
invariant is used to argue that the environment, in combination
with a dummy adversary, cannot distinguishing between the
real and ideal worlds. Specifically, for any action the envi-
ronment takes, I is preserved, and from I holding, we can
conclude that the information revealed to it, or the dummy
adversary, is insufficient to distinguish the two worlds.

The simulator for KACHINA is quite straightforward; it sim-
ply creates simulated NIZK proofs for all honest transactions,
and forces the adversary to reveal witnesses to the simulated
NIZK functionality in time for these to be input to the ideal
smart contract. Fundamentally, the security proof relies on
state transcripts being interchangeable with full state oracles
in the same setting, and this setting being enforced by both
the protocol and functionality.

While a lot of factors must be formally considered, this is
derived from receiving NIZK proofs as part of valid transac-

tions, which prove precisely that if the preconditions for the
transaction are met, then the update performed on the public
state is the same. The private state is a little more tricky,
but is guaranteed by the dependency invariant J holding for
honest parties. This lets us similarly argue that the private
state transcript will have the same effect as the ideal-world
execution.

V. A CASE STUDY: PRIVATE PAYMENTS

To demonstrate the versatility of KACHINA, we take a closer
look at the (private) token contract, which is prone to the
scalability issues KACHINA addresses. Public token contracts
are well understood, and standardized [27], with the typical
implementation being to maintain a mapping of “addresses”
(hashes of public keys) to balances in the contract’s public
state. We write the first provably private token contract to
demonstrate the expressive power of KACHINA.

A private token contract also implies that currency is not
a primitive – it can be built as a contract, a key factor in
simplifying our model, as it does not need to encode currency
as a special case. It provides an asset to build contracts around
in the first place, as well as a means of denial-of-service miti-
gation, through transaction fees. Bad fee models have resulted
in devastating DoS attacks [29], highlighting their necessity.

We detail how to construct a fee model in [18, Appendix J.5].
The fundamental idea of this construction is to embed the tran-
sition function Γ in a wrapper which performs the following
steps:

1) In the private state oracle, estimate the cost of transaction
fees.

2) Given an input gas price, and this estimate, pay these fees
using a designated currency contract.

3) Commit this as a partial execution success.
4) Execute Γ with a modified Oσ , which deducts from avail-

able gas for each operation and aborts if this runs out.
5) Transfer any remaining gas back to the transaction author.

A. Indirect Construction

Following the design of Zerocash [1], we write a contract
that maintains the necessary Zerocash secrets: coin random-
nesses, commitment openings, and secret keys. The private
state oracle computes the off-chain information required to
make a Zerocash transaction: Merkle-paths to your own com-
mitments, the selection of randomness for new coins, and the
encryption of the secret information of these coins. This infor-
mation is handed to the central, provable core of the contract,
which computes a coin’s serial number, verifies the Merkle-
path, and verifies the integrity of the transaction. Finally, the
serial number and new commitment are sent to the public state
oracle, which ensures the former is new, and adds the latter
to the current tree.

This design is not self-evidently correct, and is not the
objective itself. Specifying what goal it achieves, in terms of
an ideal leakage and transition function, allows us to build
a clean ideal world, with a clear private token contract. This
ideal world is constructed in two steps: First showing that the

13

Zerocash contract UC-emulates it, and second showing that
the Zerocash contract is in turn UC-emulated by KACHINA.

B. Ideal Private Payments

To simplify the external interface, we only use single de-
nomination coins. The same approach can be applied to the
full Zerocash protocol, with some caveats on coin selection
and leakage.

We formally specify the private token contract through its
transition and leakage functions, ∆pp and Λpp. The contract
supports the following inputs:

• INIT, giving a party a unique public key
• (SEND, pk), sending a coin to the public key pk
• MINT, creating a new coin for the calling party
• BALANCE, returning the current balance

Transition Function ∆pp (sketch)

The state transition function for a private payments system.
Parties have associated public keys and balances. Parties may
generate a public key, transfer and mint single-denomination
coin, and query their balance.

When receiving an input (ϕ, p, INIT, ·, pk):
Assert p’s public key is not set, and ensure pk is unique.

Record pk as p’s public key, and return it.
When receiving an input (ϕ, p, (SEND, pk) , ·, a):

If p is honest, spend from their associated public key. If
not, spend from the public key a, provided it is not honestly
owned. Decrease the spending key’s balance by one, asserting
it is non-negative. Increase pk’s balance by 1.
When receiving an input (ϕ, p, MINT, pk, ·):

Increase pk’s balance by 1.
When receiving an input (ϕ, p, BALANCE, B, ·):

Return the balance B.

Leakage Function Λpp (sketch)

Each operation on ∆pp has minimal leakage, revealing only
which operation was performed, and in the case of a transfer,
the ledger length and the recipient – if and only if the recipient
is corrupted.

