
Reading Between the Lines:
An Extensive Evaluation of the Security and Privacy Implications

of EPUB Reading Systems

Gertjan Franken
imec-DistriNet, KU Leuven

3001 Leuven, Belgium

Tom Van Goethem
imec-DistriNet, KU Leuven

3001 Leuven, Belgium

Wouter Joosen
imec-DistriNet, KU Leuven

3001 Leuven, Belgium

Abstract—In recent years, e-books have proven to be a very
appealing alternative to physical books; nowadays, almost every
written book is published in an electronic format next to its
physical copy. In an attempt to promote consensus and to offer
an alternative to emerging proprietary e-book formats, the Open
eBook format was introduced, now known as the EPUB format.
Building on existing web functionalities, this open format relies
primarily on XHTML and CSS to construct e-books. As such,
browser engines are often employed to render the contents of
EPUBs. However, this implies that reading systems may face
similar vulnerabilities as web browsers.

In this paper, we report on a semi-automated evaluation
of the security and privacy aspects of EPUB reading systems.
This evaluation, which was performed on 97 EPUB reading
systems covering seven platforms and five physical reading
devices, revealed that almost none of the JavaScript-supporting
reading systems sufficiently adhere to the EPUB specification’s
security recommendations. Furthermore, our results indicate that
16 reading systems even allow an EPUB to leak information about
the user’s file system, and in eight cases extract file contents. In
addition to the semi-automated evaluation, we demonstrate that
an attacker can launch even more potent attacks that may lead
to a full compromise of a user’s system, by exploiting aspects
specific to the implementation of reading systems used by millions
of users. Finally, we investigate the root cause of the identified
security and privacy issues, uncovering several flaws in both the
implementation of EPUB reading system, as well as shortcomings
of the EPUB specification.

I. INTRODUCTION

In the last decade, digital books have gained significantly
in popularity, and experts argue they are here to stay [52],
[62]. Today, almost every newly published book or magazine
is made available in a digital format, in addition to their
physical copy. EPUB e-book creation is considered fairly
straightforward, which combined with the possibility to publish
without any vendor interposition, explains in particular its
popularity among self-publishing authors and within open
license communities such as Project Gutenberg1. EPUBs
primarily consist of XHTML documents and CSS stylesheets,
bearing close resemblance to web pages. Consequently, browser
engines are often employed by reading systems to render
EPUB content. Next to static content, the EPUB standard
also allows for media such as audio or video, and dynamic
content leveraging JavaScript.

Because EPUB reading systems are closely related to web
browsers, they are prone to similar security and privacy

1https://www.gutenberg.org/

issues. A malicious EPUB could leverage the reading system’s
capabilities to mount attacks against the user, much like the
dynamics between a malicious website and a browser. For
instance, since the introduction of EPUB3, several blogs and
articles have voiced concern about the capabilities associated
with supporting JavaScript in EPUB reading systems [18],
[19], [30], [35], [48]. The EPUB specification acknowledges
these concerns by dedicating one of its sections to security
recommendations for EPUB reading system developers [2].
However, these recommendations are very lenient and lack
strict enforcement.

The EPUB specification defines a large number of (optional)
capabilities, several of which are questionable from a security
perspective, such as access to the local filesystem, especially
when considered in combination with access to remote end-
points. Consequently, since most EPUB reading systems are not
well-documented, this makes it difficult for the user to assess
what privileges the reading system provides to an opened EPUB.
Moreover, there is no indication whether a reading system is
compliant to the EPUB specification, nor are we aware of any
study evaluating their capabilities and compliance.

In this paper, we present the first extensive evaluation of
EPUB reading systems, addressing their capabilities, com-
pliance to the EPUB specification, and security and privacy
implications. To this end, we crafted an extensive testbed that
covers a wide range of the threat surface, consisting of EPUBs
which are loaded in EPUB reading systems to perform a semi-
automated evaluation. As soon as such an EPUB is opened
by a reading system, the embedded experiments are executed,
after which the resulting data is rendered or sent to a server.
This way, we evaluated 97 of the most popular EPUB reading
systems, covering seven different platforms and five physical
e-reader devices. Our evaluation uncovered that almost all
reading systems that execute embedded JavaScript do not fully
respect the specification’s security recommendations, of which
16 can be abused by malicious EPUBs to leak information
about the local filesystem. We reached out to all vendors in
order to report the identified issues.

Moreover, to complement our semi-automated evaluation, we
manually inspected three widely used EPUB reading systems
for implementational flaws, revealing several severe security
vulnerabilities. We discovered a universal XSS affecting two
browser extensions (≈300,000 browser installations), and the
ability to leak documents residing in the user’s library as soon

1730

2021 IEEE Symposium on Security and Privacy (SP)

© 2021, Gertjan Franken. Under license to IEEE.
DOI 10.1109/SP40001.2021.00015

20
21

 IE
EE

 S
ym

po
si

um
 o

n
Se

cu
rit

y
an

d
Pr

iv
ac

y
(S

P)
 |

97
8-

1-
72

81
-8

93
4-

5/
21

/$
31

.0
0

©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
SP

40
00

1.
20

21
.0

00
15

as a malicious e-book is opened on a Kindle (the most widely
used physical e-reader [27]). These findings indicate that the
results of our semi-automated evaluation should be considered
as a lower bound, and that in fact EPUB reading systems
may face even more security issues that are implementation-
specific. We argue that by limiting the capabilities of the reader
application and the employed rendering engine to a minimum,
the threat surface can be significantly reduced. For instance,
iOS reading systems can only access files within the application
by design, and thus none could be abused to leak sensitive files.
Furthermore, we explored the presence of real-world abuse by
analyzing more than 9,000 EPUBs obtained from five online
e-book stores and two file-sharing platforms. We did not find
any evidence of ongoing abuse, allowing EPUB reading system
developers to adopt adequate security measures before users
are actively being exploited. Finally, we show that four out of
six evaluated self-publishing EPUB services do not adequately
vet submitted manuscripts, which could lead to the distribution
of malicious EPUBs through legitimate channels.

We make the following contributions:
• We developed a testbed of numerous EPUBs to assess the

security and privacy impact of various aspects of EPUB
reading systems and the rendering engine they employ.

• By applying this testbed in a semi-automated analysis, we
evaluated a total of 97 EPUB reading systems, of which 92
were freely available as applications on desktop (Windows,
macOS and Ubuntu) and mobile (iOS and Android), or as
a browser extension (Chrome and Firefox), and of which
five were physical e-reader devices.

• The result of this analysis shows that many reading
applications can be abused, either by leaking file contents,
or by violating the user’s privacy expectations.

• To explore both ongoing and potential abuse in the EPUB
ecosystem, we downloaded over 9,000 EPUBs from two
torrent sites and five online e-book stores, and assessed
the vetting process of six popular self-publishing services.

• Lastly, based on the identified issues and their root
cause, we propose to make the EPUB specification more
strict. Moreover, to encourage consumers and developers
to measure the security and privacy impact of their
reading systems, we have released the EPUBs used in our
evaluation along with the source code to craft them.

II. BACKGROUND

In May 2019, W3C issued EPUB 3.2, the most recent
version of the EPUB standard at the time of writing [1]. In the
remainder of this paper, we refer to this particular version when
discussing the EPUB standard, unless specified otherwise.

A. EPUB Technical Standard

The EPUB standard consists of five sub-specifications, each
defining complementary core features and functionality. For
reasons of brevity, we will not describe each sub-specification,
instead we will discuss the standard as a whole.

The EPUB format and the internal structure of a compliant
EPUB file, or a so-called EPUB Container, are visualized

EPUB Container

EPUB Publication

EPUB Renditions

Navigation Document

Package Document

Publication Resources

Fig. 1. On the left a visual representation of the EPUB format, and on the
right the internal file structure of a compliant EPUB archive.

in Figure 1. An EPUB is a single-file container with the
.epub extension, of which the included content is com-
pressed in a ZIP archive. The mimetype file indicates
the EPUB Open Container format (OCF) media-type, with
application/epub+zip as the two-part identifier [17].

An EPUB Publication, included in the Container, must
consist of at least one Rendition, the specific rendering
of the EPUB’s content. A Rendition is represented by an
EPUB Package, which consists of the Package Document
(package.opf), the Navigation Document and all Publi-
cation Resources used to build the Rendition. The Package
Document conveys various types of information such as the
title and authors of the EPUB Publication. Moreover, it also
defines the sequence in which the Content Documents are
rendered, called the spine.

Publication Resources characterize the actual content and
layout of the EPUB Rendition. The standard makes a distinction
between Core Media Type Resources and Foreign Resources.
The former are resources of media types that are deemed
supported by all Reading Systems. This set of media types
consists of Content Documents (XHTML or SVG media type
files), CSS stylesheets, and various image and audio formats.
The latter are resources of which support is not mandatory and
therefore require fallback mechanisms to Core Media Type
Resources, in case the Reading System does not offer support.

The Package Document is also used to assign special
properties to particular Content Documents. An interesting
example is the scripted property, which indicates that the
referred Content Document contains executable JavaScript.
EPUB Containers are allowed to contain such Scripted Content
Documents, however, EPUB Reading Systems are not obligated
to support script execution. As such, the EPUB standard
states that Scripted Content Documents should retain their
integrity when scripting support is disabled, without any loss
of information or legibility.

B. EPUB Reading Systems

EPUB Reading Systems are applications that interpret
and render EPUB files according to the EPUB specification.
They come pre-installed on physical e-book reading devices
(e.g. e-ink readers), but are also available on smartphones,

1731

tablets, desktop computers, and even in the form of browser
extensions. Nearly all applications are free (some with in-app
advertisements) and often provide support for various other
e-book formats.

The EPUB specification dictates the minimal requirements
that should be met by an EPUB Reading System. These
requirements are mostly related to rendering and presenting the
content that is the EPUB Publication. Only a few paragraphs
of the standard are dedicated to security considerations, with
special attention to providing support for scripting [2]. Here,
Reading System developers are provided with several attack
vectors that should be considered, and with recommendations
on how to deal with security-related issues concerning scripted
content execution.

One of the recommendations states that the Reading System
should behave as if a unique domain were allocated to each
Content Document, consequently isolating documents from
each other. This isolation is enforced by the Same-Origin
Policy, which dictates that one origin cannot access resources
from another. Reading Systems that allow scripting and network
access should also notify the user whether any network activity
is occurring, and ideally provide functionality for the user to
disable it.

According to its specification, EPUB Reading Systems may
allow an EPUB to store persistent data (e.g. LocalStorage). This
data is recommended to be considered sensitive, and therefore
this data should not be accessible by other documents.

