
CRYLOGGER:
Detecting Crypto Misuses Dynamically

Luca Piccolboni, Giuseppe Di Guglielmo, Luca P. Carloni, Simha Sethumadhavan

{piccolboni, giuseppe, luca, simha}@cs.columbia.edu

Columbia University, New York, NY, USA

Abstract—Cryptographic (crypto) algorithms are the essential
ingredients of all secure systems: crypto hash functions and en-
cryption algorithms, for example, can guarantee properties such
as integrity and confidentiality. Developers, however, can misuse
the application programming interfaces (API) of such algorithms
by using constant keys and weak passwords. This paper presents
CRYLOGGER, the first open-source tool to detect crypto misuses
dynamically. CRYLOGGER logs the parameters that are passed to
the crypto APIs during the execution and checks their legitimacy
offline by using a list of crypto rules. We compared CRYLOGGER
with CryptoGuard, one of the most effective static tools to detect
crypto misuses. We show that our tool complements the results of
CryptoGuard, making the case for combining static and dynamic
approaches. We analyzed 1780 popular Android apps downloaded
from the Google Play Store to show that CRYLOGGER can detect
crypto misuses on thousands of apps dynamically and automati-
cally. We reverse-engineered 28 Android apps and confirmed the
issues flagged by CRYLOGGER. We also disclosed the most critical
vulnerabilities to app developers and collected their feedback.

Index Terms—Android, Cryptography, Security, Misuses.

Repository—https://github.com/lucapiccolboni/crylogger [1]

I. INTRODUCTION

Cryptographic (crypto) algorithms are the key ingredients of

all secure systems [2]. Crypto algorithms can guarantee that the

communication between two entities satisfies strong properties

such as data confidentiality (with encryption) and data integrity

(with hashing). While the crypto theory can formally guarantee

that those properties are satisfied, in practice poor implementa-

tions of the crypto algorithms [3] can jeopardize communication

security. For instance, Brumley et al. [4] showed how to obtain

the entire private key of an encryption algorithm, which is based

on elliptic curves, by exploiting an arithmetic bug in OpenSSL.

Unfortunately, ensuring that the actual implementation of the

crypto algorithms is correct as well as secure is not sufficient.

The crypto algorithms can be, in fact, misused. Egele et al. [5]

showed that 88% of the Android apps they downloaded from the

Google Play Store had at least one crypto misuse. For example,

thousands of apps used hard-coded keys for encryption instead

of truly-random keys, thus compromising data confidentiality.

Similarly, Rahaman et al. [6] showed that 86% of the Android

apps they analyzed used broken hash functions, e.g., SHA1, for

which collisions can be produced [7], threatening data integrity.

Recently, researchers analyzed the causes of crypto misuses

in many contexts. Fischer et al. [8] found that many Android

apps included snippets of code taken from Stack Overflow and

98% of these snippets included several crypto issues. Nadi et

al. [9] claimed that the complexity of application programming

interfaces (APIs) is the main origin of crypto misuses in Java.

Developers have to take low-level decisions, e.g., select the type

of padding of an encryption algorithm, instead of focusing on

high-level tasks. Acar et al. [10] compared 5 crypto libraries

for Python and argued that poor documentation, lack of code

examples and bad choices of default values in the APIs are the

main causes of crypto misuses. Muslukhov et al. [11] showed

that 90% of the misuses in Android originated from third-party

libraries, a result that was later confirmed by Rahaman et al. [6].

At the same time, researchers started to implement tools to

automatically detect crypto misuses, e.g., [5], [6]. The idea is to

define a set of crypto rules and check if an application respects

them by verifying the parameters passed to the crypto APIs. The

rules usually come from (i) papers that show the vulnerabilities

caused by some crypto algorithms or their misconfigurations,

e.g., [12], and (ii) organizations and agencies, e.g., NIST and

IETF, that define crypto-related standards to prevent attacks.

Examples of crypto rules are setting (i) a minimum key size for

encryption, e.g., 2048 bits for RSA [13] or (ii) a minimum num-

ber of iterations for key derivation, e.g., 1000 for PKCS#5 [14].

To check the crypto rules, researchers developed static as well

as dynamic solutions. Static approaches, e.g., CrySL [15], Cryp-

toLint [5], CryptoGuard [6], MalloDroid [16], CogniCrypt [17]

and CMA [18], examine the code with program slicing [19] to

check the values of the parameters that are passed to the APIs

of the crypto algorithms. Static analysis has the benefit that the

code is analyzed entirely without the need of executing it. Also,

it can scale up to a large number of applications. Static analysis

produces, however, false positives, i.e., alarms can be raised

on legit calls to crypto algorithms. Some static approaches, e.g.

CryptoGuard, suffer also from false negatives, i.e., some misuses

escape detection, because the exploration is pruned prematurely

to improve scalability on complex programs. It is also possible

that static analysis misses some crypto misuses in the code that

is loaded dynamically [20]. Most of the recent research efforts

focused on static approaches [21], while little has been done to

bring dynamic approaches to the same level of completeness and

effectiveness. Few approaches have been proposed towards this

direction, e.g., SMV-Hunter [22], AndroSSL [23], K-Hunt [24],

and iCryptoTracer [25]. Dynamic approaches are usually more

difficult to use since they require to trigger the crypto APIs at

1972

2021 IEEE Symposium on Security and Privacy (SP)

© 2021, Luca Piccolboni. Under license to IEEE.
DOI 10.1109/SP40001.2021.00010

20
21

 IE
EE

 S
ym

po
si

um
 o

n 
Se

cu
rit

y 
an

d 
Pr

iv
ac

y 
(S

P)
 | 

97
8-

1-
72

81
-8

93
4-

5/
21

/$
31

.0
0 

©
20

21
 IE

EE
 | 

D
O

I: 
10

.1
10

9/
SP

40
00

1.
20

21
.0

00
10



runtime to expose the misuses, but they do not usually produce

false positives. Unfortunately, these dynamic approaches do not

support as many crypto rules as the current static approaches.

SMV-Hunter and AndroSSL consider only rules for SSL/TLS,

and K-Hunt focuses on crypto keys. iCryptoTracer attacks the

hard problem of detecting misuses in iOS apps. iCryptoTracer

supports few rules as it needs to rely on API hooking techniques.

A. Contributions

In this paper, we present CRYLOGGER , an open-source tool to

detect crypto misuses dynamically. It consists of (i) a logger that

monitors the APIs of the crypto algorithms and stores the values

of the relevant parameters in a log file, and (ii) a checker that

analyzes the log file and reports the crypto rules that have been

violated. The key insights of this work are: (1) we log the relevant

parameters of the crypto API calls by instrumenting few classes

that are used by a large number of applications; (2) we log the

values of the parameters of the crypto APIs at runtime, while we

check the rules offline to reduce the impact on the applications

performance; (3) we show that, for most Android apps, the calls

to the crypto APIs can be easily triggered at runtime, and thus

a dynamic approach can be effective in detecting misuses even

if the code of the applications has not been explored entirely;

(4) we show that, for Android apps, it is sufficient to execute an

application for a relatively short amount of time to find many of

the crypto misuses that are reported by the current static tools.

We envision two main uses of CRYLOGGER . (1) Developers

can use it to find crypto misuses in their applications as well

as in the third-party libraries they include. CRYLOGGER can

exploit the input sequences that are defined by developers for

verification purposes to detect the misuses. CRYLOGGER can

be used alongside static tools as it complements their analysis

(Section VIII). Using CRYLOGGER also helps to reduce the false

positives reported by static tools. (2) CRYLOGGER can be used

to check the apps submitted to app stores, e.g., the Google Play

Store. Using a dynamic tool on a large number of apps is hard,

but CRYLOGGER can refine the misuses identified with static

analysis because, typically, many of them are false positives that

cannot be discarded manually on such a large number of apps.

We make the following contributions:

1. we describe CRYLOGGER , the first open-source tool to

detect crypto misuses dynamically; the tool is available

at: https://github.com/lucapiccolboni/crylogger [1];

2. we implemented CRYLOGGER for Android and Java

apps; we support 26 crypto rules, and we decouple the

logging and the checking mechanisms so that new rules

can be easily added and checked with CRYLOGGER ;

3. we compare CRYLOGGER against CryptoGuard [6],

one of the most effective static tools to detect misuses:

we used 150 popular Android apps of the Google Play

Store for the comparison; we show that CRYLOGGER
reports misuses that CryptoGuard misses, but we show

that the opposite is also possible, thus making the case

for combining static and dynamic approaches;

crypto library

10 …
11 M = MessageDigest(“SHA1”);
12 …
…
19 …
20 S = SymmEncryption(“AES”);
21 …

application

execution log

[MessageDigest] alg: SHA1
[SymmEncryption] alg: AES

MessageDigest

SymmEncryption

logger

ONLINE

OFFLINE
checker

crypto rules

logger

R-01 Don’t use SHA1
R-02 Don’t use DES
….

broken hash function: SHA1

(Section IV)

(Section IV)

(Section V)

checking
procedures

API calls triggered
during the execution

1

2

3

Fig. 1. Overview of CRYLOGGER . 1© We run the application with an
instrumented crypto library. 2© We generate a log containing the parameters of
the crypto API calls. 3© We check the crypto rules and report all the violations.

4. we reverse engineered 150 Android apps to evaluate

the false positives of CryptoGuard; we show that for

some rules many false positives are reported due to

insecure, but untriggerable, code included in the apps;

5. we compare CRYLOGGER against CryptoGuard by

using the CryptoAPI-Bench [26], a set of Java programs

that include misuses; we also extend the CryptoAPI-

Bench with tests cases suited for dynamic tools;

6. we used CRYLOGGER to analyze 1780 Android apps

downloaded from the Google Play Store (the dataset

was collected between September and October 2019).

These are among the most popular apps of 33 different

categories. We confirm the results previously reported

with static tools [5], [6] and report new misuses;

7. we disclosed the vulnerabilities we found to 306 app

and library developers and we report the feedback we

received from the 10 who replied; we manually reverse-

engineered 28 apps to determine if the vulnerabilities

reported by CRYLOGGER can actually be exploited.

II. OVERVIEW

Fig. 1 provides an overview of CRYLOGGER . It consists of:

1. logger: the logger extends a crypto library, for example

the Java crypto library, to trace the API calls to crypto

algorithms; for each of these calls, it logs the relevant

parameters that must be used to check the crypto rules;

for example, in Fig. 1, the logger saves the names of

the algorithms chosen by the application for message

digest (SHA1) and symmetric encryption (AES);

2. checker: the checker analyzes the log offline, after the

application has been executed, and it produces a list

of all the crypto rules violated by the application. To

check the rules it uses a set of checking procedures,

each of which covers many crypto rules; for instance,

in Fig. 1, the checker finds that the application uses the

broken algorithm SHA1 as message digest algorithm.

1973



We decouple logging from checking for 4 main reasons: (1) the

parameters of interest of the crypto library are more stable, i.e., it

is unlikely that new parameters are added; for example, the main

parameters of an algorithm for key derivation are the salt, the

password and the number of iterations, (2) the crypto rules are

likely to change: for example, new rules can be added when new

vulnerabilities are found as well as current rules may need to be

updated (for example the minimum key size of RSA), (3) crypto

rules are context-dependent: some rules may be not relevant for

certain applications or contexts, and (4) checking rules offline

does not affect the application performance, which is important,

for instance, when the application response is critical (Android).

Similarly to most of the current static solutions, we developed

CRYLOGGER primarily to check Java and Android applications.

Our ideas, however, could be adapted to other contexts. In the

next sections, we describe our tool in more detail. In Section III,

we discuss the related work. In Section IV, we describe a generic

crypto library that we use to define the crypto rules and the API

parameters that must be logged. In Section V, we explain how

CRYLOGGER checks the rules. In Section VI, we present an

implementation of CRYLOGGER for Java and Android [1], by

explaining which APIs we instrumented and how we analyzed

a large number of Android apps. In Section VII, we describe

the dataset of apps we use for the evaluation. In Section VIII,

we perform a comparison of CRYLOGGER against CryptoGuard

by using 150 Android apps and the CryptoAPI-Bench [26]. In

Section IX, we present an analysis of 1780 apps from the Google

Play Store. We also report the feedback received for disclosing

the vulnerabilities and our reverse-engineering analysis of the

vulnerabilities found in 28 apps. In Section X, we discuss the

limitations of our approach before concluding in Section XI.

