2019 IEEE Symposium on Security and Privacy

Asm2Vec: Boosting Static Representation Robustness for Binary Clone Search
against Code Obfuscation and Compiler Optimization

Steven H. H. Ding*, Benjamin C. M. Fung*, and Philippe Charland'
*Data Mining and Security Lab, School of Information Studies, McGill University, Montreal, Canada.
Emails: steven.h.ding @mail.mcgill.ca, ben.fung@mcgill.ca
tMission Critical Cyber Security Section, Defence R&D Canada - Valcartier, Quebec, QC, Canada.
Email: philippe.charland@drdc-rddc.gc.ca

Abstract—Reverse engineering is a manually intensive but
necessary technique for understanding the inner workings
of new malware, finding vulnerabilities in existing systems,
and detecting patent infringements in released software. An
assembly clone search engine facilitates the work of reverse
engineers by identifying those duplicated or known parts.
However, it is challenging to design a robust clone search
engine, since there exist various compiler optimization options
and code obfuscation techniques that make logically similar
assembly functions appear to be very different.

A practical clone search engine relies on a robust vector
representation of assembly code. However, the existing clone
search approaches, which rely on a manual feature engineering
process to form a feature vector for an assembly function,
fail to consider the relationships between features and identify
those unique patterns that can statistically distinguish assembly
functions. To address this problem, we propose to jointly learn
the lexical semantic relationships and the vector representation
of assembly functions based on assembly code. We have devel-
oped an assembly code representation learning model Asm2Vec.
It only needs assembly code as input and does not require
any prior knowledge such as the correct mapping between
assembly functions. It can find and incorporate rich semantic
relationships among tokens appearing in assembly code. We
conduct extensive experiments and benchmark the learning
model with state-of-the-art static and dynamic clone search
approaches. We show that the learned representation is more
robust and significantly outperforms existing methods against
changes introduced by obfuscation and optimizations.

1. Introduction

Software developments mostly do not start from scratch.
Due to the prevalent and commonly uncontrolled reuse of
source code in the software development process [1], [2],
[3], there exist a large number of clones in the underlying
assembly code as well. An effective assembly clone search
engine can significantly reduce the burden of the manual
analysis process involved in reverse engineering. It addresses
the information needs of a reverse engineer by taking ad-
vantage of existing massive binary data.

Assembly code clone search is emerging as an Infor-
mation Retrieval (IR) technique that helps address security-
related problems. It has been used for differing binaries to
locate the changed parts [4], identifying known library func-
tions such as encryption [5], searching for known program-

© 2019, Steven H. H. Ding. Under license to IEEE.
DOI 10.1109/SP.2019.00003

472

ming bugs or zero-day vulnerabilities in existing software or
Internet of Things (IoT) devices firmware [6], [7], as well as
detecting software plagiarism or GNU license infringements
when the source code is unavailable [8], [9]. However,
designing an effective search engine is difficult, due to vari-
eties of compiler optimizations and obfuscation techniques
that make logically similar assembly functions appear to
be dramatically different. Figure 1 shows an example. The
optimized or obfuscated assembly function breaks control
flow and basic block integrity. It is challenging to identify
these semantically similar, but structurally and syntactically
different assembly functions as clones.

Developing a clone search solution requires a robust
vector representation of assembly code, by which one can
measure the similarity between a query and the indexed
functions. Based on the manually engineered features, rel-
evant studies can be categorized into static or dynamic ap-
proaches. Dynamic approaches model the semantic similar-
ity by dynamically analyzing the I/O behavior of assembly
code [10], [11], [12], [13]. Static approaches model the
similarity between assembly code by looking for their static
differences with respect to the syntax or descriptive statistics
[6], [71, [8], [14], [15], [16], [17], [18]. Static approaches
are more scalable and provide better coverage than the
dynamic approaches. Dynamic approaches are more robust
against changes in syntax but less scalable. We identify
two problems which can be mitigated to boost the semantic
richness and robustness of static features. We show that by
considering these two factors, a static approach can even
achieve better performance than the state-of-the-art dynamic
approaches.