C. Same-Origin Policy

Modern browsers employ a wide range of policies to
protect users against malicious websites, among which the
highly essential Same-Origin Policy (SOP) [46]. This policy in
particular is used to isolate documents and scripts located on
different origins, to prevent one website to perform undesirable
actions on, or steal sensitive user information from another
website. Two URLs share the same origin if their scheme,
host and port are identical. For example, when the origin
https://attacker.com tries to extract information from
https://bank.com, this would be prevented by the SOP.
Not only documents and scripts are protected by the SOP,
but also any information stored by the LocalStorage API [33].
Although cookies are not subjected to the SOP, they can only
be accessed by associated domains. As an extension to the
SOP, websites cannot instruct the browser to render or access
files located on the user’s file system. For example, when a
website leverages an iframe to render a file by referring to
file:///etc/passwd or employs the XMLHttpRequest
or Fetch API to access its content, the browser will refuse.

III. MOTIVATION

While e-books have grown to be a multi-billion dollar
industry [52], [62] and countless EPUB reading systems are
available on essentially every platform, the reading system
ecosystem has never been subjected to a comprehensive security
or privacy assessment. In the following subsections, we argue
why such an assessment is imperative.

A. Intransparency

Most EPUB reading systems rely on browser engines to
render e-book content. Over the last few years, there has
been an extensive growth in the number of features that these
browser engines support, significantly increasing their threat
surface [57]. Scripting in e-books, which was already suggested
as an optional functionality in the 1999 OEBPS specification,
could be used to launch a variety of attacks to circumvent the
same-origin policy, or even to attack the underlying operating
system. As such, opening an e-book could introduce the user
to a plethora of attacks, which have not been extensively
explored to this date. In face of these threats, the more recent
editions of the EPUB standard now include a section on security
considerations for EPUB reading system developers.

However, we argue that these considerations lack binding
requirements and are insufficiently concrete. In that regard,
even if an EPUB reading system is compliant with the official
specification, users do not have any guarantee that their security
and privacy will be safeguarded. For instance, a compliant
reading system might allow an EPUB to freely access the user’s
file system and send a copy of it to a remote server. Moreover,
countless curated lists only recommend reading systems based
on usability features and supported e-book formats, making it
nearly impossible for users to verify whether an application is
sufficiently secure.

We argue that the more features are being added to the speci-
fication, the more it will cripple the transparency of security and
privacy factors in EPUB reading systems as long as no clear
compulsory considerations are included. However, even when
these are included, still, there is no straightforward way to verify
compliance of a reading system. This uncertainty is one of the
reasons why we deem a comprehensive evaluation of EPUB
reading systems imperative. We aim to improve this much-
needed transparency by evaluating the most popular EPUB
reading systems, leveraging a semi-automated analysis. In the
following subsections, we discuss two attacker models which
aim to abuse EPUB reading system capabilities, impacting the
user’s security and privacy.

B. Malicious EPUBs

Nowadays, tens of thousands of EPUBs are made available
online for free, either legally or illegally. Whereas EPUB
submissions to the Gutenberg Project are subjected to exami-
nation by volunteers [53], various other channels omit third-
party validation and share the EPUB as-is (e.g. torrent sites,
social media). A study of the UK government’s Intellectual
Property Office finds that approximately 17% of e-books are
illegally consumed online, accounting for around four million
e-books [34]. As such, users may face various threats when
accessing an e-book obtained either from a publisher who does
not sufficiently sanitize or verify the published books, from a
malicious website directly, or from a file-sharing platform.

The attacker could configure the EPUB such that upon
opening, a malicious JavaScript payload is executed. Depending
on the capabilities and vulnerabilities of the reading system, the
attacker could try to either extract sensitive system files, such

1732

as the browser’s cookie store, and then send the contents of
these files to an online web server. Furthermore, if the browser
engine used by the reading system is outdated, it might contain
publicly known vulnerabilities that can then be exploited by
the malicious e-book in order to compromise the system.

In an explorative experiment using Chrome and Firefox,
we assessed whether a website could automatically cause a
malicious EPUB to be loaded in an installed reading system. In
both browsers (on desktop and mobile), this requires at least one
user interaction. Although a website can instruct the browser to
download an EPUB (e.g. clicking a URL through JavaScript),
still one user click is required to actually open it. However, an
EPUB reading system installed as a browser extension could
intercept the download and automatically render the EPUB.

C. Tracking EPUBs

E-books in a proprietary format are usually distributed
through the associated vendor’s online bookstore, which is
often embedded within the vendor’s own reading system (e.g.
physical e-reader devices or applications). Leveraging their own
proprietary formats and reading systems, vendors are known
to harvest user data based on interactions with their reading
system [5], [31], [36].

Although EPUB is an open format and not affiliated to any
specific vendor, distributors of EPUBs might still be able to
track users. To supplement their recommendation system, the
distributor might try to figure what other books make up the
user’s library. This can be accomplished if the user’s reading
system allows EPUBs to render local files located within the
directory where the unpacked EPUBs are stored. Then, to scan
the contents of the library, each distributed EPUB could include
a list of popular EPUBs, and code to test their presence on the
system. Even when the targeted EPUB reading system does not
allow rendering local files, timing attacks can prove as a suitable
alternative. The distributor could be even more intrusive by
scanning for other information, such as installed applications
and browsing history, in the same way. Moreover, a tracking-
enabled EPUB might try to associate the user with an online
browsing session, e.g. by fingerprinting the installed fonts. The
EPUB might even try to obtain an even more intrusive device
fingerprint, e.g. by detecting the presence of specific files on
the system, which in most cases can also reveal the username.

IV. METHODOLOGY

To evaluate the potential threats posed by opening an EPUB
file, we conduct a series of experiments. In this section we
describe our experimental setup through which we test a wide
variety of EPUB reading systems for different primitives that
could be used to launch attacks.

A. Experimental design

Our experiments aim to document the capabilities entrusted
to EPUBs by the reading systems, and to detect related security
and privacy issues. Because most reading systems are closed-
source, we opt for a black-box approach, developing a testbed
of various EPUBs which, upon loading, instruct the EPUB

Fig. 2. Overview of our experimental design. The various EPUB files that
make up our testbed are manually loaded in the tested reading system. If
remote communication is available, the results are automatically submitted
to a web server, which will store it in the database. Alternatively, these are
manually copied from the e-book.

reading system to run embedded experiments. Because of the
high variety of reading systems, both in terms of the platform
they are run on as well as the functionality they provide
and their user-interface, we deemed it infeasible to perform
a fully automated evaluation while maintaining completeness.
Instead, we opted for a semi-automated approach, where we
use JavaScript code to render the results of our experiments in
the reader, or, if possible, send these to a remote web server.
As such, the manual effort is limited to copying this output
from the EPUB reader into a file that can be further evaluated
by our analysis framework. An overview of our experimental
design can be found in Figure 2.

Supported by this setup, we aim to evaluate the presence
of certain “primitives” that are required to launch attacks. For
instance, in order to leak the contents of a file on the local file
system, an attacker requires the ability to render content from
local files, execute JavaScript code, and finally send remote
requests. For every primitive functionality, our testbed uses a
separate EPUB file that tests its presence. The reason for this
is that EPUB reading systems label certain EPUBs as corrupt
when these try to execute unsupported functionality. Several
experiments rely on specific functionality such as JavaScript
execution; when this functionality is not present, the associated
experiments can be omitted. The decision on which experiment
to perform next is each time imposed by our testbed protocol.

We used the official EPUB Validation Tool [59] provided
by W3C to validate conformance with the standard. To accom-
modate all EPUB reading systems, the embedded JavaScript
uses ECMAScript 5 functionality because the more recent
ECMAScript 6 is not widely supported among reading systems.
We have publicly released all code required to construct this
testbed of EPUBs.2

In the rest of this section we discuss all features that were
evaluated, an overview is depicted in Figure 3.

1) JavaScript execution: Because most reading systems do
not disclose whether JavaScript is supported, which is indeed
an optional feature in the EPUB specification, this information

2https://github.com/DistriNet/evil-epubs

1733

Inline JS

External JS

Remote JS

JavaScript
support

yes

yes

JS
support?

yes

Render
local file?

XHR Fetch

JS request
APIs

iframe file:// img file:// font-familiy
file://

DOM local
file access

Content
extraction

iframe
contentWindow

canvas
toDataURL

Leak
local files?

Remote
comm.?

DOM elements

<video> <audio>

cookieslocalStorage

Storage mechanisms

Persistent
storage?

Feature
access

MediaDevicesAPI Background
activity?

URI schemes

Can access
media dev?

Protocol
handlers?

<a href> click()

...

Browser
engine?

Fig. 3. Overview of the different EPUB experiments. In order to assess certain
features (red) of the reading system, we used several experiments (rectangular),
both with (yellow) and without (white) JavaScript; these experiments are
grouped by category (blue).

needs to be obtained empirically. JavaScript support might
be an important trait to the user, e.g. to support interactive
EPUBs, but even more so to a potential attacker, considering
the substantially increased threat surface. That is, through
JavaScript a multitude of different APIs become available,
which could be used to request local or remote resources, or
even access user media devices (MediaDevices API [45]).

We test three different ways of how JavaScript can be
included in an EPUB: (i) directly embedding code with a
<script> tag in an XHTML file (inline), (ii) reference a
separate JavaScript file within the EPUB by setting the src
attribute of <script> tags (external), and (iii) reference a
JavaScript file hosted on an external web server (remote). All
three approaches were evaluated by dynamically changing the
content of a visible HTML element through inline, external or
remote JavaScript code. When the content of such an element
assumed the dynamically assigned value over the original value,
we could safely assume that JavaScript was executed.

2) Local file system access: The EPUB specification allows
reading systems to support references to certain types of
resources on the local file system, explicitly mentioning audio,
video and fonts, but also any resource retrievable by a script [1].
JavaScript-supporting reading systems that implement this
optional feature may implicitly grant every EPUB the ability to
retrieve files from the user’s operating system. Even when the
SOP is enforced to prevent content leaking, as is recommended
by the specification [2], a malicious EPUB might still be able
to gather sensitive information such as the presence of certain
files, or even the user’s account name.

For this evaluation, we performed three sets of experiments
in which the EPUB attempts to access five types of resources:

textual files (.html, .txt, .log, .bogus), images (.png, .jpg), audio
(.mp3), video (.mp4) and fonts (.ttf). In an attempt to bypass
the potentially restrictive direct access to the local file system,
we do not only refer to the resource through its absolute
path (file:// protocol), but also leverage relative symbolic
links. For UNIX systems, we were able to enclose correctly
functioning symbolic links pointing to a file and folder in
the ZIP file, which is essential for embedding them in an
EPUB. We did not find a way to reproduce this on Windows.
These experiments were considered successful only when the
obtained information could be leaked to a remote server (see
Experiment IV-A3).

In the first set of experiments, the EPUB attempts to render
the local user files by simply including them by means of an
iframe, img, audio or video element, or by assigning a
CSS font-family to include a font. When such a resource
is rendered, it is trivial to confirm its existence on the local file
system. For iframes and images, an observable load event is
fired when the subresource was successfully loaded. Similarly,
on audio and video elements the canplaythrough event
is fired. Although no such event exists for fonts, existence of
font files can be inferred by leveraging canvas elements to
check whether the referred font has been applied to a text box.