III. RELATED WORK

A. Detection of Crypto Misuses

Several tools exist to detect crypto misuses. Most of them are

based on static analysis, e.g., CryptoLint [5], CryptoGuard [6],

CrySL [15], MalloDroid [16], CogniCrypt [17] and CMA [18].

These tools differ in the crypto rules that they support and in

the slicing algorithms [19] that they adopt for analysis. Among

them, CryptoGuard covers the highest number of crypto rules.

As discussed in [27], the main problem with static analysis is

the high number of false positives, which requires the users to

manually examine the results and determine the true positives.

Recent studies [6], [26] showed that CryptoGuard is one of the

most effective tools in reducing the false positives, thanks to rule-

specific algorithms that refine the results of the static analysis.

We show, however, that CryptoGuard still produces many false

positives in practice by reporting crypto misuses that can never

be triggered at runtime (Section VIII). To achieve scalability on

complex apps, some tools “cut off” some branches of the static

explorations, e.g., CryptoGuard clips orthogonal explorations.

This causes false negatives in addition to false positives. False

negatives are also caused by code that is loaded at runtime [20].

Other tools identify crypto misuses by employing dynamic
analysis. SMV-Hunter [22] and AndroSSL [23], for example,

detect misuses of the SSL/TLS protocol. K-Hunt [24] detects

badly-generated keys, insecurely-negotiated keys and recover-

able keys by analyzing execution traces of Java programs. iCryp-

toTracer [25] detects misuses in iOS apps, which is a complex

task that must be implemented through API hooking techniques.

To the best of our knowledge, there are no approaches that are

as exhaustive and effective as static approaches and cover many

crypto tasks, e.g., encryption, authentication, and SSL/TLS. This

motivated us to develop CRYLOGGER , a tool that supports more

crypto rules than current static approaches and covers several

crypto tasks. The main disadvantage of all dynamic tools is the

possibility of missing vulnerabilities due to poor coverage [28].

Some misuses can remain undetected if the application are not

explored thoroughly. We show, however, that CRYLOGGER is

capable of finding most of the crypto misuses that CryptoGuard

reports even if the apps are not fully explored (Section VIII).

B. Other Related Research

The problem of crypto misuses has been studied from many

different perspectives. Fischer et al. [8] analyzed security-related

code snippets taken from Stack Overflow. They found that >15%
of the apps of the Google Play Store contained snippets of code

directly taken from Stack Overflow and ∼98% of these had at

least one misuse. In a more recent work [29], they showed that

nudges [30] significantly helped developers in making better

decisions when crypto tasks need to be implemented. Nadi et

al. [9] showed that the main cause of misuses lies in the com-

plexity of the APIs rather than in the lack of security knowledge

in developers. Acar et al. [10] showed that poor documentation,

lack of code examples and bad choices of default values in the

crypto APIs contribute to many of the crypto misuses. Green et

al. [31] made the case for developing security-friendly APIs that

help developers to avoid common mistakes. Many recent works,

e.g., [6], [11] showed that third-party libraries cause most of the

crypto misuses in Android, up to 90% in some cases. To simplify

the work for developers, several approaches display security

tips or warnings in an integrated development environment. For

example, CogniCrypt [17] generates code snippets in Eclipse,

which can be used when crypto tasks need to be implemented.

Similarly, FixDroid [32] provides suggestions to developers on

how to fix crypto-related issues in Android Studio. To remove

the burden of fixing misuses from developers, some approaches

repair problematic code snippets automatically [33]–[36].

C. Testing Android Apps

Analyzing Android apps dynamically and automatically is

considered a hard problem [37], [38]. The common solution

to verify the apps correctness is Monkey1. Monkey generates

pseudo-random events that interact with the GUI of the emulator

or the real device. Monkey often obtains low code coverage

because the events are completely random [39], but it is quite

efficient in terms of execution time. Other approaches try to

exploit some information about the app to improve coverage. For

example, SmartDroid [28] exploits a combination of static and

dynamic techniques to trigger the APIs of interest. DroidBot [40]

1Monkey UI Exerciser: https://developer.android.com/studio/test/monkey.

1974



is a test generator based on control-flow graphs that can be ex-

tended to support custom exploration strategies. Dynodroid [41]

monitors the app to guide the generation of the next input event.

These approaches have a significant overhead on the execution

of the app because to generate useful events they require either

to (i) rely on static analysis of the code [28] or (ii) create a model

at runtime that helps the exploration [40]. In CRYLOGGER , we

use Monkey as it is lightweight and common among developers.

IV. CRYPTO LIBRARY AND CRYPTO RULES

A typical crypto library (e.g., Java Cryptography Architecture)

includes 7 classes of tasks: (1) message digest, (2) symmetric

encryption, (3) asymmetric encryption, (4) key derivation/gen-

eration, (5) random number generation, (6) key storage, and (7)

SSL/TLS and certificates. Fig. 2 shows the parameters used by

CRYLOGGER . The parameters of Fig. 2 are logged and used to

check the rules. We do not claim that this library is complete. We

include the classes that are used by current static tools and those

that have a corresponding implementation in Java and Android.

These are the classes with the highest number of misuses in

Android and Java [5], [6], [16]. Extensions are possible, e.g.,

HKDF [42] can be added to the key derivation class.

(1) MessageDigest implements crypto hash functions [43].

These functions take as input an arbitrary amount of data and

produce fixed-length hash values, called digests. They are used to

check data integrity. For this class, the most important parameter

is the algorithm (alg) that is used as hash function, for example,

SHA1, SHA256. Different libraries support different algorithms.

(2) SymmEncryption contains block ciphers that are used for

symmetric encryption [43]. A block cipher takes as input a block

of data with fixed size (e.g., 128 bits) and a key (whose size

is defined by the algorithm) and it generates the corresponding

output block (encrypted or decrypted). A decrypted block of data

is called plaintext, while an encrypted block is the ciphertext. In

addition to the algorithm (alg), e.g., AES, used for encryption

and decryption, we log the key (key) and some other parameters.

Block ciphers work on a fixed-size data block. Therefore, to work

on multiple blocks of data (#blocks) they need to support some

operation modes (mode). For example, by using electronic code

book (ECB) each block is decrypted / encrypted independently

from the other blocks. With cipher block chaining (CBC), each

block of plaintext is xored with the previous block of ciphertext.

The initialization vector (IV) is a parameter (iv) that defines

the block that is xored with the very first block. Other common

operation modes are cipher feedback (CFB), output feedback

(OFB), and Galois/counter (GCM). Another important parameter

is the padding algorithm (pad), which is the algorithm used to

fill the last block of data if the input is not a multiple of the block

size. Example of padding algorithms are ZEROPADDING, where

the last block is filled with zeros, PKCS#5 [14] and PKCS#7 [44].

(3) AsymmEncryption implements algorithms for public-key

cryptography [2]. These algorithms use a key pair (key): a public

key and a private key. They can be used for (i) encryption and

decryption as well as (ii) signature and verification. For (i), the

message is encrypted with the public key of the receiver. It can

(7) SSL/TLS/Certif

R-26R-25R-24

urlprot

allhost

R-22
allcert

sethost

(5) RandomGenerator

R-18R-17R-08R-06

alg

seed

(3) AsymmEncryption

R-21R-20R-19

alg

key

pad

(1) MessageDigest

R-01

alg

(6) KeyStorage

R-23

pass

(4) KeyDerivation

R-13R-12R-11

salt

pass

R-10
iter

R-16R-15R-14

(2) SymmEncryption

R-05R-04R-03

iv

key

R-02
alg

R-09R-08R-07R-06

pad

mode

#blocks

out

Fig. 2. Classes of a typical crypto library with their parameters (arrows entering
in the class). For each class we report the crypto rules of TABLE I that need
parameters of that specific class.

be then decrypted only with the private key of the receiver. For

(ii), a message is signed with the private key of the sender and

verified with the corresponding public key. The parameters of

this class are the algorithm (alg) used for encryption, e.g., RSA,

elliptic curves (EC) or digital signature algorithm (DSA), and the

padding (pad), e.g., NOPADDING, PKCS1-v1.5 and PSS [45].

(4) KeyDerivation implements algorithms to derive crypto

keys [43]. A key derivation function takes as input a password or

a passphrase (pass) and generates a key by using a salt (salt),

i.e., a random value, and by applying a function, e.g., hashing,

for a fixed number of iterations (iter). The larger is the number

of iterations the harder is to implement brute-force attacks [14].

(5) RandomGenerator implements algorithms for generating

random numbers. The relevant parameters are the algorithm

(alg) used for generating the numbers, the bytes of the generated

number (out), and the seed (seed) for the generation. In this

paper we assume that there are only two categories of algorithms:

Secure and NotSecure. The parameter alg is Secure if it

generates numbers suited for crypto, otherwise it is NotSecure.

(6) KeyStorage implements algorithms to store crypto keys,

certificates and other sensitive content. Usually, it takes as input

a password or a passphrase (pass) to store contents securely.

(7) SSL/TLS/Certif is a class including multiple functions

for SSL/TLS and certificates: (1) connections that can be HTTP

or HTTPS (urlprot), (2) host name verification that can accept

all the host names or not (allhost), (3) certificate validation,

which can trust all certificates or not (allcert), and (4) host

name verification for SSL/TLS connections (sethost) [16].

A. Threat Model and Crypto Rules

TABLE I reports the rules that are supported by CRYLOGGER .

We collected them from (i) papers ad (ii) documents published

by NIST as well as IETF. Fig. 2 shows how the rules relate to

the crypto classes. Some rules use parameters from more than

one class (e.g., R-06 and R-08). We use the same threat model

1975



ID Rule Description Ref.

R-01 Don’t use broken hash functions (SHA1, MD2, MD5, ..) [8]

R-02 Don’t use broken encryption alg. (RC2, DES, IDEA ..) [8]

R-03 Don’t use the operation mode ECB with > 1 data block [5]

R-04 † Don’t use the operation mode CBC (client/server scenarios) [12]

R-05 Don’t use a static (= constant) key for encryption [5]

R-06 † Don’t use a “badly-derived” key for encryption [5]

R-07 Don’t use a static (= constant) initialization vector (IV) [5]

R-08 † Don’t use a “badly-derived” initialization vector (IV) [5]

R-09 † Don’t reuse the initialization vector (IV) and key pairs [46]

R-10 Don’t use a static (= constant) salt for key derivation [5]

R-11 † Don’t use a short salt (< 64 bits) for key derivation [14]

R-12 † Don’t use the same salt for different purposes [46]

R-13 Don’t use < 1000 iterations for key derivation [14]

ID Rule Description Ref.

R-14 † Don’t use a weak password (score < 3) [47]

R-15 † Don’t use a NIST-black-listed password [48]

R-16 Don’t reuse a password multiple times [48]

R-17 Don’t use a static (= constant) seed for PRNG [49]

R-18 Don’t use an unsafe PRNG (java.util.Random) [49]

R-19 Don’t use a short key (< 2048 bits) for RSA [13]

R-20 † Don’t use the textbook (raw) algorithm for RSA [50]

R-21 † Don’t use the padding PKCS1-v1.5 for RSA [51]

R-22 Don’t use HTTP URL connections (use HTTPS) [16]

R-23 Don’t use a static (= constant) password for store [48]

R-24 Don’t verify host names in SSL in trivial ways [16]

R-25 Don’t verify certificates in SSL in trivial ways [16]

R-26 Don’t manually change the hostname verifier [16]

TABLE I
Crypto rules that are considered in this paper. The symbol † indicates the rules that are not covered by other approaches (we used [6] as reference).

of the current static tools. We briefly describe the crypto rules

below. The severity of most of these rules is discussed in [6].

R-01 does not let applications use broken hash functions,

e.g., those for which we can generate collisions, like SHA1 [7].

R-02 forbids the use of some broken algorithms for symmetric

encryption, for example, Blowfish, DES, etc. R-03 and R-04
do not allow applications to use the operation modes ECB and

CBC, respectively. ECB is well known to be vulnerable since

identical blocks of plaintext are encrypted to identical blocks of

ciphertext. This breaks the property of semantic security [52].