P1: Existing state-of-the-art static approaches fail to
consider the relationships among features. LSH-S [16], n-
gram [8], n-perm [8], BinClone [15] and KamiInO [17]
model assembly code fragments as frequency values of
operations and categorized operands. Tracelet [14] models
assembly code as the editing distance between instruction
sequences. Discovre [7] and Genius [6] construct descriptive
features, such as the ratio of arithmetic assembly instruc-
tions, the number of transfer instructions, the number of
basic blocks, among others. All these approaches assume
each feature or category is an independent dimension. How-
ever, a xmm0 Streaming SIMD Extensions (SSE) register is
related to SSE operations such as movaps. A fclose libc
function call is related to other file-related libc calls such
as fopen. A strcpy libc call can be replaced with memcpy.
These relationships provide more semantic information than

"

Figure 1: Different assembly functions compiled from the same source code of gmpz_tdiv_r_2exp in libgmp. From left
to right, the assembly functions are compiled with gcc OO0 option, gcc O3 option, LLVM obfuscator Control Flow Graph
Flattening option, and LLVM obfuscator Bogus Control Flow Graph option. Asm2Vec can statically identify them as clones.

individual tokens or descriptive statistics.

To address this problem, we propose to incorporate
lexical semantic relationship into the feature engineering
process. Manually specifying all the potential relation-
ships from prior knowledge of assembly language is time-
consuming and infeasible in practice. Instead, we propose to
learn these relationships directly from plain assembly code.
Asm2Vec explores co-occurrence relationships among tokens
and discovers rich lexical semantic relationships among to-
kens (see Figure 2). For example, memcpy, strcpy, memncpy
and mempcpy appear to be semantically similar to each
other. SSE registers relate to SSE operands. Asm2Vec does
not require any prior knowledge in the training process.

P2: The existing static approaches assume that features
are equally important [14], [15], [16], [17] or require
a mapping of equivalent assembly functions to learn the
weights [6], [7]. The chosen weights may not embrace
the important patterns and diversity that distinguishes one
assembly function from another. An experienced reverse en-
gineer does not identify a known function by equally looking
through the whole content or logic, but rather pinpoints
critical spots and important patterns that identify a specific
function based on past experience in binary analysis. One
also does not need mappings of equivalent assembly code.

To solve this problem, we find that it is possible to
simulate the way in which an experienced reverse engineer
works. Inspired by recent development in representation
learning [19], [20], we propose to train a neural network
model to read many assembly code data and let the model
identify the best representation that distinguishes one func-
tion from the rest. In this paper, we make the following
contributions:

e We propose a novel approach for assembly clone de-
tection. It is the first work that employs representation
learning to construct a feature vector for assembly code,

473

as a way to mitigate problems P1 and P2 in current hand-
crafted features. All previous research on assembly clone
search requires a manual feature engineering process. The
clone search engine is part of an open source platform'.
We develop a representation learning model, namely
Asm2Vec, for assembly code syntax and control flow
graph. The model learns latent lexical semantics between
tokens and represents an assembly function as an inter-
nally weighted mixture of collective semantics. The learn-
ing process does not require any prior knowledge about
assembly code, such as compiler optimization settings or
the correct mapping between assembly functions. It only
needs assembly code functions as inputs.

We show that Asm2Vec is more resilient to code obfusca-
tion and compiler optimizations than state-of-the-art static
features and dynamic approaches. Our experiment covers
different configurations of compiler and a strong obfusca-
tor which substitutes instructions, splits basic blocks, adds
bogus logics, and completely destroys the original control
flow graph. We also conduct a vulnerability search case
study on a publicly available vulnerability dataset, where
Asm2Vec achieves zero false positives and 100% recalls.
It outperforms a dynamic state-of-the-art vulnerability
search method.

Asm2Vec as a static approach cannot completely defeat
code obfuscation. However, it is more resilient to code
obfuscation than state-of-the-art static features. This paper is
organized as follows: Section 2 formally defines the search
problem. Section 3 systematically integrates representation
learning into a clone search process. Section 4 describes
the model. Section 5 presents our experiment. Section 6
discusses the literature. Section 7 discusses the limitations
and concludes the paper.