The second set of experiments aims to determine whether
the content of local resources can be accessed through the
XMLHttpRequest and Fetch API [43], [47] or by leveraging
content-specific methods. For textual resources, the EPUB tries
to access the rendered content within an iframe through its
contentWindow attribute. Images, on the other hand, can
be encoded in the base64 format through the toDataURL
functionality of the canvas element. However, when reading
systems use a unique domain to host the EPUB’s content, as
is recommended by the specification [2], the SOP disallows
access to the content of the referred resource. Again, here
we can leverage symbolic linking to make it appear as if the
referred content is hosted on the same domain.

Well-secured EPUB reading systems will prevent the EPUB
from rendering local files and leaking their content, however,
we might still be able to leak the existence of a particular
file by leveraging timing attacks. This was evaluated in an
additional experiment, by measuring the time between setting
the src attribute of an image element and the firing of the
onerror event, for both a URL of an existing file and a
non-existing file. In every experiment, this measurement was
performed 20,000 times, alternating the sequence order of the
existing and non-existing file to reduce potential noise. When
in a significant portion of these cases the measured time was
larger for the existing file than for the non-existing file, or vice-
versa, we consider a timing attack to be viable. For all such
labeled reading systems, this calculated accuracy was at least
95%, except for two reading systems where we measured an
accuracy of about 75%. However, in all cases the accuracy can
be increased by performing multiple measurements. On MacOS
and Linux, we used a filesystem in user space (FUSE) [50] in
advance to determine whether the local filesystem is accessed
in an attempt to read out the file.

1734

3) Remote communication: Similar to the local resource
access discussed in the previous section, the EPUB specifica-
tion allows reading systems to support references to online
resources for certain resource types [1], implying that remote
communication with a server is possible. However, the standard
also acknowledges the security implications produced by this
trait and advises reading system developers to explicitly notify
users of network traffic, and ideally, even request user consent
in advance [2]. Indeed, this capability is essential for relaying
sensitive information to a tracker, or for receiving instructions
from an attacker.

In this experiment, we investigate whether an EPUB is
able to communicate with remote servers while it is opened
by the reading system, and whether the user is notified of
the occurring network traffic. Various HTML tags can be
used to initiate HTTP requests, and in an attempt to be
exhaustive we leveraged the comprehensive collection on the
HTTPLeaks GitHub repository [25], in combination with the
XMLHttpRequest and Fetch API [43], [47]. When any of these
requests reaches the remote server, we label the EPUB reading
system as supporting remote communication. As we manually
load the crafted EPUBs in the readers, we also take note of
any request for consent that was presented to the user.

4) Persistent storage: In modern browsers, websites have
access to various mechanisms to store data locally, such as
cookies and the LocalStorage API [33]. Again, EPUB reading
systems might inherit this functionality to provide storage
capabilities to EPUBs. The EPUB specification rightfully
recommends reading system developers to treat all stored data
as sensitive, preventing other documents from accessing.

In these experiments, we first determine whether the EPUB
reading system supports persistent storage through one of the
two mechanisms. Since reading systems might merely provide
the API, neglecting the persistence trait, we evaluate whether
the stored information persists after closing the EPUB reading
system. To adequately validate inter-session persistence, we
start an initial session by opening the crafted EPUB. After
rendering is complete, we close the reading system, thereby
ending the first session. Finally, by reopening the same EPUB
file and starting a second session, we inquire whether any
cookies or LocalStorage entries have remained.

In an additional experiment, we check compliance with the
recommendation to isolate this data from other documents. For
this, we use different EPUBs in subsequent sessions, validating
whether a modification by the first EPUB is detectable by the
second.

5) Feature access: Modern browsers allow websites to
request access to features, such as the user’s geolocation,
microphone and webcam [20], [51]. When such access is
requested, the browser will ask the user for consent to allow
the website to access the indicated resource. We did not find
any occurrence of these mechanisms in the EPUB specification,
however, since most EPUB reading systems rely on browser
engines, it is possible that this functionality is inherited.
Because access to these media devices could allow an EPUB to
record the user’s surroundings or determine the user’s location,

it proves a tempting target for a potential attacker.
In this experiment, we evaluate whether the GeoLocation

and MediaDevices API are made available in EPUB reading
systems, and if so, whether user consent is required.

6) URI schemes: On the Internet, resources are referenced
through Uniform Resource Identifiers (URI), of which most
rely on the http: or https: protocol. However, by using
custom URI schemes, websites can also instruct the browser to
open applications upon activation of the URI (e.g. by clicking a
hyperlink), even passing on arguments in the URI. For instance,
the mailto: scheme is often employed to refer to an e-mail
address, and when activated, will open the operating system’s
default mail application [29]. Whereas the mailto: scheme
is one of the official URI schemes issued by the Internet
Assigned Numbers Authority (IANA) [16], there are also many
non-registered schemes used in practice.

To prevent misuse, modern browsers generally request
confirmation from the user to initiate another application. This
precaution is considered critical as URI links can be activated
without any user interaction, e.g. through the click()
function in JavaScript. Depending on the security considerations
of a referred application, leveraging the arguments of such an
activation could initiate a phone call, send a mail or download
a file, facilitating various attacks by respectively exposing a
user’s phone number or e-mail address, or downloading a
malicious payload.

In this experiment, we investigate whether EPUB reading
systems support initiation of applications through URI schemes,
and if so, whether the reader requested permission from the
user for this action.

7) Browser engine evaluation: Considering that browser
engines require regular patching to fix security bugs, disclosed
vulnerabilities could be abused to target reading systems with
an outdated browser engine.

In this experiment, we explore browser engine use in
EPUB reading systems by evaluating whether the embedded
browser engine is outdated and insecure. While at first sight
consulting the user-agent string poses a straightforward solution,
this information might not correctly represent the underlying
browser engine. For instance, reading systems could have
modified it, and WebKit has stopped updating the user-agent
string altogether [61]. Therefore, we identify the embedded
browser engine version by fingerprinting browser engines based
on supported features, leveraging MDN’s browser compatibility
dataset [44]. Such a fingerprint is constructed by evaluating
support for each HTML element, attribute and JavaScript API
present in the MDN dataset. This way, we collected almost 100
distinct fingerprints from applications whose embedded browser
engine is known, and subsequently used those to determine the
embedded browser engine of the reading systems. A browser
engine is marked insecure if its age has surpassed at least three
years, and if any vulnerabilities are publicly disclosed.

8) Background activity: To facilitate multi-tasking, mobile
applications retain operation for a short time after focus is lost
(e.g. when the user switches to another app), depending on the
application’s configuration. However, to improve battery life

1735

TABLE I
EVALUATION RESULTS FOR EPUB READING SYSTEMS ON WINDOWS.

Application JavaScript Local Resources Remote
communication

Persistent storage Features URI handles Insecure
engineLocal Remote Existence Render Leak Cookies LocalStorage

Adobe Digital Editions (4.5.10) 2 2 ‡ - # - # #
Bibliovore (2.0.2.0) # # - - - # # # - # -
BookReader (1.6.0.0) # # - - - # # # - # -
Bookviser Reader (6.8.1.0) # # - - - # # # - # -
Calibre (3.40.1) 6 2 o q n 4 5 0 6 2 o q 4 0 - # # -

(4.3.0)∗ # - - - # # - #§ #
CoolReader (n/a) # # - - - # # # - # -
EPUB File Reader (1.5) 6 2 o 4 5 6 2 o 4 5 6 2 o # # - # #
FBReader (0.12.10) # # - - - # # # - # -
Freda (4.21) # # - - - # # # - # -
Icecream Ebook Reader (5.19)∗ # 6 2 o q 0 6 2 o q 0 6 2 o q # # - #
Liberty (1.0.0.13) # # - - - # # - # -
MS Edge (44.17763.1.0) 4 5 4 5 - # # - † #
Nook (1.10.1.15) # # - - - # # # - # -
Overdrive (3.8.0) # # - - - # # - # -
SumatraPDF (3.1.2) # # - - - # # # - # -

6: .html file 2: .png/.jpg file o: .txt file q: .log file n: .bogus file 4: .mp3 file 5: .mp4 file 0: .ttf
∗ Only executes inline JavaScript.
† Requires user consent.
‡ Additionally renders textual files (.html, .txt), images (.png, .jpg), audio and video residing on a connected network share.
§ Allows EPUB to open URL in default browser.

and memory consumption, mobile platforms impose restrictions
on background tasks. We did not find any official documentation
on how much time an application is allowed to run in the
background on iOS, yet an Apple staff member has stated on
the official Apple Developer Forums that this is around three
minutes after losing focus [10]. Similarly for Android, this
exact time limit is undocumented, but is said to be around ten
minutes before the application is forced into idle mode [7].

Likewise, EPUB reading systems can invoke this function-
ality to remain running when switched to the background,
increasing the time window of a potential attack. By embedding
a counter inside the EPUB, we can detect whether a switch to
the background paused the embedded JavaScript execution.

B. Evaluated EPUB reading systems

This testbed was used to evaluate a set of 92 free EPUB
reading systems, available for desktop platforms (Windows 10,
macOS 10.14.6 and Linux Ubuntu 18.04), mobile platforms
(iOS 12 and Android 9) or as browser extensions (Chrome
78 and Firefox 70). We used the iOS App Store, Google
Play Store, Chrome Web Store and Firefox Add-on Store
for selecting and installing reading systems on iOS, Android,
Chrome and Firefox. The selection was based on the store’s
search functionality, using the terms “epub reader” and “ebook
reader”, scanning the first 100 results each time. For Android,
we limited our selection to applications that were downloaded
by at least 5.000 users. For the desktop platforms, we used a
web search engine to make up the selection of EPUB reading
systems, also leveraging curated lists. Here, we installed all
encountered applications by downloading them from a website
or installing them using the respective application store of
the platform. By converting the evaluation EPUBs to AZW
e-books, we also evaluated Kindle applications if available on
the platform. For a complete overview of all evaluated EPUB
reading systems, we refer to Appendix A.

Additionally, we evaluated the five most popular physical
e-reader devices (Kindle Paperwhite 4, PocketBook Touch HD
3, Kobo Clara HD, Onyx Nova Pro, Tolino Shine 3). Their
pre-installed EPUB rendering applications were tested out-of-
the-box.

V. RESULTS

This section will cover the results obtained by performing the
semi-automated evaluation described in the previous section.
Some reading systems were not able to render a perfectly
compliant EPUB 3.2 e-book and were therefore excluded from
our evaluation (see Appendix A).

A. Desktop

For desktop-based reading systems, experiments were run
on Windows 10 (17763), macOS (10.14.6) and Ubuntu (18.04).