CBC is instead vulnerable to padding oracle attacks in client-

server scenarios [12]. R-05 and R-06 put restrictions on how

to generate keys. R-05 requires that the keys for symmetric

encryption are randomly generated by the application instead

of being hard-coded in the app as constants. R-06 requires the

keys to have enough randomness, i.e., they should be generated

by using a random generator that is considered secure for

crypto. R-07 and R-08 are similar to R-05 and R-06, but they

consider the IVs that are used in symmetric encryption instead

of the keys. The IVs, in fact, should always be random and

non-constant to strengthen data confidentiality when they are

paired with some operation modes, e.g., GCM. R-09 requires

that the same pair (key, IV) is never reused to encrypt different

messages. Reusing the same pair (key, IV) makes the encryption

predictable. R-10 is the same as R-05: it is, however, applied

to the salt used in key generation instead of the keys used in

symmetric encryption. R-11 requires the salt to be large enough

(≥ 64 bits) to protect the password used for key generation. R-12
prohibits the reuse of the same salt because it defeats the purpose

of adding randomness to the corresponding password. R-13
requires to use a sufficient number of iterations to generate the

key so that brute-force attacks become infeasible. R-14 and R-15
require to use a password that has not been black-listed and that

is “hard” enough for password-based encryption, respectively.

R-16 forbids using the same password multiple times (e.g.,

constant passwords). R-17 requires to use a random value as

seed instead of a constant value for pseudo-random number

generation (PRNG). Using a constant seed defeats the purpose

of generating random number as the sequence of numbers that is

generated becomes predictable. R-18 does not allow applications

to use PRNGs that are not approved for crypto operations, for

example java.util.Random [6]. R-19, R-20 and R-21 forbid

some configurations of the RSA algorithm. In particular, the

key should be ≥ 2048 bits and a padding algorithm different

from NOPADDING (R-20) and PKCS1-v1.5 (R-21) must be used

for encryption / decryption. R-22 forbids the use of HTTP and

requires the use of the more secure alternative HTTPS. R-23
forbids the use of static passwords for key storage. R-24 and

R-25 require to properly verify host names and certificates. For

example, accepting all host names or all certificates should not be

allowed. R-26 forbids to modify the standard host name verifier,

which can lead to insecure communication over SSL/TLS.

V. CHECKING CRYPTO RULES DYNAMICALLY

We define four checking procedures to cover the crypto rules

reported in TABLE I. Each checking procedure covers multiple

rules, while each rule is verified by only one checking procedure.

These checking procedures are shown graphically in Fig. 3 and

explained in detail in the next sections. These procedures are

generic: they can be applied to new crypto rules if needed.

A. Unacceptable Values

The checking procedure of Fig. 3 (a) extracts from the log

all the values of a parameter or a combination of parameters

and verifies that they can be used to configure the corresponding

crypto class. All the values that are collected from the log are

sent to a rule-specific function that says ‘yes’ if the values are

allowed by the rule or ‘no’ otherwise. For R-01, for instance,

we need to ensure that the parameter alg of MessageDigest

never takes one of the following values: SHA1, MD2, MD5, etc.

This is the most basic checking procedure and it is used to check

the highest number of crypto rules. We describe how we check

the crypto rules that fall under this type below. For each rule, we

report which property must be satisfied by all the values that are

collected for that rule.

R-01: MessageDigest.alg /∈ {‘SHA1’, ..}
R-02: SymmEncryption.alg /∈ {‘DES’, ..}

For rules R-01 and R-02 we simply check that broken algorithms

are not used for message digest and encryption, respectively.

1976



(c) Badly-Derived Values 

[SymmEncryption] key: k1 

logYes / No

[SymmEncryption] key: k2 

[SymmEncryption] key: k3

(b) Constant Values 

log2

log1

=
Yes / No

[SymmEncryption] key: k1

[SymmEncryption] key: k2

(d) Reused Values 

[SymmEncryption] IV: v1
[SymmEncryption] key: k1 

[SymmEncryption] IV: v2
[SymmEncryption] key: k2 

log

=Yes / No

[MessageDigest] alg: SHA1 

log

acceptable?

Yes / No

[MessageDigest] alg: SHA1

[MessageDigest] alg: SHA2

(a) Unacceptable Values 

random?

Fig. 3. We define four checking procedures to cover all the crypto rules of TABLE I. (a) We check if some unacceptable values are used to configure a parameter of
a crypto class (e.g., SHA1 for rule R-01). (b) We check if a parameter is configured with constant values by verifying if the same values are found in two different
executions of an application (e.g., same key for rule R-05). (c) We check if the values of a parameter of a crypto class has enough randomness (e.g., the keys for
rule R-06). (d) We check if some values of a parameter are reused multiple times during the execution of an application (e.g., the pairs (key, IV) for R-09).

R-03: SymmEncryption.mode �= ‘ECB’ or
SymmEncryption.#blocks = 1

R-04: SymmEncryption.mode �= ‘CBC’

For rules R-03 and R-04, we check that the operation modes

ECB / CBC are not used. We accept the use of ECB for 1 data

block.

R-11: KeyDerivation.salt ≥ 64 bits
R-13: KeyDerivation.iter ≥ 1000

For key derivation we check that the lengths of the salts in the

log are always ≥ 64 bits and the number of iterations is ≥ 1000.

R-14: KeyDerivation.pass /∈ BadPass
R-15: score(KeyDerivation.pass) ≥ 3

For key derivation, we check if the password is broken (i.e., it

belongs to BadPass2) or weak. To check if a password is weak

we use zxcvbn [47] and consider it bad if it has a score < 3.

R-18: RandomGenerator.alg = ‘Secure’

We check that the algorithm to generate random numbers is

Secure, i.e., it should generate truly-random numbers. For

example in Java, java.secure.SecureRandom must be used

instead of java.util.Random, whose randomness is limited.

R-19: AsymmEncryption.alg �= ‘RSA’ or
AsymmEncryption.key ≥ 2048 bits

R-20: AsymmEncryption.alg �= ‘RSA’ or
AsymmEncryption.pad �= ‘NOPADDING’

R-21: AsymmEncryption.alg �= ‘RSA’ or
AsymmEncryption.pad �= ‘PKCS1-v1.5’

These rules do not admit encryption keys that are < 2048 bits

for RSA and require some padding algorithm different from

NOPADDING and PKCS1-v1.5 for encryption/decryption [51].

R-22: SSL/TLS/Cert.urlprot �= ‘HTTP’

We check that HTTP is never used as a connection protocol.

R-24: SSL/TLS/Cert.allhost = ‘False’
R-25: SSL/TLS/Cert.allcert = ‘False’
R-26: SSL/TLS/Cert.sethost not assigned

2We used a set of passwords from: https://github.com/cry/nbp.

For rules R-24 and R-25, we check that apps do not naively

verify host names and certificates (e.g., they do not verify the

host name at all or they trust all certificates). For rule R-26, we

check that the default host name verifier is not replaced to avoid

host name verification, e.g., in Java by creating sockets3.

B. Constant Values

The checking procedure of Fig. 3 (b) verifies if a parameter

of a crypto class is constant or not. For instance, for rule R-05
we need to ensure that applications do not use static encryption

keys that are hard-coded in the app. Ideally, the keys should be

generated with a proper random generator. To verify the rules

in this category, we examine the logs of two executions of the

same application and check that the values that are found in one

of the execution log is not present in the other and vice versa.

For example, for rule R-05 we check the following:

R-05: { SymmEncryption.key }1 ∩
{ SymmEncryption.key }2 = ∅

where we used { }1 to indicate the values collected in the

first log and { }2 the values collected in the second log. In a

similar way, we check the rules R-07, R-10, R-17, and R-23 with

the values of SymmEncryption.iv, KeyDerivation.salt,

RandomGenerator.seed, and KeyStorage.pass.

C. Badly-derived Values

The checking procedure reported in Fig. 3 (c) verifies if a

value is truly random or not. For rule R-06, for example, we

need to guarantee that the application uses encryption keys that

have enough randomness. To verify the rules of this type, we

collect all the values of the relevant parameter and we make the

following three checks sequentially (box random? of Fig. 3 (c)):

1. if the value is obtained from RandomGenerator with alg

= ‘Secure’, then we consider it a legit value;

2. if the value is obtained from RandomGenerator with alg

�= ‘Secure’, then we consider it a bad value;

3. otherwise we apply the NIST tests for randomness [49] and

if at least one test fails we consider it a bad value.
3Android SSL: https://developer.android.com/training/articles/security-ssl.

1977



The first two checks try to determine the origin of the value, i.e.,

if it has been generated by RandomGenerator (parameter out).

If the origin cannot be determined, e.g., the value is generated in

some other ways by the application, then we use the NIST tests.

For each NIST test we have three possible outcomes: (i) failure,

(ii) success, or (iii) skipped because there are not enough bits to

apply the specific test. We consider that an app violates a rule if

at least one NIST test fails. This policy can be easily changed

by the user. We apply this procedure to rules R-06 and R-08.

Verifying the randomness of values is a challenging task. While

this test does not ensure that the values that pass the check are

truly random, it finds obvious sources of non-randomness. Static

approaches do not typically check these types of rules.

D. Reused Values

The checking procedure of Fig. 3 (d) checks if a value or a

combination of values of a parameter of a crypto class is reused

across the executions of an application. For instance, for rule R-
09, we have to ensure that the same pair (key, IV) is never reused

to encrypt different messages. The checking procedure collects

all the values from the log and checks if there are duplicates:

R-09: containsDuplicates(
{ (SymmEncryption.key,

SymmEncryption.iv) }) = False

We used this checking procedure for the rules R-09 and R-12.

Static approaches do not typically check these types of rules.

VI. IMPLEMENTATION OF CRYLOGGER FOR ANDROID

We implemented CRYLOGGER to detect crypto misuses in

Java and Android apps by instrumenting classes of the Java

Cryptography Extension (JCE) and the Java Cryptography Archi-

tecture (JCA), which are part of the Java standard library4. These

classes provide a common interface for crypto algorithms to all

Java apps. This interface is then implemented by ‘providers’, i.e.,

specific crypto libraries, e.g., SunJCE, BouncyCastle, etc. Thus,

they are the perfect place to detect crypto misuses in Android (as

well as Java) apps. TABLE II reports the mapping of the classes

of Section IV (Crypto Classes in the table) to the Java classes

that we instrumented. In some cases, a single crypto class, e.g.,

RandomGenerator, is mapped to multiple Java classes, e.g.,

Random and SecureRandom. In the appendices (TABLE III) we

report for each class the member methods that we instrumented

and the parameters that we collected for each Java class.

A. Automated Testing of Android Apps

We ran CRYLOGGER on 1780 Android apps from the official

Google Play Store. These are among the most popular free apps

of 33 different categories (Section IX). In this section, we discuss

how we automated the testing for such a large number of apps.

We implemented a Python script to perform the following

nine steps. Step (S1) starts an Android emulator, whose Java

library has been instrumented with CRYLOGGER (or we can use

a real device). (S2) downloads the chosen app from the Google

4Documentation about JCA and JCE can be found here: https://docs.oracle.
com/javase/7/docs/technotes/guides/security/crypto/CryptoSpec.html (Java 7).

Crypto Classes Java Classes
MessageDigest java.security.MessageDigest
SymmEncryption javax.crypto.Cipher
AsymmEncryption javax.crypto.Cipher

java.security.Signature
KeyDerivation javax.crypto.spec.PBEKeySpec

javax.crypto.spec.PBEParameterSpec
RandomGenerator java.util.Random

java.security.SecureRandom
KeyStorage java.security.KeyStore
SSL/TLS/Certif. java.net.URL

java.net.ssl.SSLContext
java.net.ssl.SocketFactory
java.net.ssl.HttpsURLConnection

TABLE II
Mapping from the crypto library of Section IV to the Java standard library.

Play Store market. (S3) configures the user interface (UI) of the

emulator to facilitate random testing (more details below). (S4)

installs the app on the emulator with the android debug bridge

(ADB)5. (S5) uses Monkey to send random events to the UI of

the app (the number of UI events is configurable and Monkey

can be replaced with other tools). We call ‘events’ the actions

that can be performed on the UI of an app, such as scrolling,

touching, inserting text, etc. (S6) collects the crypto log. (S7)

uninstalls the app and deletes its data with ADB. (S8) checks the

crypto rules and reports the rules that have been violated. (S9)

tests another app starting from Step (S4), if it is necessary.