1. https://github.com/McGill-DMaS/Kam1n0-Plugin-IDA-Pro

Math Function
fan
Calls)

Sigprocmask

stodipcdeg
i Sigaddset
incos 4 <o
o510 e ook &R Sigfilset
Sigemptyset
exit
Fecvi
Vector Operations File Operations dldtm gnal
andpd @a lsawmmzva,e
and SSE Registers & eon close send. setsid’
e o foa g aise Sigacton
| s'w;«g tsockopt
e keeksmeksogggew?
Din
peloseimntent ¢ frungaed
k\llnpen = m i
" mnsa fgets_unlocked chlPd | D) S .
forite_ to
e feclebt | it e
et
flosiearert fTo-Umecked O serours
19t ol OpaImP 2UP:
h locke it fam:
fram us;,pjge o ocked (isRiDge seopd
] getc_unoched e epebdefg wocked
fidew éslz S fprintf. Memory Compare | inet atoneepezdie trimit64
glee Strcasecmp. Networking,

fsw | fxch

Bt “""’“‘P“‘S spinfipint chsetispeed
lo(alﬁme%"n,g SHTp P2 Access and Process Control

64-bit Registers 32-bit Registers PefeBietetcha =) 00661t stmcasscmprp | realloc |
- [migaeg e “snistfime ocaltime size
s 5 Closedinme stecpyepage
37 NS4y 8-bit Registers mems e memmove
12 o Ry strcspn set fregeteAdick | T fnour nametoindex
AL ; Pid et Floating-point Operations i Wﬂﬂ!l ""‘l'!l& lloc
e o mdnd e snnm‘wmﬁwm unlin Beaoal
® g Syt it cafehown
i Memory mg_mds"alg\séyzdprmdw fchmod
32-bit Registers. W'E"V seteny
, o) g B Operations e HE
o
umo | fel B - it
Operations iy ea o) ol xpr
st = . 3
i Loy ed*“h”‘ ;m,‘ 13 8-bit Registers — T d‘mMmar,unln(ked
Pl e 5 i Strtoalrol strchr access
_ i @5 Aum.m S
s - ﬁnnvsxd strtol regexecitch
& String Search o)
I [niohs
o o fstsw
Conditioned i -
i &8 9 nstructions 16-bit Registers
Operations oo - 1™
a L [0 Registers ot
cmorg mova B (] Libc Function Calls i&b}’?
- r1zvihrcx
cmoubun <

Figure 2: T-SNE clustering visualization of tokens appearing in assembly code. There are three categories of tokens: operation,
operand, and /ibc function call. Each token is represented as a 200-dimensional numeric vector. They are learned by Asm2Vec
on plain assembly code without any prior knowledge of the assembly language. The training assembly code does not contain
the libc callee functions’ content. For visualization, 7-SNE reduces the vectors to two dimensions by nearest neighbor
approximation. A smaller geometric distance indicates a higher lexical semantic similarity.

2. Problem Definition

In the assembly clone search literature, there are four
types of clones [15], [16], [17]: Type I: literally identical;
Type II: syntactically equivalent; Type III: slightly modified;
and Type IV: semantically similar. We focus on Type IV
clones, where assembly functions may appear syntactically
different, but share similar functional logic in their source
code. For example, the same source code with and without
obfuscation, or a patched source code between different
releases. We use the following notions: function denotes an
assembly function; source function represents the original
function written in source code, such as C++; repository
function stands for the assembly function that is indexed in-
side the repository; and target function denotes the assembly
function query. Given an assembly function, our goal is to
search for its semantic clones from the repository RP. We
formally define the search problem as follows:

Definition 1. (Assembly function clone search) Given a
target function f;, the search problem is to retrieve the top-
k repository functions fs € RP, ranked by their semantic
similarity, so they can be considered as Type IV clones.