When receiving an input (ω = (ℓ, U, T, ϕ), p, w):
Reject initialization transactions if ϕ is already initialized, or

a transaction in U is an initializing transaction. Reject spending
transactions if the coins held in ϕ, minus the coins spend in each
transaction in U is not greater than zero.

Leak the type of transaction (INIT, SEND, MINT, or BAL-
ANCE). If the transaction is SEND, leak the ledger length ℓ,
and, if the receiving public key is adversarial, the recipient.
There are no dependencies. In the case of minting, provide the
calling party’s public key as a context, in the case of balance
queries, combine the available balance and provide this as a
context.

C. The Zerocash KACHINA Contract

The contract implementing Zerocash, which we will use to
realize the private token contract, follows its source protocol

closely, albeit with single denomination coins.

Transition Function Γzc (sketch)

The state transition function for a Zerocash token contract.

When receiving an input INIT:
Instruct the private state oracle to sample new Zerocash se-

cret keys, and record them in the private state. Return the
corresponding public keys.
When receiving an input (SEND, (pkz, pke)):

Process new messages through the private state oracle. Pri-
vately select an available coin to spend, retrieving its secrets.
Assert that the coin’s Merkle path is valid, and that the se-
crets are internally consistent. Compute the corresponding se-
rial number, and publicly assert its uniqueness, marking it as
spent. Publicly assert that the proven Merkle tree root is valid.
Privately compute a new coin commitment and encryption, and
publish these in the public state, updating the list of past Merkle
roots.
When receiving an input MINT:

Assert the existence of secret keys. Sample a new coin com-
mitment by the recorded private key, and privately record the
commitment and associated secrets as a held coin. Add the
commitment to the public set of commitments, and update the
public list of past Merkle roots.
When receiving an input BALANCE:

Process new messages through the private state oracle. Re-
turn the size of the set of coins held in both the confirmed and
projected private states.

function depzc(X, T , z)
return ϵ

function desczc(t, ·, ·, ·, w, ·)
if w = INIT then return INIT
else if ∃pk : w = (SEND, pk) then return (SEND, t, pk)
else if w = MINT then return MINT
else if w = BALANCE then return BALANCE
else return ⊥

Lemma 1. Γzc and depzc satisfy Definition 12, and therefore
the pair (∆zc,Λzc) := (∆KACHINA(Γzc),ΛKACHINA(Γzc, desczc,
depzc)) is in the set CKACHINA.

Proof (sketch): Transcripts generated by run-Γ fall into
three categories: They set a private key (initialization), they
insert a coin (minting), or they remove a coin, and insert some
number of coins (sending).

Consider first a new initialization transaction. It does not
affect the behavior of unconfirmed minting and sending trans-
actions, as these do not use the current private state’s se-
cret key. Further, it cannot co-exist with another unconfirmed
initialization transaction, as this would initialize the private
keys, ensuring an abort, which violates the preconditions of
dependencies.

If the new transaction is a minting or balance transaction,
this functions independently of other transactions, not having
any requirements on the current private state. Likewise for
sending transactions, the state transcript itself only depends
on ρ{o,π}, not the dynamic ρ. The only thing varying is which
coins get added and removed from the set of available coins,

14

but this information is not directly used – its purpose is to
reduce the necessary re-computation the next time around.

We can observe that (with some help from the simu-
lator), the ideal Zerocash contract, given by (∆zc,Λzc) =
(∆KACHINA(Γzc),ΛKACHINA(Γ, desczc, depzc)), is equivalent to
the ideal private payments contract (∆pp,Λpp). Formally, we
instantiate two instances of F∆,Λ

sc , as presented in Subsec-
tion III-B, and show that any attack against (∆zc,Λzc) can be
simulated against (∆pp,Λpp).

Theorem 2. F∆pp,Λpp
sc is UC-emulated by F∆zc,Λzc

sc in presence
of GsimpleLedger.

This proof can also be carried out via invariants. Here the
invariant tracking is simple: The real and ideal world have
the same coins owned by the same users at any time. Our
simulator, described in [18, Appendix C.4], has a lot of book-
keeping to do, mostly to conjure up fake commitments and
encryptions for the real-world adversary, and replicating them
in the real world. We provide a full proof sketch in [18,
Appendix E].

Corollary 1. F∆pp,Λpp
sc is UC-emulated by KACHINA, param-

eterized by Γzc, depzc, and desczc, in the FL
nizk-hybrid world,

in the presence of GsimpleLedger.