Android apps are UI driven [39]. Therefore to verify an app,

there are two main alternatives: manual tests, where a user needs

to interact with the UI of the app, and automated tests, where the

UI events are generated by a tool [37], e.g., Monkey. Since the

results of any dynamic tool, including CRYLOGGER , are as good

as the UI events used to exercise the app, it is critical to define

how to test the apps to detect crypto misuses. Since we wanted

to fully automate the testing process, we decided to exclude the

option of performing manual tests. We decided to use Monkey

for the experimental results in Sections VIII and IX. Monkey is

the most popular tool for random-based testing and compared

to other tools for random-based generation is known to be the

most effective [37]. The main advantage of Monkey is that it

is fully automated. It is also fully integrated in Android Studio,

and thus supported on all the apps of the Google Play Store and

on different Android versions. In addition, it is fast because to

generate events it does not need to maintain any information

(state) of the app. It has, however, two limitations: (1) random

events generate unintended behaviors, for instance, turning off

Internet or closing the app [39], and (2) poor app coverage since

the events are generated randomly, for example, Monkey cannot

perform complex operations, such as app registration or login.

(1) Unintended Behaviors: To address this problem, we added

Step (S3) mentioned above. This step (i) activates the immersive

mode6, where an app is fixed on the screen and there is no easy

way to return to the home screen, (ii) removes the quick settings,

so that Monkey cannot interact with system configurations, e.g.,

Wi-Fi, and (iii) disables physical buttons, e.g., power and volume,

to focus the attention of Monkey on the app. We observed that

5Android ADB: https://developer.android.com/studio/command-line/adb.
6Immersive: https://developer.android.com/training/system-ui/immersive.

1978



these modifications eliminate most of the unintended behaviors.

(2) Poor App Coverage: To improve the coverage, we evaluated

many tools for test generation, e.g., SmartDroid [28], Droid-

Bot [40], and Dynodroid [41]. Their main drawbacks are that the

support is limited (they work on specific versions of Android)

and they are typically slower than Monkey, as they need to keep

some information about the state of the app and update it to

explore new behaviors (e.g., a control-flow graph [40]). Due to

these limitations, we decided to use Monkey. We noticed that

Monkey is actually capable of triggering many of the crypto

misuses, even if the UI events are completely random. Most of

the functions that we instrumented (TABLE III) are, in fact, used

to initialize some basic, critical crypto classes, and therefore they

are relatively easy to trigger. We observed that Monkey achieves

∼ 25% of line coverage on average, but it reports as many crypto

misuses as CryptoGuard [6], which employs static analysis

(Section VIII). This choice carries some limitations, i.e., the

possibility of false negatives, because some parts of the apps are

hard to explore (e.g., login). It is worth to mention, however, that

CRYLOGGER can be configured to use any other UI exercisers as

well as manually-written sequences of UI events. For example,

if developers have sequences of events to stimulate their apps, it

can exploit those to obtain higher coverage. In future, we plan

to build our own UI event generator tool specialized for crypto.

B. Details about Crypto Rules Checking

We used the checking procedures explained in Section V to

check the crypto rules for the Android apps, but we made few

adaptations. The functions that we instrumented for rules R-24
and R-25 (TABLE III) take as input some classes for which the

developer of the application has to implement some methods,

e.g., the method verify() to verify the host name. To obtain

the values of the parameters allhost and allcert that are

used by rules R-24 and R-25, during the logging, we pass some

erroneous values, such as NULL or empty strings, to determine

if those functions were implemented naively. For the rules that

require two executions (see Fig. 3 (b)), we obtain the two logs

by running the application on two different instances of the

emulator. We also make sure that if we see a value that is in both

logs, then this is caused by constants hard-coded in the app.

VII. EXPERIMENTAL SETUP AND BENCHMARKS

We evaluated CRYLOGGER on two sets of benchmarks. The

first set consists of Android apps. We downloaded 2148 free

Android apps from the Google Play Store. These cover the

most popular free apps of 33 different categories. We discarded

110 of these apps since they do not use any crypto APIs. We

discarded 258 of these apps as they do not work on the Android

emulator either because they keep crashing or they require

libraries that cannot be installed in the emulator environment.

The results of running CRYLOGGER on the remaining 1780
apps are discussed in Section IX. We used a random subset of

these apps to compare CRYLOGGER against CryptoGuard [6] as

described in Section VIII. The second set of benchmarks is the

CryptoAPI-Bench [26], a set of Java applications that include

crypto misuses. The CryptoAPI-Bench was originally proposed

to compare static approaches. We extended it and then used it to

compare CRYLOGGER against CryptoGuard (see Section VIII).

VIII. RESULTS: COMPARISON WITH CRYPTOGUARD

We compared CRYLOGGER against CryptoGuard [6], one

of the most effective static tools in detecting crypto misuses in

Java-based applications. We could not compare CRYLOGGER
against a dynamic tool because, to the best of our knowl-

edge, CRYLOGGER is the only approach to detect misuses

dynamically for a large number of rules (Section III). We

chose CryptoGuard among many available static tools, e.g.,

CryptoLint [5], CrySL [15], because it has been recently shown

that CryptoGuard is the tool with the lowest false positive

and false negative rates among them [26]. It is also the tool

that supports the largest number of crypto rules. We compared

CRYLOGGER and CryptoGuard by using 2 datasets. The first

consists of 150 Android apps we randomly chose from the set

of 1780 apps (Section VII). For this dataset, we evaluated the

execution times and the number of crypto misuses found by the

two tools. The second dataset is the CryptoAPI-Bench [26], a set

of Java benchmarks that include crypto misuses. For this dataset,

we determined the false positive and the false negative rates of

the two tools. We also extended the CryptoAPI-Bench with more

benchmarks to cover cases relevant to dynamic approaches.

A. Android Apps: Results

We used 150 free Android apps randomly chosen from the

dataset of 1780 apps to compare CRYLOGGER and Crypto-

Guard7. We could not use the entire dataset of 1780 apps of

Section VII because the false positives for CryptoGuard must

be determined manually (see below). For a fair comparison, we

excluded the rules that are supported by CRYLOGGER , but not by

CryptoGuard, and thus we compared the two tools by checking

16 crypto rules. For each rule, we determined the number of apps

that are marked as “vulnerable” by each tool and analyzed the

false positive and false negative rates. We used 3 configurations

for CRYLOGGER where we varied the number of UI events that

are generated with Monkey: we used 10k, 30k and 50k random

events (same random seed) to see how the number of input

events impacts the number of misuses that are identified. In the

following, we refer to the 3 configurations as CRYLOGGER10,

CRYLOGGER30 and CRYLOGGER50, respectively.

The results of the comparison are reported in Fig. 4 and 5.

Each graph is an upset plot [53], [54] for a specific rule. An upset

plot is an alternative to the Venn diagrams to represent sets and

their intersections. In our context, the sets that are represented

are the sets of apps that are considered vulnerable by each

approach (CRYLOGGER10, CRYLOGGER30, CRYLOGGER50

and CryptoGuard). The horizontal bars are used to indicate the

total number of apps that are considered vulnerable by each

approach. For instance, for rule R-03, CryptoGuard found 17
vulnerable apps among the 150 apps that were analyzed, i.e., 17
apps violate R-03, CRYLOGGER50 and CRYLOGGER30 flagged

21 apps as vulnerable, and finally CRYLOGGER10 marked 20
apps as vulnerable. The vertical bars are used to represent the

7https://github.com/franceme/cryptoguard; vers: 03.07.03; commit: ba16c928.

1979



���

�
�

��

���

���

��
	

��

�
���
��
��
�

���

�
�

�

●
●
●
●

●
●
●

�������
���
�������
���
�������
���
�������
���

�
��
��

���
���
���
���

������������

��	
��
����
�����

�
�
�����

�������
��
�
�����

��

�

�

�

�

��

��

��
	

��

�
���
��
��
�

���

�
�

�

●
●
●
●

●
●
●
●

�������
���
�������
���
�������
���
�������
���

�
��
��

��
 
 
 

��������

��	
��
����
�����

�
�
�����

�������
��
�
!������
��
�
�����

��

��

�

�

�

��

��

��
	

��

�
���
��
��
�

���

�
�

�

●
●
●

●●
●
●
●

�������
���
�������
���
�������
���
�������
���

�
��
��

��
��
��
��

�����

��	
��
����
�����

�
�
�����

�������
��
�
!������
��
�
�����

� 

� 
��

�

��

��

��

��
	

��

�
���
��
��
�

���

�
�

�

●
●
●

●
●
●
●

●�������
���
�������
���
�������
���
�������
���

�
��
��

��
��
��
�"

�������

��	
��
����
�����

�
�
�����

�������
��
�
!������
��
�
�����

�� ��

�

�

�

��

��

��
	

��

�
���
��
��
�

���

�
�

�

●
●
●
●

●
●
●

●�������
���
�������
���
�������
���
�������
���

�
��
��

��
��
��
��

���������

��	
��
����
�����

�
�
�����

�������
��
�
!������
��
�
�����

��

�
�

�

�

��

��

��
	

��

�
���
��
��
�

���

�
�

�

●
●
●

●
●
●
●

●�������
���
�������
���
�������
���
�������
���

�
��
��

�
��
��
��

��������

��	
��
����
�����

�
�
�����

�������
��
�
�����

�

�

�

�

�

�

�

�

��
	

��

�
���
��
��
�

���

�
�

�

●
●
●

●●
●
●
●

�������
���
�������
���
�������
���
�������
���

�
��
��

�
�
�
�

����

��	
��
����
�����

�
�
�����

�������
��
�
�����

��

�
�

�

��

��

��
	

��

�
���
��
��
�

���

�
�

�

●
●
●

●�������
���
�������
���
�������
���
�������
���

�
��
��

�
��
��
��

��������

��	
��
����
�����

�
�
�����

�������
��
�
�����

Fig. 4. (Part 1) Comparison of CRYLOGGER and CryptoGuard [6] on 150 Android apps. Each graph is an upset plot [53]. The horizontal bars indicate the
number of apps flagged as vulnerable by CryptoGuard and CRYLOGGER (that is run with 10k, 30k and 50k stimuli). The vertical bars indicate the number of
apps flagged as vulnerable by a possible intersection of the four approaches (the three largest, non-empty intersections are reported). For example, for R-02: 2
apps are considered vulnerable by all approaches, 14 apps are flagged as vulnerable by CryptoGuard, but not by CRYLOGGER , and finally 7 apps are considered
vulnerable by CRYLOGGER only. The vertical bars distinguish the false positives (fp) obtained by reverse engineering and the true positives (tp) for CryptoGuard.

intersections of the sets of apps that are considered vulnerable

by each approach. Specifically, each vertical bar indicates the

size of the intersection of the sets whose circles below the bar

are black. For example, for rule R-03: the 3 configurations of

CRYLOGGER identified 16 crypto misuses that were not found

by CryptoGuard; CryptoGuard detected 13 misuses that were

not found by the 3 configurations of CRYLOGGER , and finally

all the approaches agree that 4 apps are vulnerable. The vertical

bars for CryptoGuard distinguish the false positives (fp) from

the true positives (tp), because CryptoGuard can produce false

positives. To make this distinction, we reverse engineered the

apps by using APKTool8 and verified if the API calls flagged as

vulnerable by CryptoGuard could actually be called at runtime.

We used a very conservative approach to determine the false

positives. Starting from the flagged API call, we recursively

built the sets of functions that call that API until we obtained a

fixed point. If a function that is part of the package of the app

is in the set, then we considered the API call a true positive

because there is the possibility that it could be called at runtime.

If none of the functions in the set is part of the package of the

app, then we considered the API call a false positive. If the app

was completely obfuscated with ProGuard9, thereby making it

impossible to determine its packages, then we assumed that the

vulnerability flagged by CryptoGuard was a true positive. In

our case 6 apps were completely obfuscated. This process does

8https://github.com/iBotPeaches/Apktool; vers: 2.4.0; commit: 197d4687.
9ProGuard: https://www.guardsquare.com/en/products/proguard.

not guarantee that all false positives are identified because some

paths in the code of the app could still be not executable (dead

code), but it helps to find the obvious sources of false positives.

For most of the rules, excluding some cases (R-01, R-18,

R-22, R-24, R-25 and R-26), we can observe the following:

(1) CryptoGuard detected some crypto misuses that were

not found by CRYLOGGER ; (2) CRYLOGGER detected some

misuses that were not found by CryptoGuard; (3) the number of

misuses detected by CRYLOGGER is higher than CryptoGuard,

considering that the latter produces many false positives (we

discuss some examples of false positives in Section VIII-D). For

some rules (R-01, R-18) we can observe that all the misuses

detected by CryptoGuard were also discovered by CRYLOGGER .