3. Overall Workflow

Figure 3 shows the overall workflow. There are four
steps: Step 1: Given a repository of assembly functions,
we first build a neural network model for these functions.
We only need their assembly code as training data without

474

3. Estimate

< Query Function ft

Vector for ft

Repository

1. Training

. Produce

Representation
Learning Model

Repository Function f0

Repository Function f1

Repository Function f2

Vector for fO

Vector for f1

Vector for f2

Figure 3: The overall work flow of Asm2Vec.

any prior knowledge. Step 2: After the training phase, the
model produces a vector representation for each repository
function. Step 3: Given a target function f; that was not
trained with this model, we use the model to estimate its
vector representation. Step 4: We compare the vector of f;
against the other vectors in the repository by using cosine
similarity to retrieve the top-k ranked candidates as results.
The training process is a one-time effort and is efficient
to learn representation for queries. If a new assembly func-
tion is added to the repository, we follow the same procedure
in Step 3 to estimate its vector representation. The model can
be retrained periodically to guarantee the vectors’ quality.

4. Assembly Code Representation Learning

In this section, we propose a representation learning
model for assembly code. Specifically, our design is based
on the PV-DM model [20]. PV-DM model learns document
representation based on the tokens in the document. How-

ever, a document is sequentially laid out, which is different
than assembly code, as the latter can be represented as
a graph and has a specific syntax. First, we describe the
original PV-DM neural network, which learns a vectorized
representation of text paragraph. Then, we formulate our
Asm2Vec model and describe how it is trained on instruction
sequences for a given function. After, we elaborate how to
model a control flow graph as multiple sequences.

4.1. Preliminaries

The PV-DM model is designed for text data. It is an
extension of the original word2vec model. It can jointly learn
vector representations for each word and each paragraph.
Figure 4 shows its architecture.

Vector

sat

Multi-class
Prediction

Uh(x)
sigmoid
A
|

The cat sat on ajmat
Average &

"
? N

Vector. Vector

ID-based
Vector
Lookup

Vector

Vector

Vector

Paragraph
D

the cat on

Figure 4: The PV-DM model.

Given a text paragraph which contains multiple sen-
tences, PV-DM applies a sliding window over each sentence.
The sliding window starts from the beginning of the sen-
tence and moves forward a single word at each step. For
example, in Figure 4, the sliding window has a size of 5.
In the first step, the sliding window contains the five words
‘the’, ‘cat’, ‘sat’, ‘on’ and ‘a’. The word ‘sat’ in the middle is
treated as the farget and the surrounding words are treated as
the context. In the second step, the window moves forward
a single word and contains ‘cat’, ‘sat’, ‘on’, ‘a’ and ‘mat’,
where the word ‘on’ is the target.

At each step, the PV-DM model performs a multi-class
prediction task (see Figure 4). It maps the current paragraph
into a vector based on the paragraph ID and maps each word
in the context into a vector based on the word ID. The
model averages these vectors and predicts the target word
from the vocabulary through a softmax classification. The
back-propagated classification error will be used to update
these vectors. Formally, given a text corpus T that contains
a list of paragraphs p € T, each paragraph p contains a list
of sentences s € p, and each sentence is a sequence of |s|
words wy € s. PV-DM maximizes the log probability:

S

Z OgP wt‘p7wt Ky
t=k

ey

wt+k)

475

The sliding window size is 2k + 1. The paragraph vector
captures the information that is missing from the context
to predict the target. It is interpreted as topics [20]. PV-
DM is designed for text data that is sequentially laid out.
However, assembly code carries richer syntax than plain-
text. It contains operations, operands, and control flow that
are structurally different than plaintext. These differences
require a different model architecture design that cannot
be addressed by PV-DM. Next, we present a representation
learning model that integrates the syntax of assembly code.

4.2. The Asm2Vec Model

An assembly function can be represented as a control
flow graph (CFG). We propose to model the control flow
graph as multiple sequences. Each sequence corresponds
to a potential execution trace that contains linearly laid-out
assembly instructions. Given a binary file, we use the IDA
Pro? disassembler to extract a list of assembly functions,
their basic blocks, and control flow graphs.

This section corresponds to Step 1 and 2 in Figure 3.
In these steps, we train a representation model and produce
a numeric vector for each repository function f; € RP.
Figure 5 shows the neural network structure of the model.
It is different than the original PV-DM model.