VI. CONCLUSION

We have shown in this paper how to build a large class
of smart contracts with only zero-knowledge and distributed
ledgers, and outline how this can be used and extended upon.
To do so we have modeled formally what smart contracts with
privacy are, represented as a state transition function that is
fed inputs from a ledger, and a leakage function that decides
what parts of the input are visible on this ledger. We have then
defined which class of such contracts we will consider in this
paper, and presented a protocol, KACHINA, to construct them.
This protocol utilizes non-interactive zero-knowledge proofs
and state oracles to achieve the desired smart contract behavior
while leaking only part of the computation performed.

While the designs are largely theoretical and detached from
any actual implementation, we stress that they were designed
with real-life constraints in mind: The use of state oracles
allows moving most computationally hard, or storage intensive
operations outside of the NIZK itself, reducing their cost.
While the NIZK must still be universal, zero-knowledge con-
structions with universal reference strings exist [22], and are
practical to use in our setting, although they have not yet been
proven in the UC model.

In ending this paper, we would like to make clear that this
problem space is by no means solved. We have shown how to
realize a specific class of privacy-preserving smart contracts,
however privacy is not such a simple issue to be addressed
by a single paper. In [18, Appendix I], we sketch the relation
of trust models with privacy, and we believe this taxonomy of
trust, and how each level can be addressed, formalized, and
brought into a unified model, is a crucial long-term research
question for providing meaningful privacy to smart contract
systems.

VII. ACKNOWLEDGEMENTS

The second and third author were partially supported by the
EU Horizon 2020 project PRIVILEDGE #780477.

We thank Mikhail Volkhov and Jamie Gabbay for their
feedback on early versions of this paper, and Aydin Abadi
for helping to polish some of the writing.

REFERENCES

[1] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman,
Matthew Green, Ian Miers, Eran Tromer, and Madars
Virza. Zerocash: Decentralized anonymous payments
from bitcoin. In 2014 IEEE Symposium on Security and
Privacy, pages 459–474. IEEE Computer Society Press,
May 2014.

[2] Sean Bowe, Alessandro Chiesa, Matthew Green, Ian
Miers, Pratyush Mishra, and Howard Wu. Zexe: En-
abling decentralized private computation. In 2020 IEEE
Symposium on Security and Privacy, 2020.

[3] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel
Genkin, Baris Kasikci, Frank Piessens, Mark Silber-
stein, Thomas F. Wenisch, Yuval Yarom, and Raoul
Strackx. Foreshadow: Extracting the keys to the intel
SGX kingdom with transient out-of-order execution. In
William Enck and Adrienne Porter Felt, editors, 27th
USENIX Security Symposium, USENIX Security 2018,
Baltimore, MD, USA, August 15-17, 2018., pages 991–
1008. USENIX Association, 2018.

[4] Benedikt Bünz, Shashank Agrawal, Mahdi Zamani, and
Dan Boneh. Zether: Towards privacy in a smart contract
world. Cryptology ePrint Archive, Report 2019/191,
2019. https://eprint.iacr.org/2019/191.

[5] Jan Camenisch, Manu Drijvers, and Björn Tackmann.
Multi-protocol uc and its use for building modular and
efficient protocols. Cryptology ePrint Archive, Report
2019/065, 2019. https://eprint.iacr.org/2019/065.

[6] Jan Camenisch, Robert R. Enderlein, Stephan Krenn,
Ralf Küsters, and Daniel Rausch. Universal composition
with responsive environments. In Jung Hee Cheon and
Tsuyoshi Takagi, editors, ASIACRYPT 2016, Part II,
volume 10032 of LNCS, pages 807–840. Springer, Hei-
delberg, December 2016.

[7] Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi
Walfish. Universally composable security with global
setup. In Salil P. Vadhan, editor, TCC 2007, volume 4392
of LNCS, pages 61–85. Springer, Heidelberg, February
2007.

[8] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit
Sahai. Universally composable two-party and multi-party
secure computation. In 34th ACM STOC, 2002.

[9] Manuel Chakravarty, Roman Kireev, Kenneth MacKen-
zie, Vanessa McHale, Jann Müller, Alexander Nemish,
Chad Nester, Michael Peyton Jones, Simon Thomp-
sona, Rebecca Valentine, and Philip Wadler. Func-
tional blockchain contracts. https://iohk.io/research/
papers/#functional-blockchain-contracts, 2019.

15

[10] Stefan Dziembowski, Sebastian Faust, and Kristina
Hostáková. General state channel networks. In David
Lie, Mohammad Mannan, Michael Backes, and Xi-
aoFeng Wang, editors, ACM CCS 2018, pages 949–966.
ACM Press, October 2018.