For other rules (R-22, R-24, R-25 and R-26) we can observe

that CryptoGuard found more crypto misuses compared to

CRYLOGGER , but it produced a significant number of false

positives (in some cases the false positive rate is > 50%). These

rules are related to SSL/TLS and they require to evaluate the

security of the actual implementation of some Java functions,

for example, the function verify in the case of rule R-24 or

the functions checkClientTrusted, checkServerTrusted

and getAcceptedIssuers in the case of rule R-25. These

tasks are better suited for static analysis because it is necessary to

prove that some parameters of the functions are never used or the

parameters of the functions do not influence the return value [6].

Overall, these results show that CRYLOGGER can complement

the results that are obtained through static analysis and it can

1980



�

�

�

�

�

�

��
	

��

�
���
��
��
�

���

�
�

�

●
●
●
●

●
�������
���
�������
���
�������
���
�������
���

�
��
��

�
�
�
�

����

��	
��
����
�����

�
�
�����

�������
��
�
!������
��
�
�����

���

 
�

��

���

���

��
	

��

�
���
��
��
�

���

�
�

�

●
●
●
●

●
●
●

�������
���
�������
���
�������
���
�������
���

�
��
��

���
���
���
���

������������

��	
��
����
�����

�
�
����"

�������
��
�
�����

��

� �
�

�

��

��

��

��

��
	

��

�
���
��
��
�

���

�
�

�

●
●
●

●
●

●�������
���
�������
���
�������
���
�������
���

�
��
��

�
��
��
��

�������

��	
��
����
�����

�
�
���� 

�������
��
�
�����

�� ��

��

�

��

��

��

��

��
	

��

�
���
��
��
�

���

�
�

�

●●
●
●
●

●
●
●

�������
���
�������
���
�������
���
�������
���

�
��
��

��
��
��
�"

����������

��	
��
����
�����

�
�
�����

�������
��
�
!������
��
�
�����

�

�

�

�

�

�

�

"

��
	

��

�
���
��
��
�

���

�
�

�

●●
●
●
●

●
●
●

�������
���
�������
���
�������
���
�������
���

�
��
��

��
�
�
�

������

��	
��
����
�����

�
�
�����

�������
��
�
!������
��
�
�����

��

�
�

��

��

��

��
	

��

�
���
��
��
�

���

�
�

�

● ●
●
●
●

�������
���
�������
���
�������
���
�������
���

�
��
��

��
�
�
�

�������

��	
��
����
�����

�
�
�����

�������
��
�
!������
��
�
�����

��

�
�

�

��

��

��
	

��

�
���
��
��
�

���

�
�

�

●●
●
●
●

●
●

�������
���
�������
���
�������
���
�������
���

�
��
��

��
�
�
�

�������

��	
��
����
�����

�
�
�����

�������
��
�
!������
��
�
�����

��

�

�

�

��

��
	

��

�
���
��
��
�

���

�
�

�

●
●
●
●

�������
���
�������
���
�������
���
�������
���

�
��
��

��
�
�
�

������

��	
��
����
�����

�
�
�����

�������
��
�
!������
��
�
�����

Fig. 5. (Part 2) Comparison of CRYLOGGER and CryptoGuard [6] on 150 Android apps. Each graph is an upset plot [53]. The horizontal bars indicate the
number of apps flagged as vulnerable by CryptoGuard and CRYLOGGER (that is run with 10k, 30k and 50k stimuli). The vertical bars indicate the number of
apps flagged as vulnerable by a possible intersection of the four approaches (the three largest, non-empty intersections are reported). For example, for R-22: 35 apps
are considered vulnerable by all approaches, 34 apps are flagged as vulnerable by CryptoGuard, but not by CRYLOGGER , and finally 24 apps are considered
vulnerable by CRYLOGGER only. The vertical bars distinguish the false positives (fp) obtained by reverse engineering and the true positives (tp) for CryptoGuard.

be helpful in detecting misuses in Android apps. By combining

CRYLOGGER with powerful static tools such as CryptoGuard,

it is possible to detect crypto misuses effectively. We can also

observe that it is sufficient to configure CRYLOGGER to use

30k random UI events to trigger most of the crypto misuses.

We performed the same experiments on the rules that are not

supported by CryptoGuard (see Fig. 9 in the appendices).

B. Android Apps: Execution Time

We measured the average execution time required by the

3 configurations of CRYLOGGER and by CryptoGuard to

analyze the 150 apps used for the comparison. We obtained

that CRYLOGGER10 requires on average 146.4 seconds per

app, CRYLOGGER30 takes 287.4 seconds, and CRYLOGGER50

takes 751.7 seconds to perform dynamic analysis. CryptoGuard

requires 287.6 seconds. Other static tools are usually much

slower. For example, the authors of CryptoLint [5] reported that

22.2% of the apps they analyzed did not terminate in 30 minutes

and 6.5% ran out of memory. This shows that the execution

time of CRYLOGGER is comparable to the time required by

CryptoGuard, confirming that both approaches are scalable.

C. Android Apps: Coverage

We measured the line coverage, the method coverage and

the class coverage of the apps analyzed with the three config-

urations of CRYLOGGER . We used ACVTool [55] to obtain

this information. To calculate the coverage, we considered only

the files that are included in the main packages of the apps,

while excluding the files that belong to the third-party libraries

because they can contain code not callable from the apps. The

average line coverage for CRYLOGGER10, CRYLOGGER30, and

CRYLOGGER50 are 22.8%, 25.3%, and 25.4%, respectively.

The average method coverage are 25.4%, 27.9%, and 27.9%,

respectively. The average class coverage are 32.8%, 35.4%, and

35.7%, respectively. The coverage is relatively low and there are

many lines of code that Monkey could not explore (∼ 75%).

These results are not surprising because Monkey generates

completely random UI events [39]. However, this shows that

even if the coverage is low, CRYLOGGER can detect misuses as

the crypto APIs are easily triggerable with random events.

D. Android Apps: False Positives

Fig. 4 and 5 show that CryptoGuard can produce many false

positives, especially for rules R-22 (false positives: 22.5%), R-24
(59.3%), R-25 (57.1%) and R-26 (27.2%). In Fig. 11 we report

two concrete examples of false positives that we found. The

first example is for rule R-22. We found that many apps were

flagged as vulnerable by CryptoGuard because they include the

Java class HttpTesting. While violating rule R-22 due to the

use of HTTP instead of HTTPS, this class is meant to be used

for testing and it is not instantiated at runtime by any of the

apps we analyzed. Similarly, for rule R-24, many apps were

flagged because they contain the Java class AdjustFactory10.

The function reported in the second example of Fig. 11 is used

10The code is available at https://github.com/adjust/android sdk.

1981



��� �� ��

��� �	 
� 	
�� �� !�

�� �� !� !�

�������
�

�������
���

� �� ��� ��� ���

!� !� �� ��

Fig. 6. Comparison of CRYLOGGER and CryptoGuard [6] on the CryptoAPI-
Bench*. We report the number of false positives (fp), false negatives (fn), true
positives (tp) and true negatives (tn). “True positive”: there is a crypto misuse
that is caught. “True negative”: there is not a crypto misuse and it is not caught.

only for testing, as its name suggests, and it is never called at

runtime by any of the apps that we analyzed. This function was

flagged as vulnerable by CryptoGuard.

E. CryptoAPI-Bench: Results

We compared CRYLOGGER against CryptoGuard by using the

CryptoAPI-Bench [26]11, a set of Java benchmarks that include

crypto misuses. The CryptoAPI-Bench has been proposed to

compare CryptoGuard and other static approaches. Therefore,

(1) the code is not directly executable, (2) it lacks test cases that

are useful for dynamic approaches, and (3) it misses test cases

for the rules that are not supported by CryptoGuard. We extended

the CryptoAPI-Bench such that (1) the code can be analyzed by

static approaches as well as executed by dynamic approaches,

(2) we added new test cases that are challenging for dynamic

approaches, and (3) we included new test cases for the rules

supported by CRYLOGGER , but not by CryptoGuard. In this

section, we discuss the result of the comparison on the modified

CryptoAPI-Bench that we call CryptoAPI-Bench*. For fairness,

we consider the rules that are supported by both CRYLOGGER
and CryptoGuard. For fairness, we also report the results on the

original CryptoAPI-Bench in Fig. 12 (in the appendices).

CryptoAPI-Bench contains six types of tests: (1) basic: the

crypto misuse is in the function main; (2) miscellaneous:

similar to basic, but the parameters for the API calls are saved

in data structures or go through data type conversions; (3)

interprocedural: the misuse is in a function that is called by

main with 2 or 3 levels of indirection; (4) path sensitive: the

crypto misuse is in a branch that is always evaluated to true at

runtime; (5) field sensitive: the misuse is in a member function

and the relevant parameters are saved in the field of a class; (6)

multiple classes: the relevant parameters of a misuse are passed

from a class to another class to reach the API call. We report

an example of each test in Fig. 10 (in the appendices). Some of

these tests are challenging for a static tool, but they are all the

same from a dynamic tool perspective. Therefore, we decided to

add the following type of test: (7) argument sensitive: the misuse

is triggered only if a specific value is passed as input to main.

Fig. 6 shows the results of the comparison of CRYLOGGER
and CryptoGuard. The bars show the number of true positives

(tp), true negatives (tn), false positives (fp) and false negatives

(fn). In CryptoAPI-Bench* there are 198 tests in total, 157 true

positive tests, i.e., tests in which there is a crypto misuse, and

11https://github.com/CryptoGuardOSS/cryptoapi-bench, commit: ace0945.

41 true negative tests, i.e., tests in which there are no misuses.

CRYLOGGER cannot produce any false positives, but it produces

19 false negatives, all for the tests that are argument sensitive.

CryptoGuard produces both false positives and false negatives.

The false positives are caused by tests that are path sensitive,

and interprocedural tests. The false negatives are caused by the

refinements that are applied by CryptoGuard [6], interprocedural

tests, and tests that are path sensitive. These results confirm that

static tools can be complemented with CRYLOGGER to expose

more misuses as well as reduce the number of false positives.

IX. RESULTS: VULNERABILITIES IN ANDROID

We run CRYLOGGER on the 1780 apps downloaded from

the Google Play Store (Section VII). We stimulated the apps

with 30k random events as this was a good compromise between

running time and number of vulnerabilities found in a subset

of these apps (Section VIII). The experiments took roughly 10
days to run on an emulator running Android 9.0.0 r36, to which

we allocated 6 cores (Intel Xeon E5-2650) and 16 GB of RAM.

Fig. 7 reports the results of the analysis. The graph reports

the total number of apps that violate the 26 crypto rules checked

by CRYLOGGER . A very high number of apps use broken hash

algorithms (R-01, 99.1%) and unsafe random generator (R-18,

99.7%). These results are more alarming than the ones that

were obtained statically in [6], 85.3% and 84.0%, respectively.

CRYLOGGER , similarly to static tools, cannot determine exactly

how hash functions or random numbers are used in the apps by

using rules R-01 and R-18 only. While for R-01 it is challenging

to determine how hash functions are actually used, for R-18
we can check if non-truly random numbers are used as values

for keys and initialization vectors with R-06 and R-08. These

rules are not supported by static tools and they give more precise

information about the use of non-truly random numbers. We

decided to keep rule R-18 to compare CRYLOGGER against

other static tools, but we suggest using rules R-06 and rule R-
08 for a more precise analysis. Other more subtle uses of hash

functions can produce false positives, e.g., when broken hash

functions are used with non-sensitive data or when the property

of collision resistant is not required. For other rules, e.g., R-
03, R-13, and R-22, we obtained results more similar to [6]. A

surprising number of apps reuse the same (key, IV) pairs (R-09,

31.3%), which was never reported before. Many apps also use

badly-generated keys (R-06, 36.1%), badly-generated IVs (R-
08, 6.6%), and reuse salts for different purposes (R-12, 6.6%),

which are rules that were not checked by other tools before. For

rule R-01 we found that 99.0% of the apps that violate R-01 use

SHA1 and 99.7% use MD5 as message digest algorithm. For R-
02, we found that 81.0% of the apps that use broken symmetric

algorithms use DES, while 16.7% still use Blowfish. We found

that 82.8% of the apps that violate R-13 use ≤ 3 iterations for

key derivation, which is much lower compared to the suggested

value (1000). For R-14 and R-15 we found that 27.1% of the

apps use “changeit” as password, while 8.5% use “dontcare”.