First, we map each repository function f; to a vector
Of € R2x4, 9,» is the vector representation of function
fs to be learned in training. d is a user chosen parameter.
Similarly, we collect all the unique tokens in the repository
RP. We treat operands and operations in assembly code as
tokens. We map each token ¢ into a numeric vector 7; € R¢
and another numeric vector J’t € R2%4_ 4, is the vector
representations of token t. After training, it represents a
token’s lexical semantics. ¥ vectors are used in Figure 2 to
visualize the rela_t'ionship among tokens. v’; is used for token
prediction. All 6y, and ¥; are initialized to small random
value around zero. All v/ . are initialized to zeros. We use
2 x d for f4 since we concatenate the vectors for operation
and operands to represent an instruction.

We treat each repository function fs € RP as multiple
sequences S(fs) = seq[l : 9], where seg; is one of them.
We assume that the order of sequences is randomized. A
sequence is represented as a list of instructions Z(seq;) =
in[l : j], where in; is one of them. An instruction in;
contains a list of operands .A(in;) and one operation P (in;).
Their concatenation is denoted as its list of tokens 7 (in;) =
P(in;) || A(in;), where || denotes concatenation. Constants
tokens are normalized into their hexadecimal form.

For each sequence seq; in function fg, the neural net-
work walks through the instructions from its beginning. We
collect the current instruction n;, its previous instruction
inj_1, and its next instruction n;1. We ignore the instruc-
tions that are out-of-boundary. The proposed model tries to

2. IDA Pro, available at: http://www.hex-rays.com/

push rbp

——————

The assembly code of
the selected instruction

rbx

rsp, 138h
rax, 8h
[rbp+18h], rax
eax, eax
[rbp+4h], @
[rbp+32h], 1505h
rax, [rbp+24h]
mov [rbp+8h], rax
mov [rbp+4h], @
loc_40065D:

mov eax, [rbp+4h]
movsxd rbx, eax

lea rax, [rbp+24h]
mov rdi, rax

call strlen

cmp rbx, rax

push

mov
mov
xor
mov
mov
lea

A feed-forward path

Concate-
nate

hl
. A

0
Avg(x)
Average

pE 4 SN

Vector Vector

Map each input token to a d-
dimensional vector

Avg(x)
Average

Vector

£,

Map this assembly
function to a 2xd-
dimensional vector

Vector Vector
Map each output token to

a 2xd-dimensional output |

|
i vetor | 1
N
E ‘ push v rbx]
i . . v ..l
] . A
|
e ey
-------- | Uh(x)
_________ o | sigmoid
|
Concate- H f
nate S
«
ST A
0
Avg(x)
Average
I o S
Vector Vector Vector
= - |
! Vi |
R | sub rsp 138h -

efsi I

Map each input token to a d-
dimensional vector

Figure 5: The proposed Asm2Vec neural network model for assembly code.

maximize the following log probability across the repository
RP:

RP S(fs) Z(seqi) T (in;)

Z Z Z Z log P(tc|fs,inj—1,in;41)

seq; in;

@

fs

It maximizes the log probability of seeing a token . at
the current instruction, given the current assembly function
fs and neighbor instructions. The intuition is to use the
current function’s vector and the context provided by the
neighbor instructions to predict the current instruction. The
vectors provided by neighbor instructions capture the lexi-
cal semantic relationship. The function’s vector remembers
what cannot be predicted given the context. It models the
instructions that distinguish the current function from the
others.