[11] Jacob Eberhardt and Stefan Tai. Zokrates - scalable
privacy-preserving off-chain computations. In IEEE
International Conference on Internet of Things (iThings)
and IEEE Green Computing and Communications
(GreenCom) and IEEE Cyber, Physical and Social Com-
puting (CPSCom) and IEEE Smart Data (SmartData),
iThings/GreenCom/CPSCom/SmartData 2018, Halifax,
NS, Canada, July 30 - August 3, 2018, pages 1084–1091.
IEEE, 2018.

[12] The Enigma Project Team. What is Enigma? https://
enigma.co/discovery-documentation/, 2019.

[13] Etherscan. Ethereum sync (default) chart. https://
etherscan.io/chartsync/chaindefault, 2019.

[14] Oded Goldreich, Silvio Micali, and Avi Wigderson. How
to play any mental game or A completeness theorem for
protocols with honest majority. In Alfred Aho, editor,
19th ACM STOC, pages 218–229. ACM Press, May
1987.

[15] Shafi Goldwasser, Silvio Micali, and Charles Rackoff.
The knowledge complexity of interactive proof-systems
(extended abstract). In 17th ACM STOC, pages 291–304.
ACM Press, May 1985.

[16] Harry A. Kalodner, Miles Carlsten, Paul Ellenbogen,
Joseph Bonneau, and Arvind Narayanan. An empir-
ical study of namecoin and lessons for decentralized
namespace design. In 14th Annual Workshop on the
Economics of Information Security, WEIS 2015, Delft,
The Netherlands, 22-23 June, 2015, 2015.

[17] Harry A. Kalodner, Steven Goldfeder, Xiaoqi Chen,
S. Matthew Weinberg, and Edward W. Felten. Arbitrum:
Scalable, private smart contracts. In William Enck and
Adrienne Porter Felt, editors, USENIX Security 2018,
pages 1353–1370. USENIX Association, August 2018.

[18] Thomas Kerber, Aggelos Kiayias, and Markulf
Kohlweiss. KACHINA – Foundations of private
smart contracts (technical report). Cryptology
ePrint Archive, Report 2020/543, 2020. https:
//eprint.iacr.org/2020/543.pdf.

[19] Thomas Kerber, Aggelos Kiayias, and Markulf
Kohlweiss. Mining for privacy: How to bootstrap a
snarky blockchain. Cryptology ePrint Archive, Report
2020/401, 2020. https://eprint.iacr.org/2020/401.

[20] Ahmed E. Kosba, Andrew Miller, Elaine Shi, Zikai Wen,
and Charalampos Papamanthou. Hawk: The blockchain
model of cryptography and privacy-preserving smart
contracts. In 2016 IEEE Symposium on Security and
Privacy, pages 839–858. IEEE Computer Society Press,
May 2016.

[21] Jonathan Lee, Kirill Nikitin, and Srinath Setty. Repli-
cated state machines without replicated execution. Cryp-
tology ePrint Archive, Report 2020/195, 2020. https:

//eprint.iacr.org/2020/195.
[22] Mary Maller, Sean Bowe, Markulf Kohlweiss, and Sarah

Meiklejohn. Sonic: Zero-knowledge SNARKs from
linear-size universal and updatable structured reference
strings. In Lorenzo Cavallaro, Johannes Kinder, Xi-
aoFeng Wang, and Jonathan Katz, editors, ACM CCS
2019, pages 2111–2128. ACM Press, November 2019.

[23] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic
cash system. 2008.

[24] Fred B. Schneider. Implementing fault-tolerant services
using the state machine approach: A tutorial. ACM
Comput. Surv., 22(4):299–319, 1990.

[25] Samuel Steffen, Benjamin Bichsel, Mario Gersbach, Noa
Melchior, Petar Tsankov, and Martin T. Vechev. zkay:
Specifying and enforcing data privacy in smart contracts.
In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang,
and Jonathan Katz, editors, ACM CCS 2019, pages 1759–
1776. ACM Press, November 2019.

[26] Nick Szabo. Formalizing and securing relationships on
public networks. First Monday, 2(9), 1997.

[27] Fabian Vogelsteller and Vitalik Buterin. ERC-20 token
standard. https://github.com/ethereum/EIPs/blob/master/
EIPS/eip-20.md, 2015.

[28] Jonathan Warren. Bitmessage: A peer-to-peer message
authentication and delivery system. white paper (27
November 2012), https://bitmessage. org/bitmessage. pdf,
2012.

[29] Jeffrey Wilcke. The Ethereum network is
currently undergoing a DoS attack. https:
//blog.ethereum.org/2016/09/22/ethereum-network-
currently-undergoing-dos-attack/, September 2016.

[30] Gavin Wood. Ethereum: A secure decentralised gener-
alised transaction ledger. 2014.

[31] Guy Zyskind, Oz Nathan, and Alex Pentland. Enigma:
Decentralized Computation Platform with Guaranteed
Privacy. arXiv e-prints, June 2015.

16