For RSA, we saw that 97.7% use 1024 bits as key size (2048 is

the suggested value). These results confirm what was obtained

1982



����
���
�� 

���� "�� ���
���

��"
��� ��� ��

��� �� � ��
��� �

����
��� ��
���

� �
�" ��
 � ��

�
���
����
����
����
����

����
����
����
����
����
����
����
���"
��� 
����
����
����
����
����
����
����
����
���"
��� 
����
����
����
����
����
����
����

��
	

��

�
��
�

��
��
�

Fig. 7. Number of vulnerable Android apps for each crypto rule. We analyzed
1780 Android apps with CRYLOGGER configured to generate 30k random
events with Monkey. We downloaded the apps from the official Google Play
Store. The dataset of apps was collected between September and October 2019.

in previous works by using static analysis [5], [6] and show that

CRYLOGGER can analyze a large number of apps automatically.

A. Disclosure of Vulnerabilities

We contacted 306 developers of Android apps and libraries to

disclose the vulnerabilities reported in Fig. 7. We respected the

disclosure policies of the companies we contacted. Starting from

the apps that violate 18 rules (the highest number of violations in

our dataset), we contacted all the apps with ≥ 9 rule violations.

All the apps are popular: they have from hundreds of thousands

of downloads to more than 100 millions. Unfortunately, only

18 developers answered our first email of request and only 8
of them followed back with us multiple times providing useful

feedback on our findings. We also contacted 6 developers of

popular Android libraries and received answers from 2 of them.

The characteristics of the 8 apps and 2 libraries for which we

received feedback are reported in the first table from the left of

Fig. 8. We preferred to anonymize the apps and libraries because

(i) we do not want to associate the feedback we received to the

company of the app or its employers, and (ii) we consider some

of the attacks possible although developers considered them

out-of-scope because they require privilege escalation.

Apps A-01, A-04, and A-07 violate rule R-01. Their developers

told us that MD5 or SHA1 are used for hashing non-sensitive

values. App A-01 violates also rules R-02 (DES) and R-03: the

developers justified the use of broken algorithms saying that

they do not pose concrete risks to their users. A-01, A-05, and

A-07 violate rules related to poor encryption parameters, such as

constant keys (R-05, R-06), IVs (R-07, R-08) and salts (R-10).

The developers adopted poor encryption practices to encrypt data

that are stored locally on the smartphone. They consider these

issues outside of their threat model since privilege escalation

attacks are required to exploit them. A-03 uses repeating (key,

IV) pairs (R-09): the developers agreed that it is a real issue

and they plan to fix it. They reused the same pairs because they

experienced app crashing when using fresh pairs. A-02, A-05,

A-06, and A-08 use constant passwords (R-16, R-23) to encrypt

data. The developers do not plan to fix these problems because a

privilege escalation attack is necessary to access the data. The

developers of A-01, A-04 and A-05 told us that using a short

RSA key (R-19) does not pose concrete risks. L-09 is a popular

library for advertisements. The library uses the same (key, IV)

pairs to store data locally. The same (key, IV) pairs are reused

across different apps, i.e., all the apps using this library end up

using the same sequence of (key, IV) pairs. About 30% of the

apps in our dataset share the same sequence of pairs which are

used to encrypt data in the private folder of each app. The library

developers confirmed this issue, but they classified it as out-of-

scope. Note that this experiments cannot be replicated by static

tools and it is an example of how CRYLOGGER can perform

inter-app analysis. L-10 is a common library for advertisements.

The library employs weak encryption practices to store data

locally. We talked with the library developers. They were aware

of the issue and said that the data are not security critical.

This analysis reveals that the threat model of CRYLOGGER
and all the other static tools is not aligned with the develop-

ers’ threat model. Developers claim that sensitive data can

be encrypted poorly if they are stored only locally because

privilege escalation is required to access them. Unfortunately,

side-channel attacks can also access the data [56]. While we

recommend to always adopt safe crypto practices, one way to

to avoid such types of warnings in CRYLOGGER is to log when

data are stored on the local storage (e.g., in classes such as

File or KeyStore) and discard the corresponding violations.

Developers are also more interested to rules that, if violated, pose

concrete security threats as also reported in [6]. For example,

while setting a minimum size for keys (R-19) is important, the

effects of its violation are hard to assess. Since the feedback we

received from developers is limited to a few apps, we decided to

analyze some apps manually to determine if the vulnerabilities

of Fig. 7 are exploitable.

B. Analysis of Vulnerabilities

We reverse engineered 28 apps with APKTool and JADX12.

We chose half of the apps among the most popular apps of our

dataset (Section VII) with the highest number of violations. We

chose the remaining half randomly. The apps characteristics are

shown in Fig. 8. We performed the following steps for reverse

engineering: (i) we used APKTool and JADX to obtain the Java

code from the binary (apk) of the app, (ii) we analyzed the app

with CRYLOGGER , which we extended to log the stack trace

for each rule violation, and (iii) we manually analyzed the code

starting from the flagged API call to understand its purpose in

the app. We spent on average 6 hours per app for code analysis.

A significant number of these apps (14/28) are vulnerable to

attacks, even though some may be considered out-of-scope by

developers. Most of the rules (22/26) are effective in detecting

at least one vulnerable app. App A-13 violates many rules related

to encryption. This app uses encryption to manage subscriptions

to premium features and users data. The subscription and the

users data are stored locally on the app and attacker can read

the data as well as fake subscriptions. Similarly, apps A-18, A-
20, A-24, A-25, A-33, and A-34 store critical users data (emails,

answers to security questions, etc.) by using weak encryption

algorithms. A-22, A-29, and A-30 store SSL/TLS certificates

with weak password-based encryption. A-14 uses a constant seed

(R-17) to randomly generate keys used for encryption of users

data, so the keys can be easily obtained. Apps A-31,A-32, and

12https://github.com/skylot/jadx; vers: 1.1.0, commit: cc29da8.

1983



DEVELOPERS FEEDBACK REVERSE ENGINEERING

ID Type (#Downloads) Analyzed Violations

A-01 File Manager (100M+) R-02, R-03, R-05, R-07,
R-08, R-09, R-10, R-12,
R-19

A-02 Data Transfer (10M+) R-16, R-23
A-03 Video Streaming (10M+) R-09, R-20, R-22
A-04 Newspaper App (5M+) R-01, R-19, R-20, R-23
A-05 Social & News (5M+) R-05, R-06, R-07, R-08

R-10, R-16, R-19
A-06 Language Learning (1M+) R-16
A-07 Music Streaming (1M+) R-01, R-05, R-06, R-09
A-08 Video Streaming (1M+) R-16, R-23
L-01 Advertisement (N.A.) R-09
L-02 Advertisement (N.A.) R-07, R-08, R-10

ID Type (#Downloads) Analyzed Violations

A-09 Messaging (100M+) R-01
A-10 Entertainment (100M+) R-18, R-22
A-11 Movie Reviews (100M+) R-18, R-19, R-21
A-12 Book Reading (50M+) R-02, R-03, R-05, R-06
A-13 Passw. Manager (50M+) R-02, R-03, R-04, R-05

R-06, R-07, R-08
A-14 Passw. Manager (50M+) R-17
A-15 Screen Utils (10M+) R-01
A-16 File Manager (10M+) R-01
A-17 Video Streaming (10M+) R-04
A-18 Video Streaming (10M+) R-04, R-07, R-08, R-21,

R-23
A-19 Video Streaming (10M+) R-09, R-20, R-22
A-20 Live Events Info (10M+) R-11, R-16
A-21 Video Streaming (10M+) R-11, R-13
A-22 Video Streaming (10M+) R-14, R-15, R-16
A-23 Newspaper App (5M+) R-01, R-19, R-20, R-21

ID Type (#Downloads) Analyzed Violations

A-24 Mail Manager (5M+) R-04, R-05, R-06, R-10
R-12, R-13, R-16

A-25 Video Streaming (5M+) R-19, R-21, R-24, R-25
R-26

A-26 Stocks Manager (5M+) R-22
A-27 Authentication (5M+) R-23
A-28 Video Streaming (1M+) R-10, R-16
A-29 Blog Reading (1M+) R-14, R-15, R-16
A-30 Book Reading (1M+) R-14, R-15, R-16
A-31 Healthcare Info (1M+) R-24, R-25, R-26
A-32 Music Streaming (1M+) R-24, R-25, R-26
A-33 Newspaper App (500K+) R-03, R-05, R-06, R-10

R-13, R-16, R-24, R-25
R-26

A-34 Entertainment (100K+) R-10, R-11, R-13, R-16
A-35 Passw. Manager (100K+) R-13
A-36 Video Streaming (100K+) R-22

Fig. 8. The first table from the left reports the characteristics of the Android apps for which we received feedback from their developers. The other tables report the
characteristics of the apps that we reverse engineered. The rules reported in the last column of each table are those that were analyzed by the developers or by us.

A-33 are vulnerable to man-in-the-middle attacks because they

violate R-24, R-25, and R-26. These apps download copyrighted

videos/music as well as ads, which can be intercepted by

attackers. The other violations can be considered false positives.

Some are caused by ‘imprecise’ rules. For example, on 3 apps

each, rules R-01 and R-18 flag secure uses of hash algorithms

and random number generators for non-sensitive data. Similarly,

R-04 flags 3 apps that use CBC encryption for scenarios different

from client/server. Other violations come from (i) employing

weak encryption schemes to obfuscate non-sensitive data and

(ii) legacy practices such as using PCKS#1 as padding scheme

in SSL/TLS instead of more secure alternatives such as OAEP.

This analysis confirms that the threat model of CRYLOGGER
and all the other static tools does not completely align with the

developers’ threat model and some rules produce false positives.

X. DISCUSSIONS AND LIMITATIONS

In this section, we discuss the advantages of dynamic ap-

proaches over static approaches and our current limitations.

Why a Dynamic Approach? To date, most of the approaches

to detect crypto misuses are based on static analysis, which

provides many benefits. Static analysis can analyze the code

without executing it, and this is especially important for Android

apps since UI test generators are not required. Static analysis can

scale up to a large number of applications and, thanks to recent

improvements [6], it can analyze massive code bases. Static

analysis has, however, some limitations. It can produce false

positives, i.e., alarms can be raised on correct calls to crypto

APIs due to imprecise slicing algorithms. These alarms add up

to those raised on parts of the applications that are not security

critical (see Section IX). This makes it hard to analyze a large

number of applications. Some static approaches [6] also incur in

many false negatives. Some misuses escape detection because

the exploration is pruned prematurely to improve scalability. In

addition, static analysis misses some crypto misuses in the code

that is loaded dynamically. This prevents analyses on critical

code [20]. Also, static analysis can be inherently done on a single

application only. It is not possible to perform inter-application

analysis, as the one we did with CRYLOGGER on an Android

library (Section IX). On the other hand, dynamic analysis is

not a perfect antidote. Dynamic analysis is as good as the test

generator that is used to run the applications. We discuss the

main limitations of dynamic analysis in the next paragraphs.

False Positives. Although dynamic analysis, theoretically,

should avoid false positives, these are possible when detecting

crypto misuses (Section IX). It is hard to distinguish critical

parts of the application, which should obey to the rules, from

less critical parts where the data are not sensitive. In addition,

the threat model adopted by app developers can differ from the

one adopted in the research community. This requires complex

manual analyses. One possible solution is to log additional

information in other classes (e.g., File) to determine if rule

violations can be discarded. This would greatly reduce the false

positives, but it is hard to implement with general solutions.

False Negatives. Crypto misuses escape detection if they

are not exercised during the execution. In Section VIII, we

showed that for many Android apps, CRYLOGGER confirmed the

results reported by CryptoGuard and found misuses missed by

CryptoGuard. In other contexts, it might be harder to trigger the

crypto APIs depending on the specific application. One possible

solution is to complement CRYLOGGER with a static tool in

order to expose the misuses that cannot be triggered at runtime.

XI. CONCLUDING REMARKS

We presented CRYLOGGER , the first tool that detects crypto

misuses dynamically, while supporting a large number of rules.

We released CRYLOGGER open-source to allow the community

to use a dynamic tool alongside static analysis. We hope that

application developers will adopt it to check their applications

as well as the third-party libraries that they use.

ACKNOWLEDGMENTS

This work was supported in part by the NSF (A#: 1527821 and

1764000), a gift from Bloomberg, DARPA HR0011-18-C-0017,

and N00014-17-1-2010.

1984



REFERENCES

[1] “[GitHub] lucapiccolboni/crylogger: CRYLOGGER (Version v1.0),
Zenodo.” [Online]. Available: https://doi.org/10.5281/zenodo.3911285

[2] R. L. Rivest, “Handbook of Theoretical Computer Science,” 1990.
[3] J. C. Zinzindohoué, K. Bhargavan, J. Protzenko, and B. Beurdouche,

“HACL*: A Verified Modern Cryptographic Library,” in Proc. of the ACM
Conference on Computer & Communications Security (CCS), 2017.