For a given function fs, we first look-up its vector
representation Hf through the previously built dictionary.
To model a neighbor instruction in as CT (in) € R?*%, we
average the vector representations of its operands (€ R%)
and concatenate the averaged vector (€ R%) with the vector
representation of the operation. It can be formulated as:

A(in)

Z 7
A(in) b

Recall that P(x) denotes an operation and it is a single
token. By averaging f, with C7 (in; —1) and CT (in; + 1),
0(in, fs) models the joint memory of neighbor instructions:

6(inj7fs) = “)

Example 1. Consider a simple assembly code function
fs and one of its sequence in Figure 5. Take the third
instruction where j = 3 for example. T (in3) = { push’,
tbx’}. A(ing_1) = {’tbp’, 'tsp’}. P(inz_1) = {’'mov’}. We
collect their respective vectors Uypyp, Ursp, Umov and calculate
CT (in3—1) = Umov||(Trop + Ursp)/2. Following the same

CT(in) = vp(m)|| 3)

1 -
3 (0f, +CT (inj—1) + CT (inj41))

476

procedure, we calculate C7 (ins+1). With Equation 4 and
0s, we have d(ing, fs). B

Given 0(in, fs), the probability term in Equation 2 can
be rewritten as follows:

P(tc|d(iny, fs)) &)

Recall that we map each token into two vectors ¥ and .
For each target token ¢, € 7 (in;), which belongs to the
current instruction, we look-up its output vector J’tc. The
probability in Equation 5 can be modeled as a softmax multi-
class regression problem:

P(t0|5(inj7 fs)) =

P(tc|f5, inj_l, inj+1) =

5(inj7fs))
f@ 1o, 0(ins, £4)
Zd 'Utdv (anvfs))
F@Wh,,8(ing,) = U((v':,)" x 8(in;, f.))

D denotes the whole vocabulary constructed upon the repos-
itory RP. Uh(-) denotes a sigmoid function applied to
each value of a vector. The total number of parameters
to be estimated is (|D| 4+ 1) x 2 x d for each pass of the
softmax layout. The term |D| is too large for the softmax
classification. Following [20], [21], we use the k negative
sampling approach to approximate the log probability as:

log P(t.|d(in, fs)) = log f(v',|6(in;, fs))
k
+ Z]Etd,an(tc)([[td 7é tc]]log f(f]- X /J;th 5(inj7 fs)))
=1

(©)

[-] is an identity function. If the expression inside this
function is evaluated to be true, then it outputs 1; otherwise
0. For example, [1+2=3] =1 and [1+ 1= 3] =0. The
negative sampling algorithm distinguishes the correct guess
t. with k randomly selected negative samples {¢4|tq # t.}

using k + 1 logistic regressions. E;, .p, ;) is a sampling
function that samples a token t4 from the vocabulary D
according to the noise distribution P, (¢.) constructed from

D. By taking derivatives, respectively on v, and 6y , we
can calculate the gradients as follows.

) 1< L
——J(0) = Eyep,) (It = te] — f(0'4,8(iny, £.)))
89}‘.@ 3 i

X ’L;;t

0

8v’t

J(0) = [t = te] — f(0'e, 8(iny, fo)) x 8(iny, f;)
@)
By taking derivatives, respectively on Up(;,,) and
{th, |ty € A(inj4+1)}, we can calculate their gradients as
follows. It will be the same equation for the previous
instruction ¢n;_1, by replacing in;4; with in;_;.

0 0

—JO)=(—=J(0))0:d—1

81773(1'7Lj+1) () (89fs ())[}

0 1 0 8)
—J(0) = ——J(0))[d:2d—1

Ui,) [Ainy)]~ (aefs)1]

ty € A(inj+1)

After, we use back propagation to update the values of
the involved vectors. Specifically, we update 9}3, all the
involved @ and involved v/, according to their gradients,
with a learning rate.

Example 2. Continue from Example 1, where the target
token ¢. is ‘push’. Next, we calculate P(v/,51]|(in;, f5))
using negative sampling (Equation A). After, we calculate
the gradients using Equation 7 and 8. We update all the
involved vectors in these two examples, according to their
respective gradient, with a learning rate. l

4.3. Modeling Assembly Functions

In this section, we model an assembly function into mul-
tiple sequences. Formally, we treat each repository function
fs € RP as multiple sequences S(fs) = seg[l : i]. The
original linear layout of control flow graph covers some
invalid execution paths. We cannot directly use it as a
training sequence. Instead, we model the control flow graph
as edge coverage sequences and random walks.

4.3.1. Selective Callee Expansion. Function inlining is a
compiler optimization technique that replaces a function call
instruction with the body of the called function. It extends
the original assembly function and improves its performance
by removing call overheads. It significantly modifies the
control flow graph and is a major challenge in assembly
clone search [12], [13].