1) Windows: Table I shows the results of our evaluation on
the Windows platform, which consisted of 15 reading systems.
Of these reading systems, five execute embedded JavaScript,
which can be escalated to leak at least the existence of certain
files, and two of them can even be abused to leak file contents.
Calibre 3 and MS Edge grant EPUBs the ability to open third-
party applications installed on the user’s operating system.
Interestingly, only the latter asks for the user’s consent.

Interestingly, Adobe Digital Editions’s rendering behavior
differs between files residing on the local file system and files
residing on a network share. Although the means of access
are identical; through an absolute file path, it only allows
an EPUB to render images located on the former, whereas
textual files (.html and .txt), images, audio and video can
be rendered if located on the latter. This can be exploited
to enumerate both local files and files residing on a network
share. This vulnerability was assigned CVE-2020-3798, and
has been resolved since Adobe’s 4.5.11.187303 release of the
application [3].

Our tests identified WebKit 538.1 as the underlying browser
for both Calibre 3 and Icecream Ebook Reader, which was
released in 2014. This engine is considered insecure, since
several vulnerabilities are publicly disclosed. For instance, by
leveraging such a vulnerability [38], we were able to leak
arbitrary file contents in Calibre 3. Fortunately, Calibre started
using an updated engine since its major update to version 4,
effectively mitigating this vulnerability.

2) macOS: As shown in Table II, except for FBReader and
Amazon’s Kindle application, all reading systems evaluated
on macOS support JavaScript execution. All reading systems

1736

TABLE II
EVALUATION RESULTS FOR EPUB READING SYSTEMS ON MACOS.

Application JavaScript Local Resources Remote
communication

Persistent storage Features URI handles Insecure
engineLocal Remote Existence Render Leak Cookies LocalStorage

Adobe Digital Editions (4.5.10) # - - - # # - #
Apple Books (1.17) - - - # - # #
Azardi (43.1) # 6 2 o q n 4 5 0 6 2 o q n 4 5 0 6 2 o q n # - #
BookReader (5.14) # 6 2 o q 4 5 0 6 2 o q 4 5 0 6 2 o q n † - #
Calibre (3.40.1) 6 2 o q n 4 5 0 6 2 o q 4 5 0 - # # -

(4.3.0) # - - - # # - #∗ #
FBReader (0.9.0) # # - - - # # # - # -
Kindle (1.25.2) # # - - - # # # - #∗ -
Kitabu (1.2) 0 0‡ - # # - #
Murasaki (1.0.2) 6 2 o q n 4 5 0 6 2 o q 4 5 0 6 2 o q n # # - # #

6: .html file 2: .png/.jpg file o: .txt file q: .log file n: .bogus file 4: .mp3 file 5: .mp4 file 0: .ttf
∗ Allows EPUB to open URL in default browser.
† Allows access to LocalStorage of other EPUBs.
‡ Attempts to load all resources in the default application without consent (except fonts).

TABLE III
EVALUATION RESULTS FOR EPUB READING SYSTEMS ON LINUX UBUNTU.

Application JavaScript Local Resources Remote
communication

Persistent storage Features URI handles Insecure
engineLocal Remote Existence Render Leak Cookies LocalStorage

Calibre (3.46) 6 2 o q n 4 5 0 6 2 o q 0 - # # -
(4.3.0) # - - - # # - #∗ #

FBReader (0.12.10) # # - - - # # # - # -
Okular (1.7.2) # # - - - # # # - # -

6: .html file 2: .png/.jpg file o: .txt file q: .log file n: .bogus file 4: .mp3 file 5: .mp4 file 0: .ttf
∗ Allows EPUB to open URL in default browser.

TABLE IV
EVALUATION RESULTS FOR EPUB READING SYSTEMS ON IOS.

Application JavaScript Local Resources Remote
communication

Persistent storage Features URI handles Runs in backgroundLocal Remote Existence Render Leak Cookies LocalStorage

Aldiko Book Reader (1.1.6) # # - - - # # # - # #
Apple Books (4.2.3) - - - ∗ # - †
Bluefire Reader (2.9) # # - - - # # # - # #
CHMate (6.9.1) - - - # - #
Ebook Reader (4.0.8) - - - - # #
Eboox (1.60.1) # # - - - # # # - # #
Epub Reader (1.1) # # - - - # # # - # #
EPUB Reader (5.1.55) # # - - - # # # - # #
FBReader (1.0.10) # # - - - # # # - # #
Gerty (1.1.5) - - - # § - # #
Kobo Books (9.14) # - - - # # - #
Kybook 3 (0.7.8) # # - - - # # # - # #
Marvin (3.1.2) # - - - # Location† ‡ #
Play Books (5.3.0) # # - - - # # # - # #
PocketBook (3.2) - - - # # - # #
Power Reader (6.10) - - - - # #
R2 Reader (2.0.1) # - - - # # - # #
TotalReader (5.1.61) - - - # - #
YiBook (1.8.6) # # - - - # # # - # #
Yomu (2.3.0) - - - # § Location† # #

∗ Requires user interaction, only the first time.
† Requires user consent.
‡ Requires user constent, except for Mail app.
§ Allows access to LocalStorage of other EPUBs.

that support JavaScript can communicate with a remote server
without informing the user. Moreover, half of the ten tested
readers can leak the presence of certain resources on the local
file system by rendering them. Three of those even allow an
attacker to leak arbitrary files to a remote server.

Furthermore, four reading systems allow EPUBs to open
installed applications on macOS, leveraging specific URI
schemes, without requiring user consent. It is considered
good practice for these referred applications to require user
interaction before irreversible actions are undertaken, however,
this is not always the case. For instance, when Skype for
Business is configured as the default app to handle tel:
scheme URIs, activation of such a URI will immediately lead
to calling the included phone number. Although the results of
this action are very noticeable, since both a visual and auditory
cue are given when the call is initiated, it does not require any
user interaction. Correspondingly, an attacker could make the
user initiate calls to their premium-rate telephone number, e.g.

when there has been no user activity for a certain time.
3) Linux Ubuntu: For the evaluation on the Linux platform,

we only found three functioning reading systems, as shown
in Table III. Here, Calibre (version 3 and 4) is the only
reading system that provides scripting support. Similar to the
installations on the other desktop platforms, Calibre 3 uses an
outdated browser engine for which a disclosed vulnerability
can be exploited to leak arbitrary file contents.

B. Mobile

In this section, we discuss the results for EPUB reading
systems on iOS 12 and Android 9. Note that, to improve
legibility, we omitted the browser identification column in the
mobile platform tables, since all relied on the engine framework
provided by the OS. Consequently, these browser engines
are implicitly updated with every system update, thus are
considered up-to-date.

1737

TABLE V
EVALUATION RESULTS FOR EPUB READING SYSTEMS ON ANDROID.

Application JavaScript Local Resources Remote
communication

Persistent storage Features URI handles Runs in backgroundLocal Remote Existence Render Leak Cookies LocalStorage

4shared Reader # # - - - # # # - # #
AlReader (1.911805270) # # - - - # # # - # #
Aldiko Book Reader (3.1) # # - - - # # # - # #
Aldiko Classic (3.1.3) # # - - - # # # - # #
Bookari Free (4.2.5) # # - - - # # # - # #
Book Reader (1.12.12) # # - - - # # # - # #
Cool Reader (3.2.32) # # - - - # # # - # #
Ebook Reader (1.0) # # - - - # # # - # #
Ebook Reader (5.0.8.2)∗ # - - - # § -
EBook Reader (3.5.0) # # - - - # # # - # #
eBoox (2.22) # # - - - # # # - # #
ePub Reader (2.1.2)† 6 2 o q n 4 5 0 6 2 o q n 4 5 0 - # # -
Epub reader (4.0) # # - - - # # # - # #
Epub Reader (librera) (8.0.39) # # - - - # # # - # #
EPUBReader (1.0.32) # 6 2 o q n 4 5 0 4 5 0 - # # - #
eReader Prestigio (6.0.0.9) # # - - - # # # - # #
FBReader (3.0.15) # # - - - # # # - # #
Freda (4.31) # # - - - # # # - # #
FullReader (4.1.4) # # - - - # # # - # #
Gitden Reader (4.5.3) 6 2 o q n 4 5 0 6 2 o q n 4 0 6 2 o q n 4 5 0 # § - #
Google Play Books (5.2.7) # # - - - # # # - # #
Infinity Reader (1.7.57) - - - # # - #
iReader (1.1.4) # 6 2 o q n 4 5 0 2 4 5 0 - # § -
Kindle (3.2.0.35) # # - - - # # # - # #
Librera (8.1.242) # # - - - # # # - # #
Lit Pub (3.5.3) # 6 2 o q n 4 5 0 6 2 o q n 4 5 6 2 o q n 4 5 # § - # #
Lithium (0.21.1) - - - # # - ‖
Moon+ Reader (5.1) # # - - - # # # - # #
PocketBook (3.21)‡ # - - - # # # - # #
Reader FB2 (1.20) # # - - - # # # - # #
ReadEra (19.07.28) # # - - - # # # - # #
Reasily (1907d) # 6 2 o q n 4 5 0 6 2 o q n 4 5 0 6 2 o q n 4 5 # § -
Solati Reader (2.5.1) # # - - - # # # - # #
Supreader (3.2.30) # - - - # # -
Tolino (4.10.2) # # - - - # # # - # #

6: .html file 2: .png/.jpg file o: .txt file q: .log file n: .bogus file 4: .mp3 file 5: .mp4 file 0: .ttf
∗ Crashes when attempting to render resource on local file system.
† Opens all referenced resources in a new frame.
‡ Only executes inline JavaScript.
§ Allows access to LocalStorage of other EPUBs.
‖ Requests user consent only when browser is launched.

TABLE VI
EVALUATION RESULTS FOR EPUB READING EXTENSIONS FOR CHROME

Application JavaScript Local Resources Remote
communication

Persistent storage Features URI handlesLocal Remote Existence Render Leak Cookies LocalStorage

Chrome extensions (3) ∗ # - - - † † Microphone, Camera, Location‡ ‡
Chrome extensions (2) # # - - - # # - ‖
Firefox extensions (5) # # - - - # # - ‖

∗ Only external JavaScript.
† Can access cookies and LocalStorage of other EPUBs.
‡ Requires user consent.
‖ Requires user click, and only works for mailto:.

1) iOS: Out of the 20 evaluated iOS reading systems, 11
support JavaScript and allow EPUBs to communicate with
servers over the Internet without user consent, as shown in
Table IV. Only Apple Books requires explicit user interaction
to permit the EPUB to communicate remotely, which is
then remembered between sessions. Furthermore, two reading
systems allow EPUBs to share LocalStorage data, while four
reading systems allow it to access the GeoLocation API or
enable it to open other applications, which in most cases
requires user consent.