[4] B. B. Brumley, M. Barbosa, D. Page, and F. Vercauteren, “Practical
Realisation and Elimination of an ECC-Related Software Bug Attack,”
in Cryptographer’s Track at the RSA Conference, 2012.

[5] M. Egele, D. Brumley, Y. Fratantonio, and C. Kruegel, “An Empirical
Study of Cryptographic Misuse in Android Applications,” in Proc. of the
ACM Conference on Computer & Communications Security (CCS), 2013.

[6] S. Rahaman, Y. Xiao, S. Afrose, F. Shaon, K. Tian, M. Frantz, M. Kantar-
cioglu, and D. Yao, “CryptoGuard: High Precision Detection of Crypto-
graphic Vulnerabilities in Massive-sized Java Projects,” in Proc. of the
ACM Conference on Computer & Communications Security (CCS), 2019.

[7] M. Stevens, E. Bursztein, P. Karpman, A. Albertini, Y. Markov, A. P.
Bianco, and C. Baisse, “The First Collision for Fully SHA-1,” in Proc. of
the International Cryptology Conference (CRYPTO), 2017.

[8] F. Fischer, K. Böttinger, H. Xiao, C. Stransky, Y. Acar, M. Backes, and
S. Fahl, “Stack Overflow Considered Harmful? The Impact of Copy Paste
on Android Application Security,” in Proc. of the IEEE Symposium on
Security and Privacy (SP), 2017.

[9] S. Nadi, S. Krger, M. Mezini, and E. Bodden, “Jumping Through Hoops:
Why do Java Developers Struggle with Cryptography APIs?” in Proc. of
the International Conference on Software Engineering (ICSE), 2016.

[10] Y. Acar, M. Backes, S. Fahl, S. Garfinkel, D. Kim, M. L. Mazurek, and
C. Stransky, “Comparing the Usability of Cryptographic APIs,” in Proc.
of the IEEE Symposium on Security and Privacy (SP), 2017.

[11] I. Muslukhov, Y. Boshmaf, and K. Beznosov, “Source Attribution of
Cryptographic API Misuse in Android Applications,” in Proc. of the Asia
Conference on Computer & Communications Security (ASIA CCS), 2018.

[12] S. Vaudenay, “Security Flaws Induced by CBC Padding - Applications
to SSL, IPSEC, WTLS ...” in Proc. of the International Conference on
the Theory and Applications of Cryptographic Techniques: Advances in
Cryptologyi (EUROCRYPT), 2002.

[13] E. B. Barker and A. L. Roginsky, “Transitions: Recommendation for
Transitioning the Use of Cryptographic Algorithms and Key Lengths,” in
NIST Special Publication 800-131A, 2018.

[14] “Password-Based Cryptography Specification, IETF (RFC 8018),” https:
//tools.ietf.org/html/rfc8018.

[15] S. Krüger, J. Späth, K. Ali, E. Bodden, and M. Mezini, “CrySL: An
Extensible Approach to Validating the Correct Usage of Cryptographic
APIs,” in Proc. of the ACM European Conference on Object-Oriented
Programming (ECOOP), 2019.

[16] S. Fahl, M. Harbach, T. Muders, L. Baumgärtner, B. Freisleben, and
M. Smith, “Why Eve and Mallory Love Android: An Analysis of Android
SSL (in)Security,” in Proc. of the ACM Conference on Computer &
Communications Security (CCS), 2012.

[17] S. Krüger, S. Nadi, M. Reif, K. Ali, M. Mezini, E. Bodden, F. Göpfert,
F. Günther, C. Weinert, D. Demmler, and R. Kamath, “CogniCrypt:
Supporting Developers in Using Cryptography,” in Proc. of the ACM/IEEE
International Conference on Automated Software Engineering (ASE),
2017.

[18] S. Shuai, D. Guowei, G. Tao, Y. Tianchang, and S. Chenjie, “Modelling
Analysis and Auto Detection of Cryptographic Misuse in Android
Applications,” in Proc. of the International on Dependable, Automatic
and Secure Computing (DASC), 2013.

[19] M. Weiser, “Program Slicing,” in Proc. of the International Conference on
Software Engineering (ICSE), 1981.

[20] S. Poeplau, Y. Fratantonio, A. Bianchi, C. Kruegel, and G. Vigna, “Execute
This! Analyzing Unsafe and Malicious Dynamic Code Loading in Android
Applications,” in Proc. of the Network and Distributed System Security
Symposium (NDSS), 2014.

[21] A. Braga, R. Dahab, N. Antunes, N. Laranjeiro, and M. Vieira, “Under-
standing How to Use Static Analysis Tools for Detecting Cryptography
Misuse in Software,” IEEE Transactions on Reliability, 2019.

[22] D. Sounthiraraj, J. Sahs, G. Greenwood, Z. Lin, and L. Khan, “SMV-
HUNTER: Large Scale, Automated Detection of SSL/TLS Man-in-the-
Middle Vulnerabilities in Android Apps,” in Proc. of the Network and
Distributed System Security Symposium (NDSS), 2014.

[23] F. Gagnon, M. F. M. Fortier, S. Desloges, J. Ouellet, and C. Boileau,
“AndroSSL: A Platform to Test Android Applications Connection Security,”
in Proc. of the International Symposium on Foundations and Practice of
Security (FPS), 2015.

[24] J. Li, Z. Lin, J. Caballero, Y. Zhang, and D. Gu, “K-Hunt: Pinpointing
Insecure Cryptographic Keys from Execution Traces,” in Proc. of the ACM
Conference on Computer & Communications Security (CCS), 2018.

[25] Y. Li, Y. Zhang, J. Li, and D. Gu, “iCryptoTracer: Dynamic Analysis on
Misuse of Cryptography Functions in iOS Applications,” in Proc. of the
Network and Distributed System Security Symposium (NDSS), 2014.

[26] S. Afrose, S. Rahaman, and D. Yao, “CryptoAPI-Bench: A Comprehensive
Benchmark on Java Cryptographic API Misuses,” in Proc. of the IEEE
Secure Developement (SecDev), 2019.

[27] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge, “Why Don’t
Software Developers Use Static Analysis Tools to Find Bugs?” in Proc. of
the International Conference on Software Engineering (ICSE), 2013.

[28] C. Zheng, S. Zhu, S. Dai, G. Gu, X. Gong, X. Han, and W. Zou,
“SmartDroid: An Automatic System for Revealing UI-based Trigger
Conditions in Android Applications,” in Proc. of the ACM Workshop
on Security and Privacy in Smartphones and Mobile Devices (SPSM),
2012.

[29] F. Fischer, H. Xiao, C. Kao, Y. Stachelscheid, B. Johnson, D. Razar,
P. Fawkesley, N. Buckley, K. Böttinger, P. Muntean, and J. Grossklags,
“Stack Overflow Considered Helpful! Deep Learning Security Nudges
Towards Stronger Cryptography,” in Proc. of the USENIX Security
Symposium, 2019.

[30] Y. Wang, P. Leon, K. Scott, X. Chen, A. Acquisti, and L. Cranor, “Privacy
Nudges for Social Media: An Exploratory Facebook Study,” in Proc. of
the International Conference on World Wide Web (WWW), 2013.

[31] M. Green and M. Smith, “Developers are Not the Enemy!: The Need for
Usable Security APIs,” IEEE Securityi & Privacy, 2016.

[32] D. C. Nguyen, D. Wermke, Y. Acar, M. Backes, C. Weir, and S. Fahl, “A
Stitch in Time: Supporting Android Developers in Writing Secure Code,”
in Proc. of the ACM Conference on Computer & Communications Security
(CCS), 2017.

[33] S. Ma, D. Lo, T. Li, and R. H. Deng, “CDRep: Automatic Repair of
Cryptographic Misuses in Android Applications,” in Proc. of the Asia
Conference on Computer & Communications Security (ASIA CCS), 2016.

[34] S. Ma, F. Thung, D. Lo, C. Sun, and R. H. Deng, “VuRLE: Automatic
Vulnerability Detection and Repair by Learning from Examples,” in Proc.
of the European Symposium on Research in Computer Security (ESORICS),
2017.

[35] L. Singleton, R. Zhao, M. Song, and H. Siy, “FireBugs: Finding and
Repairing Bugs with Security Patterns,” in Proc. of the International
Conference on Mobile Software Engineering and Systems (MOBILESoft),
2019.

[36] S. Krüger, K. Ali, and E. Bodden, “CogniCryptGEN: Generating Code for
the Secure Usage of Crypto APIs,” in Proc. of the ACM/IEEE International
Symposium on Code Generation and Optimization (CGO), 2020.

[37] S. R. Choudhary, A. Gorla, and A. Orso, “Automated Test Input Generation
for Android: Are We There Yet?” in Proc. of the IEEE/ACM International
Conference on Automated Software Engineering (ASE), 2015.

[38] H. Zheng, D. Li, B. Liang, X. Zeng, W. Zheng, Y. Deng, W. Lam,
W. Yang, and T. Xie, “Automated Test Input Generation for Android:
Towards Getting There in an Industrial Case,” in Proc. of the International
Conference on Software Engineering: Software Engineering in Practice
Track (ICSE-SEIP), 2017.

[39] S. Y. Yerima, M. K. Alzaylaee, and S. Sezer, “Machine Learning-based
Dynamic Analysis of Android Apps with Improved Code Coverage,” in
EURASIP Journal on Information Security, 2019.

[40] Y. Li, Z. Yang, Y. Guo, and X. Chen, “DroidBot: A Lightweight UI-Guided
Test Input Generator for Android,” in Proc. of the ACM/IEEE International
Conference on Software Engineering Companion (ICSE-C), 2017.

[41] A. Machiry, R. Tahiliani, and M. Naik, “Dynodroid: An Input Generation
System for Android Apps,” in Proc. of the Joint Meeting on Foundations
of Software Engineering (ESEC/FSE), 2013.

[42] H. Krawczyk, “Cryptographic Extraction and Key Derivation: The HKDF
Scheme,” in Proc. of the International Cryptology Conference (CRYPTO),
2010.

[43] J. Katz and Y. Lindell, Introduction to Modern Cryptography, 2014.

[44] “Cryptographic Message Syntax, IETF (RFC 5652),” https://tools.ietf.org/
html/rfc5652.

[45] T. Jager, S. A. Kakvi, and A. May, “On the Security of the PKCS#1 V1.5
Signature Scheme,” in Proc. of the ACM Conference on Computer &
Communications Security (CCS), 2018.

[46] P. Favre-Bulle, “Security Best Practices: Symmetric Encryption with AES
in Java and Android,” in ProAndroidDev (online), 2018.

[47] D. L. Wheeler, “zxcvbn: Low-Budget Password Strength Estimation,” in
Proc. of the USENIX Security Symposium, 2016.

1985



[48] P. A. Grassi, M. E. Garcia, and J. L. Fenton, “Digital Identity Guidelines,”
in NIST Special Publication 800-63-3, 2017.

[49] L. E. Bassham, “A Statistical Test Suite for Random and Pseudorandom
Number Generators for Cryptographic Applications,” in NIST Special
Publication 800-22, 2010.

[50] D. Boneh, A. Joux, and P. Q. Nguyen, “Why Textbook ElGamal and RSA
Encryption Are Insecure,” in Proc. of the International Conference on
the Theory and Applications of Cryptographic Techniques: Advances in
Cryptologyi (ASIACRYPT), 2000.

[51] D. Bleichenbacher, “Chosen Ciphertext Attacks Against Protocols Based
on the RSA Encryption Standard PKCS #1,” in Proc. of the International
Cryptology Conference on Advances in Cryptology (CRYPTO), 1998.

[52] S. Goldwasser and S. Micali, “Probabilistic Encryption & How to Play
Mental Poker Keeping Secret All Partial Information,” in Proc. of the ACM

Symposium on Theory of Computing (STOC), 1982.

[53] A. Lex, N. Gehlenborg, H. Strobelt, R. Vuillemot, and H. Pfister, “UpSet:
Visualization of Intersecting Sets,” IEEE Transactions on Visualization
and Computer Graphics (TVCG), 2014.

[54] J. R. Conway, A. Lex, and N. Gehlenborg, “UpSetR: an R Package for
the Visualization of Intersecting Sets and their Properties,” Bioinformatics,
2017.