BinGo [12] proposes to selectively inline callee functions
into the caller function in the dynamic analysis process.
We adopt this technique for static analysis. Function call

477

instructions are selectively expanded with the body of the
callee function. BinGo inlines all the standard library calls
for the purpose of semantic correctness. We do not inline
any library calls, since the lexical semantic among library
call tokens have been well captured by the model (see
the visualization in Figure 2). BinGo recursively inlines
callee, but we only expand the first-order callees in the call
graph. Expanding callee functions recursively will include
too many callees’ body into the caller, which makes the
caller function statically more similar to the callee.

The decoupling metric used by BinGo captures the ratio
of in-degree and out-degree of each callee function f.:

a(f.) = outdegree(f.)/(outdegree(f..) +indegree(f.)) (9)

We adopt the same equation, as well as the same threshold
value 0.01, to select a callee for expansion. Additionally,
we find that if the callee function is longer than or has a
comparable length to the caller, the callee will occupy a too
large portion of the caller. The expanded function appears
similar to the callee. Thus, we add an additional metric to
filter out lengthy callees:

0(fs, fe) = length(f.)/length(f) (10)

We expand a callee if is less than 0.6 or f, is shorter
than 10 lines of instructions. The second condition is to
accommodate wrapper functions.

4.3.2. Edge Coverage. To generate multiple sequences for
an assembly function, we randomly sample all the edges
from the callee-expanded control flow graph, until all the
edges in the original graph are covered. For each sampled
edge, we concatenate their assembly code to form a new
sequence. This way, we ensure that the control flow graph
is fully covered. The model can still produce similar se-
quences, even if the basic blocks in the control flow graph
are split or merged.

4.3.3. Random Walk. CACompare [13] uses a random
input sequence to analyze the I/O behavior of an assembly
function. A random input simulates a random walk on the
valid execution flow. Inspired by this method, we extend
the assembly sequences for an assembly function by adding
multiple random walks on the expanded control flow graph.
This way, the generated sequence is much longer than the
edge sampling.

Dominator is a widely used concept in control flow
analysis and compiler optimizations. A basic block dom-
inates another if one has to pass this block in order to
reach the other. Multiple random walks will put a higher
probability to cover basic block that dominate others. These
popular blocks can be the indicator of loop structures or
cover important branching conditions. Using random walks
can be considered as a natural way to prioritize basic blocks
that dominate others.

4.4. Tranining, Estimating and Searching

The training procedure corresponds to Algorithm 1. For
each function in the repository, it generates sequences by

Algorithm 1 Training the Asm2Vec model for one epoch

Algorithm 2 Estimating a vector representation for a query

function TRAIN(Repository RP)

I:
2 shuffle(RP)
3: for each fs € RP do
4: for each seq; € S(fs) do
5 for j =1 — (|seq;| — 1) do

> Going through each instruction.
6: lookup fs’s representation 0y
7: calculate CT (in;_1) by Equ. 3
8: calculate C7T (in;41) by Equ. 3
9: calculate 6(inj, fs) by Equ. 4
10: for each tkn € in; do

> Going through each token
11: targets < Eq, . p, (tkn) U {thn}
> Sample tokens from Py (tkn)

12: calculate and cumulate gradient for 5 s (Equ. 7)
13: calculate gradient for o'y (Equ. 7)
14: update v’
15: calculate and cumulate gradient for in;_1 (Equ. 8)
16: calculate and cumulate gradient for in; 1 (Equ. 8)
17: update vectors for tokens of in;_1
18: update vectors for tokens of in;1
19: update G fs
20:
21: function S(Function f)

22: graph < CFG(fs)
23: graph < ExpandSellectiveCallee(graph)
24: sequences < {}
25: for each edg € SampleEdge(graph) do
26: seq < source(edg) || target(edg)

> Concatenate the source and the target blocks
27: sequences <— sequences U {seq}
28: for i < numRandomWalk do
29: seq < RandomWalk(graph)
30: sequences < sequences U {seq}
31: return sequences

edging sampling and random walks. For each sequence, it
goes through each instruction and applies the Asm2Vec to
update the vectors (Line 10 to 19). As shown in Algorithm 1,
the training procedure does not require a ground-truth map-
ping between equivalent assembly functions.