As a result of the iOS application platform design, the EPUB
is isolated from the rest of the file system: the user has to
select the EPUB that will be loaded, and the application can
only access this particular file. Consequently, access to local
resources is blocked by design as these are not available within
the application.

2) Android: In contrast to the iOS reading systems, almost
every reading system requests the permission “Photos, media
and files on your device”, either upon installation or when
attempting to import an EPUB. Interestingly, most also make
use of Android’s Storage Access Framework (SAF) [8], an

API to access user-selected files, which is more constrained but
subsequently does not need explicit permissions to facilitate
importing EPUBs. However, when SAF is used in combination
with the file permissions, which was the case for all but two
applications, this does not prevent attacks that leak arbitrary
file contents. In fact, for three Android applications we could
successfully leak arbitrary file contents to a remote server, as
shown in Table V.

Again, the results show that JavaScript support provides
additional capabilities that often can be abused. Seven reading
systems grant the ability to open other applications, of which
only one asks for user permission when this referred application
is the browser (i.e. by using the http or https scheme).
Furthermore, out of six applications that support access to the
LocalStorage API, five do not provide sufficient isolation, thus
allowing access to content saved by other EPUBs.

C. Browser extensions

For both Chrome and Firefox, we evaluated five extensions
that are advertised as EPUB reading systems. As shown in
Table VI, three Chrome extensions allow JavaScript execu-
tion, giving them access to persistent storage, and even to

1738

the microphone, camera or location (provided that the user
consents). Because all EPUBs opened by these applications
shared the same origin (chrome-extension://[extension id]),
EPUBs can access the persistent storage of e-books that were
opened previously.

The remaining seven extensions do not allow JavaScript
execution as a result of the imposed Content Security Policy
(CSP), prohibiting all inline JavaScript and only allowing
resources local to the extension [42]. Although remote resources
are blocked by the CSP, the extensions still provide functionality
to fetch these (hence the ability to perform remote communica-
tion). In Section VI we show how this functionality lead to a
universal XSS in EPUBReader (available on both Chrome and
Firefox). This was also the only extension that automatically
rendered an EPUB when a referring link is clicked (achievable
through JavaScript) in Chrome.

D. Physical e-reader devices

Only for the Kobo e-reader, our testbed confirmed limited
JavaScript support, as is documented by Kobo [37]. Note
that the e-reader only executes embedded scripts for KEPUB
files (Kobo’s custom e-book format), these are created by
simply changing the .epub file extension to .kepub.epub.
Furthermore, we could use the e-reader’s internet connection
to contact remote servers without user consent. Finally, the
embedded browser engine framework was identified as QT
5.2.1 (released in 2014) for which several vulnerabilities have
been reported [26].

Amazon’s publishing guidelines affirm that scripting is
not supported, and that all scripts are stripped from the
source during conversion [6]. However, as part of a manual
evaluation of the Kindle, we found this to be inaccurate: the
browser engine supports JavaScript execution, although it is
disabled by default (in Section VI-C we show how this can be
circumvented).

VI. CASE STUDIES

To complement our semi-automated evaluation, we manually
analyzed a select number of applications for implementational
flaws. This selection was based on different characteristics:
Apple Books on macOS (popular pre-installed application
that supports JavaScript but prevents rendering local files),
EPUBReader (the most widely used browser extension on
both Chrome and Firefox), and Kindle (the most widely used
physical e-reader, with an 83.6% market share in the US [27]).

A. Apple Books

As we discussed in Section V-A2, the capabilities detected
by our semi-automated evaluation did not lead to direct local
file system access in Apple Books for macOS, even when
leveraging symbolic links. However, through manual evaluation,
we identified a user information disclosure vulnerability and
persistent denial of service vulnerability.

The user information disclosure vulnerability allows an
attacker to infer whether a specific EPUB is present in the
user’s library. When an EPUB is opened by Apple Books,

it is unpacked and stored in a folder (Books) alongside
other previously unpacked EPUBs. The contents of each
EPUB are stored in a separate folder named after the EPUB’s
deterministically assigned 32-character serial ID. While we
could not infer how this ID is generated exactly, we have
verified that an EPUB is assigned the same ID across multiple
devices or accounts. Although embedded symbolic links
referring outside of this directory are denied, these links would
still remain functional when pointing to a location within the
EPUB folder, or even within the Books directory. As a result,
to gain information about the contents of the user library, an
EPUB could include a series of symbolic links, referring to
potential locations of unpacked EPUBs. By verifying whether
an arbitrary file in such a folder can be rendered, the EPUB
can disclose whether any of the selected EPUBs is present in
the user’s library. We found that the iOS applications Gerty
and Marvin could be exploited in a similar way.

The persistent denial of service attack is achieved by simply
including a symbolic link that refers to the Books folder in
which the EPUBs are unpacked. This will cause Apple Books
to crash, reporting that it cannot access the user’s library, for
every subsequent reboot. Because Apple Books is an integral
part of the operating system, it cannot be reinstalled without
reinstalling macOS.

In response, Apple issued a CVE for both vulnerabilities
(CVE-2019-8789 and CVE-2019-8774, respectively), and dis-
tributed a fix through operating system updates [11]–[14].

B. EPUBReader extension

The results of our semi-automated evaluation in Section V-C
show that all Firefox extensions and two Chrome extensions
block JavaScript execution, due to the imposed Content
Security Policy (CSP). Even more interesting; upon installation,
three extensions request permission to read and change all
data of visited websites, using the <all_urls> permission
indicator [23]. This allows the extensions to send HTTP
requests to any visited website and read out the response.
Moreover, if the user is logged in on such a website, the request
will implicitly include session cookies, and thus authenticating
the user. By bypassing the CSP restrictions for embedded
JavaScript in EPUBReader for both Chrome and Firefox,
we were able to abuse this permission to steal user account
information of any website on which the user is logged in,
effectively leading to a universal XSS.

Although including remote resources directly is prevented
by EPUBReader’s CSP, it still tries to provide this functionality
by first fetching the included images and referred media files,
and then making their content available through a blob://
URL (which is allowed by the default CSP). We leveraged this
functionality to trick EPUBReader to make a JavaScript file
available as a blob:// URL (by simply including this file as
an image). Because these URLs contain an unguessable UUID,
we first used a CSS-based data exfiltration technique to leak this
to the attacker server. Finally, the adversary can dynamically
generate another EPUB that refers to this blob:// URL,
and then tricks the reader to open this generated EPUB

1739

(EPUBReader will automatically try to read EPUBs based
on the URL pattern). Finally, the JavaScript payload will be
executed, giving the attacker the same privileges as the browser
extension (access to all authenticated content on all websites). A
proof-of-concept implementation of our attack requires a single
user interaction, such as a click, from the victim on Chrome
in order to open a new window; on Firefox the attack can be
performed without any user interaction, and is unnoticeable.
Collectively, this affects almost 300,000 users.

C. Kindle

Our semi-automated evaluation indicated that Kindle does
not support JavaScript execution, as confirmed by the publish-
ing guidelines [6]. By reverse engineering the application that
renders the converted AZW3 files (webreader), we found
that WebKit version 1.4.2 is used to render e-books, but that in
the browser engine’s settings, the enable-scripts property
is set to false. However, the application itself uses JavaScript
to extract information from the DOM or to change styles.

Before each JS execution, the enable-scripts property
is set to true, and immediately after it is set back to false.
Consequently, JavaScript code contained in the EPUB will
never be executed. Nevertheless, we found that in various
instances dynamic input, which could potentially be under the
control of an attacker, is not properly escaped or sanitized.
For instance, a script that is executed on every page refresh
includes the font that is used. This value can be controlled by
the attacker by changing the font, which is done by sending a
GET request to the webreader’s SOAP server. Another example
is the image viewer used to zoom in to images in e-books.
Here the reference to the image is not sanitized, allowing an
attacker to inject HTML code, including <script> elements.
This could also be initiated by sending a request to the SOAP
server. Although the rendering engine blocks web requests,
this can be circumvented by leveraging SVGs. Presumably
these are rendered outside of the browser engine, and thus an
<image> element with the xlink:href attribute can still
be used to issue requests. Consequently, it is possible to set the
font to any value and run arbitrary JavaScript code by escaping
the string context with a single quote3, or inject HTML in the
image viewer.

Once the attacker is able to execute JavaScript, WebSockets
can be leveraged to send arbitrary requests, as these are not
blocked either. Furthermore, in the image viewer both the
restriction that JavaScript code is only temporarily executed and
the restriction of sending remote requests are lifted. As various
applications on the Kindle are controlled via HTTP requests,
this means these now fall under the attacker’s control. For
instance, the ccat service, which provides an HTTP interface
on port 9101, is used to manage the user’s library. In a proof-
of-concept exploit we leveraged CVE-2011-3243, a UXSS
vulnerability that has been publicly known for over nine years

3Because the font name length is limited, the malicious payload has to use
eval() on the textContent of a (hidden) DOM element.

and only requires a few lines of code to mitigate4, to read out
the entire library of a victim, along with metadata. We also
showed that it is possible to leak the contents of documents
by interacting with the built-in KFX reader: through an HTTP
request the reader is instructed to open the document, after
which it is possible to obtain a rendered image showing the
contents of the document. These can then be extracted via a
remote request to an attacker-controlled server. We did not
explore the other, undocumented, closed-source services that
are controlled through HTTP requests. To defend against these
issues, most Kindle services now require a verification token
that indicate the authenticity of requests, preventing an attacker
to arbitrarily interact with the services.

VII. REAL-WORLD ANALYSIS

In this section, we analyze the EPUB ecosystem by assessing
the presence of malicious and tracking EPUBs in the wild, and
the feasibility of distributing them through a self-publishing
service.

A. Malicious and tracking EPUBs in the wild

In order to investigate whether any of the discussed tech-
niques are currently being used in the wild to either attack or
track users, we performed an additional analysis of EPUBs
available in a real-world setting. To this end, we downloaded
several free EPUBs from five popular online e-book stores
(eBooks.com, Google Play Books, Project Gutenberg, Kobo,
Amazon). After a manual inspection of the e-books, we did
not find any indication of abuse. It should be noted however
that this evaluation is limited, and only considers abuse by
the EPUB stores; abuse by individual publishers would be
infeasible to evaluate from an external perspective, as this
would require purchasing a very large number of e-books.

To further evaluate other types of abuse, we obtained a large
number of EPUBs from file sharing platforms. More precisely,
we downloaded the 1,000 most popular and most recent EPUB
torrents from The Pirate Bay and the same amount from 4shared
(these are marked as the most widely used sources to illegally
obtain an e-book according to a study by Digimarc [28]). In
total, we obtained 7,238 EPUB files from torrents (in several
cases, a single torrent contained multiple EPUBs), and 1,807
from 4shared. Next, we unpacked all EPUBs and parsed all
documents, looking for possible types of abuse (references to
files on the local file system, symbolic links, connections to
a remote server, and JavaScript inclusions). We did not find
any evidence of abuse, either in terms of tracking or attempts
to compromise the EPUB reading system. Interestingly, we
found that only 65 e-books, less than one percent of all 7,238
considered EPUBs, made use of JavaScript. In most cases, the
code was minimal, and was used to change the background
color or font size. All e-books were completely functional
without executing the JavaScript code.