[55] A. Pilgun, O. Gadyatskaya, S. Dashevskyi, Y. Zhauniarovich, and A. Kush-
niarou, “An Effective Android Code Coverage Tool,” in Proc. of the ACM
Conference on Computer & Communications Security (CCS), 2018.

[56] A. Tang, S. Sethumadhavan, and S. Stolfo, “CLKSCREW: Exposing the
Perils of Security-Oblivious Energy Management,” in Proc. of the USENIX
Security Symposium, 2017.

Package Class Function Logged Data

java.security MessageDigest byte[] digest (void) alg
int digest (byte[], int, int)

javax.crypto Cipher void init (int, Key, SecureRandom) alg, mode,
void init (int, Key, AlgorithmParameters, SecureRandom) pad, key,
void init (int, Key, AlgorithmParameterSpec, SecureRandom) iv
void init (int, Certificate, SecureRandom)

Cipher byte[] doFinal (void) out
int doFinal (byte[], int)
byte[] doFinal (byte[])
byte[] doFinal (byte[], int, int)
int doFinal (byte[], int, int, byte[])
int doFinal (byte[], int, int, byte[], int)
int doFinal (ByteBuffer, ByteBuffer)

java.security Signature void initVerify (PublicKey) alg, key
void initVerify (Certificate)
void initSign (PrivateKey)
void initSign (PrivateKey, SecureRandom)

javax.crypto.spec PBEKeySpec PBEKeySpec (char[]) pass, salt,
PBEKeySpec (char[], byte[], int) iter
PBEKeySpec (char[], byte[], int, int)

javax.crypto.spec PBEParameterSpec PBEParameterSpec (byte[], int) salt, iter
PBEParameterSpec (byte[], int, AlgorithmParameterSpec)

java.security SecureRandom SecureRandom (void) seed, out
SecureRandom (byte[])
void setSeed (byte[])

SecureRandom void nextBytes (byte[])
void setSeed (byte[])

java.util Random Random (void) constructor
Random int next (int) out

void nextBytes (byte[])
java.security KeyStore Key getKey (String, char[]) pass

void load (InputStream, char[])
void load (LoadStoreParameter)
void store (OutputStream, char[])
void store (LoadStoreParameter)

java.net URL URL (String, String, int, String) urlprotl
URL (URL, String, URLStreamHandler)

javax.net.ssl HttpsURLConnection void setHostnameVerifier (HostnameVerifier) allhost
void setDefaultHostnameVerifier (HostnameVerifier) sethost

javax.net.ssl SSLContext void init (KeyManger[], TrustManager[], SecureRandom) allcert
javax.net.ssl SocketFactory SocketFactory getDefault (void) sethost

TABLE III
Java functions that have been instrumented and the parameters that are logged as defined in Fig. 2.

1986



���

� �
�

��

��

 �

��
	

��

�
���
��
��
�

���

�
�

�

●

●

●

●●

●
�������
���

�������
���

�������
���

�
��
��

���

���

���

���������

��	
��
����
�����

�
�
�����

�������
��
�
�����

��

�"

"

�

��

��

��

��
	

��

�
���
��
��
�

���

�
�

�

●

●

●

●

●

●�������
���

�������
���

�������
���

�
��
��

"�

�"

��

����� �

��	
��
����
�����

�
�
�����

�������
��
�
�����

��

�
�

�

�

��

��

��

��
	

��

�
���
��
��
�

���

�
�

�

●

●

●

●

●

●�������
���

�������
���

�������
���

�
��
��

��

��

��

�������

��	
��
����
�����

�
�
����"

�������
��
�
�����

��

��
�

�

��

��

��
	

��

�
���
��
��
�

���

�
�

�

●

●

●

●

●

●�������
���

�������
���

�������
���

�
��
��

��

��

��

�������

��	
��
����
�����

�
�
���� 

�������
��
�
�����

�

�

�

�

�

��
	

��

�
���
��
��
�

���

�
�

�

●

●

●

�������
���

�������
���

�������
���

�
��
��

�

�

�

����

��	
��
����
�����

�
�
�����

�������
��
�
�����

��

�

�

�

�

 

��
	

��

�
���
��
��
�

���

�
�

�

●

●

●

●�������
���

�������
���

�������
���

�
��
��

��

��

��

������

��	
��
����
�����

�
�
�����

�������
��
�
�����

"

���

���

���

���

��
	

��

�
���
��
��
�

���

�
�

�

●

●

●

�������
���

�������
���

�������
���

�
��
��

"

"

"

����

��	
��
����
�����

�
�
�����

�������
��
�
�����

�

�

�

�

��
	

��

�
���
��
��
�

���

�
�

�

●

●

●

�������
���

�������
���

�������
���

�
��
��

�

�

�

����

��	
��
����
�����

�
�
�����

�������
��
�
�����

�

���

���

���

���

���

��
	

��

�
���
��
��
�

���

�
�

�

●

●

●

�������
���

�������
���

�������
���

�
��
��

�

�

�

����

��	
��
����
�����

�
�
�����

�������
��
�
�����

��

�

���

���

���

���

����

����

��
	

��

�
���
��
��
�

���

�
�

�

●

●

●

●

●
�������
���

�������
���

�������
���

�
��
��

��

��

��

������

��	
��
����
�����

�
�
�����

�������
��
�
�����

Fig. 9. Comparison of CRYLOGGER with 10k, 30k and 50k random stimuli on 150 Android apps. Each graph is an upset plot [53], [54]. The horizontal
bars indicate the number of apps flagged as vulnerable by CRYLOGGER with 10k, 30k and 50k stimuli; the vertical bars indicate the number of apps flagged
as vulnerable by a possible intersection of the approaches (the 3 largest, non-empty intersections are reported). For example, for R-08: 20 apps are considered
vulnerable by all the approaches, 4 apps are flagged as vulnerable by using 30k and 50k stimuli only, and 1 app is considered vulnerable by using 50k stimuli only.

1987



Listing 1. Basic

1 public class Test_X {
2 public static void main(String[] args) {
3 String algorithm = "AES/ECB/PKCS5PADDING";
4 Cipher c = Cipher.getInstance(algorithm);
5 }
6 }

Listing 3. Interprocedural

1 public class Test_X {
2 public static void main(String[] args) {
3 String algorithm = "AES/ECB/PKCS5PADDING";
4 method1(algorithm);
5 }
6 public static void method1(String algorithm) {
7 method2(algorithm);
8 }
9 public static void method2(String algorithm) {

10 Cipher c = Cipher.getInstance(algorithm);
11 }
12 }

Listing 5. Field Sensitive

1 public class Test_X {
2 String algorithm;
3 public Test_X(String alg) {
4 algorithm = alg;
5 }
6 public method(String alg) {
7 alg = algorithm;
8 Cipher c = Cipher.getInstance(alg);
9 }

10 public static void main(String[] args) {
11 Test_X x = new Test_X("AES/ECB/PKCS5PADDING");
12 x.method("AES/CBC/PKCS5PADDING");
13 }
14 }

Listing 7. Argument Sensitive

1 public class Test_X {
2 public static void main(String[] args) {
3 if (condition(args)) {
4 algorithm = "AES/CBC/PKCS5PADDING";
5 Cipher c = Cipher.getInstance(algorithm);
6 }
7 }
8 }

Listing 2. Miscellaneous

1 public class Test_X {
2 public static void main(String[] args) {
3 String alg = "AES/ECB/PKCS5PADDING";
4 // Use of a simple data structure
5 DataStructure data = new DataStructure(alg);
6 Cipher c = Cipher.getInstance(data.get());
7 }
8 }

1 public class Test_X {
2 public static void main(String[] args) {
3 String alg = "AES/ECB/PKCS5PADDING";
4 // Conversion to another type
5 Othertype type = ConvertOtherType(alg);
6 Cipher c = Cipher.getInstance(data.get());
7 }
8 }

Listing 4. Path Sensitive

1 public class Test_X {
2 public static void main(String[] args) {
3 int choice = 2;
4 String algorithm = "AES/ECB/PKCS5PADDING";
5 if (choice > 1)
6 algorithm = "AES/CBC/PKCS5PADDING";
7 Cipher c = Cipher.getInstance(algorithm);
8 }
9 }

Listing 6. Multiple Classes

1 public class Test_X {
2 public static void main(String[] args) {
3 method1("AES/ECB/PKCS5PADDING");
4 }
5 public static void method1(String algorithm) {
6 Test_Y y = new Test_Y();
7 y.method(algorithm);
8 }
9 }

10 public class Test_X {
11 public void method2(String algorithm) {
12 Cipher c = Cipher.getInstance(algorithm);
13 }
14 }

Fig. 10. The types of benchmarks that are present in the CryptoAPI-Bench [26]. We highlighted our modifications to make the benchmarks executable (Section VIII).
The first 6 types of benchmarks (basic, miscellaneous, interprocedural, path sensitive, field sensitive, multiple classes) were originally proposed in [26]. We added
argument-sensitive tests so that the CryptoAPI-Bench can be used to evaluate dynamic approaches.

1 package com.google.api.client.testing.http;
2 class HttpTesting {
3 static String SIMPLE_URL = "http://google.com"
4 public HttpTesting() {
5 GenericUrl url = new GenericUrl(SIMPLE_URL);
6 } ...

1 package com.adjust.sdk;
2 class AdjustFactory {
3 public static void useTestConnectionOptions() {
4 con.setHostnameVerifier(new HostnameVerifier() {
5 public boolean verify(String h, SSLSession s)
6 { return true; } ...

Fig. 11. Examples of false positives for rules R-22 and R-24 for CryptoGuard [6].

1988



(a) Original CryptoAPI-Bench [26] (b) Modified CryptoAPI-Bench (c) New Tests

CryptoGuard [6] CRYLOGGER

Rule ID TP TN FP FN TP TN FN

R-01 24 1 4 0 24 5 0
R-02 30 1 5 0 30 6 0
R-03 6 1 1 0 6 2 0
R-05 5 2 1 2 7 3 0
R-07 8 1 1 0 8 2 0
R-10 7 1 1 0 7 2 0
R-13 5 1 1 2 7 2 0
R-16 7 2 1 1 8 3 0
R-17 13 1 2 1 14 3 0
R-18 1 1 0 0 1 1 0
R-19 4 0 1 1 5 1 0
R-22 6 2 1 0 6 3 0
R-23 7 2 1 0 7 3 0
R-24 1 1 0 0 1 1 0
R-25 3 0 0 0 3 0 0
R-26 4 0 0 0 4 0 0

Total 131 17 20 7 138 37 0

CryptoGuard [6] CRYLOGGER

Rule ID TP TN FP FN TP TN FN

R-01 28 1 4 0 24 5 4
R-02 35 1 5 0 30 6 5
R-03 7 1 5 0 6 6 1
R-05 6 2 1 2 7 3 1
R-07 9 1 1 0 8 2 1
R-10 8 1 1 0 7 2 1
R-13 6 1 1 2 7 2 1
R-16 8 2 1 1 8 3 1
R-17 14 1 2 1 14 3 1
R-18 1 1 0 0 1 1 0
R-19 5 0 1 1 5 1 1
R-22 7 2 1 0 6 3 1
R-23 8 2 1 0 7 3 1
R-24 1 1 0 0 1 1 0
R-25 3 0 0 0 3 0 0
R-26 4 0 0 0 4 0 0

Total 150 17 24 7 138 41 19

CRYLOGGER

Rule ID TP TN FN

R-04 4 2 1
R-06 6 2 1
R-08 6 2 1
R-09 6 2 1
R-11 7 2 1
R-12 1 1 1
R-14 7 2 1
R-15 7 2 1
R-20 5 1 1
R-21 5 1 1

Total 54 17 10

Fig. 12. Results for the CryptoAPI-Bench [26]. (a) Comparison of CryptoGuard [6] and CRYLOGGER on the original CryptoAPI-Bench. In this case, we made the
benchmarks executable with a dynamic tool by adding a main to all benchmarks. (b) Comparison of CryptoGuard and CRYLOGGER on our modified version of
the CryptoAPI-Bench. We added tests cases to (i) highlight the problem of false positives (Section IX) and (ii) show the limitations of dynamic approaches in
activating paths that are rarely executed. (c) Benchmarks that we added for the rules supported only by CRYLOGGER on the modified CryptoAPI-Bench.

1989


		2022-08-24T22:56:43-0400
	Preflight Ticket Signature