4The mitigation only adds one additional if-statement: https://trac.webkit.
org/changeset/88071/webkit

1740

B. Malicious EPUB distribution through self-publishing

To explore the feasibility of publishing malicious EPUBs
through official e-book vendors, we submitted manuscripts to
the six most popular free self-publishing services. For each
service, we bought the published version of our manuscript to
check whether any of the embedded scripts were still present.
The following is a list of these services, along with their
associated vendor and its e-book market share according to
the 2017 AuthorEarnings report [15]: Kindle Direct Publishing
(Amazon, 80%), iBooks Author (Apple Books, 10%), Barnes
& Noble Press (Barnes & Noble, 3%), Kobo Writing Life
(Kobo, 2%), and Google Books Partner Centre (Google Play
Books, 1.4%). No exact figures were available for the sixth
tested service, Smashwords, however they also distribute self-
published titles through Apple Books, Barnes & Noble, and
Kobo in addition to their own website [55].

Of the six vendors, only Google Play Books rejected
our submitted manuscript. Although Amazon succeeded in
removing most scripts, we were still able to publish the exploit
discussed in Section VI-C, which could target millions of
Kindle devices. The remaining four vendors appeared to take no
vetting measures at all; embedding scripts in a published EPUB
was trivial. Of these, only Smashwords provides downloadable
EPUB files upon purchase, hence, any EPUB reading system
can be used to open them. The other three vendors deliver
e-books directly to their associated reading systems (however,
this can be circumvented). For Apple Books (application)
and Kobo (application and physical e-reader), the embedded
scripts were executed, and even allowed remote communication.
However, Barnes & Noble’s application crashed upon rendering
embedded scripts, curbing potential abuse.

In conclusion, our experiment shows that four out of six
evaluated self-publishing services can be abused to distribute
malicious EPUBs through official vendors. These vendors
account for approximately 94% of all EPUB sales, of which at
least 33% is attributed to self-published EPUBs according to
the 2017 AuthorEarnings report [15]. We notified all five self-
publishing services of which the vetting process was deemed
inadequate.

VIII. DISCUSSION

Our semi-automated evaluation shows that many of the
JavaScript-supporting EPUB reading systems do not correctly
enforce the specification’s security recommendations, and thus
can be abused in several ways. Furthermore, a significant part of
these reading systems does not prevent EPUBs from accessing
the local file system and even provide JavaScript APIs that
are not included in the EPUB specification. In this section, we
elaborate on the underlying issues and make suggestions on
what can be improved to remedy the various issues.

A. EPUB reading system implementations

In contrast to mobile reading systems, we identified a high
variety of rendering engines for desktop reading systems.
Moreover, we find that five of the evaluated desktop applications
employ an outdated engine, and consequently, a publicly

disclosed vulnerability could be leveraged to exploit the appli-
cation. Even applications that employ a more up-to-date engine
may still be affected by so-called n-day vulnerabilities [24],
[60], security issues that have been patched in the upstream
component (and thus known publicly), but that still affect
software that did not yet update this vulnerable component. As
it may take days, or even years (e.g. in the case of Calibre 3)
to update a known-vulnerable browser engine, we believe this
forms a significant threat for EPUB reading systems.

For both mobile platforms, we found that applications relied
on the built-in renderer, and thus all share the same version.
Another key difference with desktop applications is that mobile
reading systems operate from a more sandboxed environment
by default. For instance, on iOS, none of the applications
requested permission to access other files on the system, and
consequently could not be abused to render or leak files on
the local system. Although a similar functionality is available
on Android, through the Storage Access Framework [8], most
applications still required file permissions, and as a result, we
managed to detect the existence of files in six applications,
and leak their contents in half of those. This highlights that
developers should try to use the minimal amount of privileges
to reduce the potential consequences of an attack. By further
analyzing the Android applications, we found that for two the
file-leak vulnerability was caused by configuring the WebView
component to allow access to the local file system, using
setAllowFileAccessFromFileURLs [9].

Although several applications would render files on the local
filesystem, not all of them lead to extraction of their contents.
Our manual analysis of these cases showed a direct relation to
SOP enforcement: the EPUB content was served from a custom,
non-existent domain, preventing access to file:// resources.
Yet, not all reading systems implementing this practice were
able to achieve complete isolation of the local file system.
For instance, Adobe Digital Editions on Windows employs a
dedicated domain, but EPUBs are still allowed to render local
images or even HTML files on network shares. The latter is
especially dangerous, as it gives access to the file:// from
where the local filesystem can be accessed.

B. EPUB specification

Although a valued effort has been made to include effective
security recommendations, we argue that the EPUB speci-
fication does not impose sufficiently strict requirements for
EPUB reading systems. Of course, the responsibility to actually
conform their reading system to the specification’s security
requirements remains that of the developers, however, hardened
requirements could eventually be consolidated into a quantified
compliance checker application.

Probably even more effective would be attenuating the
capabilities that are to be granted according to the EPUB
specification. For instance, an EPUB is allowed to only refer
to audio, video and fonts through static XHTML and CSS, but
any resource is allowed to be retrieved by embedded scripts [2].
This can be useful for keeping the size of an EPUB small, since
the more sizable audio and video files can be fetched from an

1741

online service. However, access to resources from the local
filesystem, which in the current version of the specification
is allowed, introduces a significant threat, which does not
outweigh its limited benefits. Furthermore, the ability to render
local resources implies the ability to determine their existence,
information that can be gained for various purposes among
which file system fingerprinting. For this reason, we argue to
completely prohibit EPUBs from referring to resources that
reside on the user’s operating system. Moreover, as reference
to remote resources is very rare in EPUBs, we strongly believe
that this should require consent from the user, in order to
prevent any form of tracking.

Interestingly, our semi-automated evaluation revealed that
more than half of the JavaScript supporting reading systems
also support GeoLocation and UserMedia APIs, or opening
applications through URI handles, functionalities that are not
mentioned in the EPUB specification. These functionalities
originate from the underlying browser engine, and are likely not
considered by the developer. Assuming the EPUB specification
does not aspire to incorporate such browser functionalities, we
argue that the specification should include a whitelist of APIs
that can be enabled.

Based on our real-world analysis of 9,000 EPUBs, we argue
that the discussed restrictions for the EPUB specification would
have a minimal impact; none of the analyzed EPUBs required
local or remote resources to render correctly, and even the few
that embedded JavaScript remained functional when execution
was prevented. In that regard, we also propose to reconsider
the capability of unrestricted JavaScript execution in EPUB
reading systems, perhaps requiring user consent when a script
is about to be executed.

C. Responsible disclosure

All vulnerabilities, either identified through our semi-
automated testbed or our case-studies, were responsibly dis-
closed to the involved parties. In addition, we sent out an
early warning to all vendors whose reading system did not
satisfy the specification’s security recommendations. In total,
we reached out to 33 vendors, responsible for 37 reading
systems, each time using the most appropriate private channel
that was available. Although we received a generic or no
response from the majority, vendors of very popular reading
systems such as Apple and Adobe were eager to solve the
reported issues, for which three CVEs were issued.

IX. RELATED WORK

We did not encounter any prior studies evaluating the
implications of web technology use in non-browser applications.
However, our work shares several similarities with the following
research.

A. Portable Document Format

Today, the Portable Document Format (PDF) is one of the
most popular file formats used for operating system independent
document exchange. Its capabilities bear close resemblance
to those of the EPUB format, including support for scripting

and network connectivity. Unfortunately, previous research has
demonstrated that these traits may to lead to security, privacy
and content integrity vulnerabilities [21], [22], [41]. In that
regard, we hope that by expressing our concerns about EPUB
capabilities at an early stage, the specification can be adapted
to avoid similar consequences.

Various research efforts focus on the use of machine
learning to distinguish between benign and malicious PDF
files. Research by Smutz et al. and Srndic et al. argue that PDF
file metadata and structure are valuable features that can be
used by a static, machine learning based detection system [56],
[58]. Maiorca et al. demonstrated a new evasion technique for
PDF file analysis based on logical structure; they also present a
framework to solve this problem [40]. Nissim et al. performed
an extensive study reviewing and comparing state-of-the-art
techniques for detecting malicious PDF files [49].

B. Comprehensive policy evaluations

Various studies have exposed vulnerabilities and inconsisten-
cies in browser policy implementations through comprehensive
evaluations. By combining manual and automated analysis
in four popular browsers, Aggarwal et al. uncovered several
implementational weaknesses for private browsing modes [4].
Furthermore, they show that some of these weaknesses can be
exploited by an attacker to bypass the imposed privacy policy.
Schwenk at al., on the other hand, performed a comprehensive
evaluation of the same-origin policy in 10 browsers, leveraging
an extensive set of 544 different test cases [54]. Their
results exposed various vulnerabilities and inconsistencies
among browsers, pleading for a formal definition of the same-
origin policy. In another study, Franken et al. performed an
evaluation of third-party cookie policy implementations in 7
browsers and 46 browser extensions, leveraging their automated
framework [32]. According to their results, all imposed third-
party cookie policies of all major browsers as well as evaluated
extensions can be bypassed. Finally, a longitudinal study by
Luo et al., comprising of 20 different mobile browser families,
analyzed support for eight different security mechanisms over
the course of seven years [39]. Their findings expose various
issues such as lacking support and multi-year vulnerability
issues, even for several popular mobile browsers.

X. CONCLUSION

In this paper we report on a semi-automated evaluation to
measure the security and privacy practices of 92 free EPUB
reading systems and five physical reading devices. Our results
show that almost none of the systems that support JavaScript
execution adequately adhere to the security considerations of
the EPUB specification. For eight reading systems, a malicious
EPUB can even extract arbitrary files from the local system.

We are the first to comprehensively evaluate the security
and privacy practices of EPUB reading systems, and hope
to increase awareness of the associated threat surface among
users and developers. Furthermore, we propose that the current
security recommendations of the EPUB standard should be
refined into binding requirements. To further assist developers,

1742

additional documentation could be provided in more specific
terms how existing browser engine frameworks can be correctly
incorporated, pointing out critical configuration elements.

In addition to this large-scale evaluation, we also performed
a more elaborate manual analysis of a select number of EPUB
reading systems. This manual analysis exposed two severe
security issues: first, as soon as a malicious e-book would be
opened in Kindle, it could leak documents from the user’s
library; second, the entire browsing session of users with the
EPUBReader browser extension can be compromised upon
visiting a malicious website. The results also highlight that the
outcome of our semi-automated evaluation should be considered
a lower bound, and that several security and privacy issues
rely on application-specific behavior.

As part of our assessment of the EPUB ecosystem, we
performed an analysis of more than 9,000 EPUBs, obtained
“in the wild” from five online e-book stores and two popular
file sharing platforms, and evaluated the vetting process of six
popular self-publishing services. We did not find evidence of
any ongoing abuse, indicating that the issues identified through
our evaluations are indeed novel. However, this and the fact that
four of the evaluated self-publishing services allowed JavaScript
inclusion which could lead to publication of malicious EPUBs,
make this study timely: we urge developers to further mitigate
the identified issues and adopt additional security measures
before their users are exploited.

Finally, we demonstrated that the consolidation of estab-
lished web technologies in non-browser applications does not
necessarily imply a proper translation of the web security and
privacy primitives. With this study, we hope to have motivated
the need for more comprehensive and in-depth evaluations in
this largely unexplored research domain.

ACKNOWLEDGMENT

We would like to thank our shepherd Adam Doupé and the
anonymous reviewers for their insightful comments. We would
also like to extend our gratitude to Lieven Desmet, Victor
Le Pochat and Yana Dimova for their helpful feedback. This
research is partially funded by the Research Fund KU Leuven.

REFERENCES

[1] EPUB 3.2. Standard, W3C, May 2019. https://www.w3.org/publishing/
epub3/epub-spec.html.

[2] EPUB content documents 3.2. Standard, W3C, May 2019. https://www.
w3.org/publishing/epub3/epub-contentdocs.html.

[3] Adobe. Security Updates Available for Adobe Digital Editions —
APSB20-23. https://helpx.adobe.com/security/products/Digital-Editions/
apsb20-23.html, April 2020.

[4] Gaurav Aggarwal, Elie Bursztein, Collin Jackson, and Dan Boneh. An
analysis of private browsing modes in modern browsers. In Proceedings
of the 19th USENIX Conference on Security, USENIX Security’10, pages
6–6, Berkeley, CA, USA, 2010. USENIX Association.

[5] Alexandra Alter. Your e-book is reading you. The
Wall Street Journal. https://www.wsj.com/articles/
SB10001424052702304870304577490950051438304.

[6] Amazon. Amazon Kindle Publishing Guidelines, 2019. http://kindlegen.
s3.amazonaws.com/AmazonKindlePublishingGuidelines.pdf.

[7] Android. Background execution limits. https://developer.android.com/
about/versions/oreo/background.

[8] Android. Open files using storage access framework. https://developer.
android.com/guide/topics/providers/document-provider.

[9] Android. WebSettings. https://developer.android.com/reference/android/
webkit/WebSettings.html.

[10] Apple. Uiapplication background task notes. https://forums.developer.
apple.com/thread/85066.

[11] Apple. About the security content of iOS 13.1 and iPadOS 13.1. https:
//support.apple.com/en-us/HT210603, February 2020.

[12] Apple. About the security content of iOS 13.2 and iPadOS 13.2. https:
//support.apple.com/en-gb/HT210721, April 2020.

[13] Apple. About the security content of macOS Catalina 10.15. https:
//support.apple.com/en-us/HT210634, February 2020.

[14] Apple. About the security content of macOS Catalina 10.15.1, Security
Update 2019-001, and Security Update 2019-006. https://support.apple.
com/en-us/HT210722, April 2020.

[15] AuthorEarnings. February 2017 Big, Bad, Wide & International Report:
covering Amazon, Apple, B&N, and Kobo ebook sales in the US,
UK, Canada, Australia, and New Zealand. https://web.archive.org/web/
20190218084936/http:/authorearnings.com/report/february-2017/, 2017.

[16] Internet Assigned Numbers Authority. Uniform resource identifier (uri)
schemes. https://www.iana.org/assignments/uri-schemes/uri-schemes.
xhtml.

[17] Internet Assigned Numbers Authority. Media type assignment:
epub+zip. https://www.iana.org/assignments/media-types/application/
epub+zip, 2014.

[18] Baldur Bjarnason. EPUB javascript security. https://www.baldurbjarnason.
com/notes/epub-javascript-security/, July 2012.

[19] Baldur Bjarnason. Javascript in ebooks. https://www.baldurbjarnason.
com/notes/javascript-in-ebooks/, February 2012.

[20] Henrik Boström, Cullen Jennings, Anant Narayanan, Jan-Ivar Bru-
aroey, Daniel Burnett, Adam Bergkvist, and Bernard Aboba. Media
capture and streams. Candidate recommendation, W3C, July 2019.
https://www.w3.org/TR/2019/CR-mediacapture-streams-20190702/.

[21] Ron Brandis and Luke Steller. Threat Modelling Adobe PDF.
Technical report, Defence Science and Technology Organisation,
2012. https://www.dst.defence.gov.au/sites/default/files/publications/
documents/DSTO-TR-2730.pdf.

[22] Aniello Castiglione, Alfredo De Santis, and Claudio Soriente. Security
and privacy issues in the portable document format. Journal of Systems
and Software, 83(10):1813 – 1822, 2010.

[23] Chrome. Declare Permissions and Warn Users. https://developer.chrome.
com/extensions/permission warnings.

[24] Ang Cui. The overlooked problem of ‘n-day’ vulnerabilities.
https://www.darkreading.com/vulnerabilities---threats/the-overlooked-
problem-of-n-day-vulnerabilities/a/d-id/1331348, March 2018.

[25] Cure53. HTTPLeaks. https://github.com/cure53/HTTPLeaks, 2019.
[26] CVE Details. QT 5.2.1 Security Vulnerabilities. https:

//www.cvedetails.com/vulnerability-list/vendor id-12593/product id-
24410/version id-164958/Digia-QT-5.2.1.html.

[27] Matt Day and Jackie Gu. The enormous numbers behind Amazon’s
market reach. https://www.bloomberg.com/graphics/2019-amazon-reach-
across-markets/, March 2019.

[28] Digimarc. Inside the mind of a book pirate. https://www.digimarc.
com/docs/default-source/default-document-library/inside-the-mind-of-
a-book-pirate, 2017.

[29] M. Duerst, L. Masinter, and J. Zawinski. The ’mailto’ uri scheme. RFC
6068, RFC Editor, October 2010.

[30] Eric Hellman. Publishing Hackathon Pretty Much Ignores eBooks.
https://go-to-hellman.blogspot.com/2013/05/publishing-hackathon-
pretty-much.html, 2013.

[31] Alison Flood. Ebooks can tell which novels you didn’t finish. The
Guardian. https://www.theguardian.com/books/2014/dec/10/kobo-survey-
books-readers-finish-donna-tartt.

[32] Gertjan Franken, Tom Van Goethem, and Wouter Joosen. Who left
open the cookie jar? a comprehensive evaluation of third-party cookie
policies. In 27th USENIX Security Symposium (USENIX Security 18),
pages 151–168, Baltimore, MD, August 2018. USENIX Association.

[33] Ian Hickson. Web storage (second edition). W3C recommendation, W3C,
April 2016. http://www.w3.org/TR/2016/REC-webstorage-20160419/.

[34] Intellectual Property Office. Online copyright infringement tracker:
Latest wave of research. https://assets.publishing.service.gov.uk/
government/uploads/system/uploads/attachment data/file/628704/OCI -
tracker-7th-wave.pdf, 2017.

[35] Jun Kokatsu. Is your ePub reader secure enough? https://shhnjk.blogspot.
com/2017/05/is-your-epub-reader-secure-enough.html, May 2017.

1743

[36] Martin Kaste. Is your e-book reading up on you? https://www.npr.org/
2010/12/15/132058735/is-your-e-book-reading-up-on-you.

[37] Kobo Labs. Kobo EPUB guidelines. https://github.com/kobolabs/epub-
spec/blob/master/README.md.

[38] Jung Hoon Lee. Issue 1134: WebKit: UXSS via ContainerN-
ode::parserRemoveChild (2). https://bugs.chromium.org/p/project-zero/
issues/detail?id=1134, 2017.

[39] Meng Luo, Pierre Laperdrix, Nima Honarmand, and Nick Nikiforakis.
Time does not heal all wounds: A longitudinal analysis of security-
mechanism support in mobile browsers. In Proceedings of the 26th
Network and Distributed System Security Symposium (NDSS), Jan 2019.

[40] Davide Maiorca, Igino Corona, and Giorgio Giacinto. Looking at the
bag is not enough to find the bomb: An evasion of structural methods for
malicious pdf files detection. In Proceedings of the 8th ACM SIGSAC
Symposium on Information, Computer and Communications Security,
ASIA CCS ’13, pages 119–130, New York, NY, USA, 2013. ACM.

[41] Vladislav Mladenov, Christian Mainka, Karsten Meyer zu Selhausen,
Martin Grothe, and Jörg Schwenk. Vulnerability Report: Attacks
bypassing the signature validation in PDF. Technical report, Ruhr-
Universität Bochum, 2018. https://www.nds.ruhr-uni-bochum.de/media/
ei/veroeffentlichungen/2019/02/12/report.pdf.

[42] Mozilla Developer Network. Content Security Policy.
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/
WebExtensions/Content Security Policy.

[43] Mozilla Developer Network. Fetch API. https://developer.mozilla.org/en-
US/docs/Web/API/Fetch API.

[44] Mozilla Developer Network. mdn-browser-compat-data. https://github.
com/mdn/browser-compat-data.

[45] Mozilla Developer Network. MediaDevices. https://developer.mozilla.
org/en-US/docs/Web/API/MediaDevices.

[46] Mozilla Developer Network. Same-origin policy. https://developer.
mozilla.org/en-US/docs/Web/Security/Same-origin policy.

[47] Mozilla Developer Network. XMLHttpRequest. https://developer.mozilla.
org/en-US/docs/Web/API/XMLHttpRequest.

[48] Nate Hoffelder. An epub3 ebook could be used to hack your tablet,
steal your identity, and cause the downfall of western civilization. 2013.
https://the-digital-reader.com/2013/06/09/eric-hellmans-publishing-
hackathon-entry-could-be-used-to-hack-your-tablet-steal-your-identity-
and-cause-the-downfall-of-western-civilization/.

[49] Nir Nissim, Aviad Cohen, Chanan Glezer, and Yuval Elovici. Detection
of malicious pdf files and directions for enhancements: A state-of-the
art survey. Computers & Security, 48:246 – 266, 2015.

[50] nrclark. Pyfuse: A tool for simple FUSE Filesystems. https://github.com/
nrclark/pyfuse, 2019.

[51] Andrei Popescu. Geolocation API specification 2nd edition. W3C recom-
mendation, W3C, November 2016. https://www.w3.org/TR/2016/REC-
geolocation-API-20161108/.

[52] PricewaterhouseCoopers. Turning the page: The future of ebooks. 2010.
https://www.pwc.co.uk/assets/pdf/ebooks-trends-and-developments.pdf.

[53] Project Gutenberg. Project Gutenberg Submission Guidelines. https:
//web.archive.org/web/20181108181052/https://upload.pglaf.org/.

[54] Jörg Schwenk, Marcus Niemietz, and Christian Mainka. Same-origin
policy: Evaluation in modern browsers. In 26th USENIX Security
Symposium (USENIX Security 17), pages 713–727, Vancouver, BC,
August 2017. USENIX Association.

[55] SmashWords. Smashwords Distribution Network. https://www.
smashwords.com/distribution, 2019.

[56] Charles Smutz and Angelos Stavrou. Malicious pdf detection using
metadata and structural features. In Proceedings of the 28th Annual
Computer Security Applications Conference, ACSAC ’12, pages 239–248,
New York, NY, USA, 2012. ACM.

[57] Peter Snyder, Cynthia Taylor, and Chris Kanich. Most websites don’t
need to vibrate: A cost-benefit approach to improving browser security.
In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, pages 179–194. ACM, 2017.

[58] Nedim Srndic and Pavel Laskov. Detection of malicious pdf files based
on hierarchical document structure. In NDSS, 2013.

[59] W3C. EPUBCheck. https://github.com/w3c/epubcheck, 2019.
[60] Xinda Wang, Kun Sun, Archer Batcheller, and Sushil Jajodia. Detecting

“0-day” vulnerability: An empirical study of secret security patch in oss.
In 2019 49th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), pages 485–492. IEEE, 2019.

[61] WebKit Bugzilla. Limit user agent versioning to an upper bound. https:
//bugs.webkit.org/show bug.cgi?id=180365.

[62] Rüdiger Wischenbart. The global eBook market: current conditions &
future projections. O’Reilly Media, Inc., 2013.

APPENDIX A
ADDITIONAL READING SYSTEM INFORMATION

For measures of completeness and transparency, we provide
an overview of all EPUB reading systems that were considered
during our evaluation. We also included the number of reported
users. Unfortunately, this metric is not available for iOS, so
instead the number of ratings can be used as an estimator of
the relative reach of an application. Additionally, we reported
on the deduced embedded browser engine for all reading
systems supporting JavaScript. Here, “OS” indicates that the
reading system relies on the engine framework provided by the
operating system, and thus is considered up-to-date. Finally, we
also include the readers that were excluded from our analysis
along with the reason. In total, we considered 92 reading
applications on seven platforms (Windows, Ubuntu, macOS,
iOS, Android, Firefox & Chrome extensions) and five stand-
alone physical e-readers.

1744

TABLE VII
EVALUATED EPUB READING SYSTEMS FOR WINDOWS

Reading system Version Rendering engine Release date

Adobe Digital Editions 4.5.10 OS Trident N/A
Bibliovore 2.0.2.0 - -
BookReader 1.6.0.0 - -
Bookviser Reader 6.8.1.0 - -
Calibre 3.40.1 WebKit 538.1 Oct 2014
Calibre 4.3.0 Blink 77 Sep 2019
CoolReader N/A - -
EPUB File Reader 1.5 OS Trident N/A
FBReader 0.12.10 - -
Freda 4.21 - -
Icecream Ebook Reader 5.19 WebKit 538.1 Oct 2014
Liberty 1.0.0.13 - -
MS Edge 44.17763.1.0 EdgeHTML 18.17763 Oct 2018
Nook 1.10.1.15 - -
Overdrive 3.8.0 - -
SumatraPDF 3.1.2 - -

TABLE VIII
OMITTED EPUB READING SYSTEMS FOR WINDOWS

Reading system Reason

Cover Unable to open fully compliant EPUB file.
Epub3 Reader Unable to correctly render fully compliant EPUB file.
FlyReader Unable to open fully compliant EPUB file.
Perfect PDF Reader Unable to correctly render fully compliant EPUB file.

TABLE IX
EVALUATED EPUB READING SYSTEMS FOR MACOS

Reading system Version Rendering engine Release date

Adobe Digital Editions 4.5.10 OS WebKit N/A
Apple Books 1.17 OS WebKit N/A
Azardi 43.1 Gecko 38 May 2015
BookReader 5.14 OS WebKit N/A
Calibre 3.40.1 WebKit 538.1 Oct 2014
Calibre 4.3.0 Blink 77 Sep 2019
FBReader 0.9.0 - -
Kindle 1.25.2 - -
Kitabu 1.2 OS WebKit N/A
Murasaki 1.0.2 OS WebKit N/A

TABLE X
OMITTED EPUB READING SYSTEMS FOR MACOS

Reading system Reason

Kobo for Desktop Unable to side-load EPUBs.

TABLE XI
EVALUATED EPUB READING SYSTEMS FOR LINUX UBUNTU

Reading system Version Rendering engine Release date

Calibre 3.46 WebKit 538.1 Oct 2014
Calibre 4.3.0 Blink 77 Sep 2019
FBReader 0.12.10 - -
Okular 1.7.2 - -

1745

TABLE XII
OMITTED EPUB READING SYSTEMS FOR LINUX UBUNTU

Reading system Reason

Bookworm Unable to install.
Buka Unable to start.
Cool Reader Unable to start.
Easy eBook Viewer Unable to open fully compliant EPUB.
GNOME Books Unable to open fully compliant EPUB.
Lucidor Unable to start.

TABLE XIII
EVALUATED EPUB READING SYSTEMS FOR IOS

Reading system Version Last updated Number of ratings Rendering engine Release date

Aldiko Book Reader 1.1.6 Aug 10, 2017 51 - -
Apple Books 4.2.3 Jun 3, 2019 N/A OS WebKit N/A
Bluefire Reader 2.9 Jan 6, 2018 2.5K - -
CHMate 6.9.1 May 22, 2018 13 OS Webkit N/A
Ebook Reader 4.0.9 Dec 22, 2017 345 OS Webkit N/A
eBoox 1.60.1 Jul 18, 2019 114 - -
EPUB Reader 5.1.55 Mar 14, 2017 647 - -
FBReader 1.0.10 Aug 31, 2019 12 - -
Gerty 1.1.5 Aug 8, 2015 65 OS Webkit N/A
Kobo Books 9.14 Jun 11, 2019 8.4K OS Webkit N/A
Kybook 3 0.7.8 Feb 23, 2019 579 - -
Marvin 3.1.2 Oct 11, 2017 239 OS Webkit N/A
Play Books 5.3.0 Aug 26, 2019 8.3K - -
PocketBook 3.2 Aug 12, 2019 637 OS Webkit N/A
Power Reader 6.10 Aug 28, 2017 4 OS Webkit N/A
R2 Reader 2.0.1 Jun 21, 2019 5 OS Webkit N/A
TotalReader 5.1.61 Jul 4, 2017 329 OS Webkit N/A
YiBook 1.8.5 May 13, 2018 4 - -
Yomu 2.3.0 Jul 17, 2019 59 OS Webkit N/A

TABLE XIV
OMITTED EPUB READING SYSTEMS FOR IOS

Reading system Version Reason

Kindle 6.24 Unable to side-load EPUBs.
PureReader 1.4.2 Unable to open fully compliant EPUB.

1746

TABLE XV
EVALUATED EPUB READING SYSTEMS FOR ANDROID

Reading system Version Number of downloads Last updated Rendering engine Release date

4shared Reader 1.20.0 1M+ May 2019 - -
Aldiko Book Reader 3.1.3 10M+ Oct 2018 - -
Aldiko Classic 3.1.3 500K+ Oct 2018 - -
AlReader 1.911805270 5M+ May 2018 - -
Bookari Free 4.2.5 1M+ Feb 2018 - -
Book Reader 1.12.12 1M+ Jun 2019 - -
Cool Reader 3.2.32 10M+ Aug 2019 - -
Ebook Reader 1.0 10K+ Aug 2019 - -
Ebook Reader 5.0.8.2 5M+ Jun 2019 OS Blink N/A
EBook Reader 3.5.0 5M+ Jul 2019 - -
eBoox 2.22 1M+ Aug 2019 - -
ePub Reader 2.1.2 1M+ May 2015 OS Blink N/A
Epub reader 4.0 10K+ Apr 2019 - -
Epub Reader 8.0.39 100K+ Feb 2019 - -
EPUBReader 1.0.32 100K+ Nov 2014 OS Blink N/A
eReader Prestigio 6.0.0.9 10M+ May 2019 - -
FBReader 3.0.15 10M+ Jul 2019 - -
Freda 4.31 10K+ Mar 2019 - -
FullReader 4.1.4 1M+ Aug 2019 - -
Gitden Reader 4.5.3 100K+ Jan 2018 OS Blink N/A
Google Play Books 5.2.7 1B+ Aug 2019 - -
Infinity Reader 1.7.57 5K+ May 2017 OS Blink N/A
iReader 1.1.4 5K+ Aug 2019 OS Blink N/A
Kindle 3.2.0.35 100M+ Jul 2019 - -
Librera 8.1.242 10M+ Aug 2019 - -
Lit Pub 3.5.3 100K+ Jun 2017 OS Blink N/A
Lithium 0.21.1 1M+ Jan 2019 OS Blink N/A
Moon+ Reader 5.1 10M+ Aug 2019 - -
PocketBook 3.21 1M+ Aug 2019 OS Blink N/A
Reader FB2 1.20 50K+ Jun 2019 - -
ReadEra 19.07.28 5M+ Jun 2019 - -
Reasily 1907d 100K+ Jun 2019 OS Blink N/A
Solati Reader 2.5.1 10K+ Jun 2015 - -
Supreader 3.2.30 1M+ Dec 2018 OS Blink N/A
Tolino 4.10.2 100K+ Feb 2019 - -

TABLE XVI
OMITTED EPUB READING SYSTEMS FOR ANDROID

Reading system Reason

Adobe Digital Editions Unable to open local EPUBs.
Cloudshelf Unable to open local EPUBs.
Kobo Unable to side-load EPUBs.
SKY Reader Unable to open local EPUBs.

TABLE XVII
EVALUATED EPUB READING SYSTEMS FOR CHROME AND FIREFOX

Reading system name Version Store ID Number of users

Chrome

Ebook Reader for Google Drive 1.0.7 mfpbhmcmakfaeajfpehaoijecamlehpl 1,513
EPUBReader 2.0.8 jhhclmfgfllimlhabjkgkeebkbiadflb 137,917
EPUB READER 1.0.1 mbcgbbpomkkndfbpiepjimakkbocjgkh 816
ePUB Reader 0.1.1 dgkibcakfnhcnijakeobjifghganmojn 10,574
ePUB Reader 1.1.0 fnplkbhndemgbopkkpmpnfklkhphpneg 1,893

Firefox

EPUBReader 2.0.9 - 158,480
ePUB Reader 0.1.1 - 5,097
ePUB Reader 0.0.1 - 36
myBook 0.4.0 - 434
QiuReader 0.1.5 - 1,512

1747

		2022-08-24T20:22:57-0400
	Preflight Ticket Signature