The estimation step corresponds to Step 3 in Figure 3.
For an unseen assembly function f; as query f: ¢ RP that
does not belong to the set of training assembly functions,
we first associate it with a vector 7, € R?*4, which is
initialized to a sequence of small values close to zero. Then,
we follow the same procedure in the training process, where
the neural network goes through each sequence of f; and
each instruction of the sequence. In every prediction step,
we fix all 7; and vy in the trained model and only propagate
errors to fy,. At the end, we have 6, while the vectors for
all f, € RP and {#;,v/;|t € D} remain the same. To search
for a match, vectors are flattened and compared using cosine
similarity.

Scalability is critical for binary clone search, as there
may be millions of assembly functions inside a repository.
It is practical to train Asm2Vec on a large-scale of assembly
code. A similar model on text has been shown to be scalable
to billions of text samples for training [21]. In this study,
we only use pair-wise similarity for nearest neighbor search-
ing. Pair-wise searching among low-dimensional fix-length
vectors can be fast. In our experiment in Section 5.3, there

478

function ESTIMATE(Query Function ft)
initialize f:’s representation 5 fe
for each seq; € S(f) do
for j =1 — (|seq;| — 1) do
calculate CT (in;_1) by Equ. 3
calculate CT (inj41) by Equ. 3
calculate 6(in;, ft) by Equ. 4
for each tkn € in; do
targets < By, ..p,, (tkn) U {thn}
calculate gradient for 7 . (Equ. 7)

1:
2
3
4
5:
6:
7.
8
9
0
1 update §ft

are 139,936 functions. The average training time for each
function is 49 milliseconds. The average query response
time is less than 300 milliseconds.

5. Experiments

We compare Asm2Vec with existing available state-
of-the-art dynamic and static assembly clone search ap-
proaches. All the experiments are conducted with an Intel
Xeon 6 core 3.60GHz CPU with 32G memory. To simulate
a similar environment in related studies, we limit the JVM to
only 8 threads. There are four experiments. First, we bench-
mark the baselines against different compiler optimizations
with GCC. Second, we evaluate clone search quality against
different heavy code obfuscations with CLANG and O-
LLVM. Third, we use all the binaries of the previous two.
In the last one, we apply Asm2Vec on a publicly available
vulnerability search dataset. All binary files are stripped
before clone search. In all of the experiments, we choose
d = 200, 25 negative samples, 10 random walks, and a
decaying learning rate 0.025 for Asm2Vec. 200 corresponds
to the suggested dimensionality (2d) used in [20].

5.1. Searching with Different Compiler Optimiza-
tion Levels

In this experiment, we benchmark the clone search
performance against different optimization levels with the
GCC compiler version 5.4.0. We evaluate Asm2Vec based
on 10 widely used utility and numeric calculation libraries
in Table 1. They are chosen according to an internal statistic
of the prevalence of FOSS libraries. We first compile a
selected library using the GCC compiler with four differ-
ent compiler optimization settings, which results in four
different binaries. Then, we test every combination of two
of them, which corresponds to two different optimization
levels. Given two binaries from the same library but with
different optimization levels, we link their assembly func-
tions using the compiler-output debug symbols and generate
a clone mapping between functions. This mapping is used as
the ground-truth data for evaluation only. We search the first
against the second in RP and after, we search for the second
against the first in RP. Only the binary in the repository is
used for training. We take the average of the two.

A higher optimization level contains all optimization
strategies from the lower level. The comparison between
02 and O3 is the easiest one (Figure 6). On average, 26%

a) Empirical Distribution of String Editing Distance

b) Empirical Distribution of Count of Vertex+Edge

= 1009 5vg=0.264 p s o - = 1001 [avg=0.404],, = i’ e e —

>~ 0.754 = >~ 0.75- =0.827

o 0346 _ s .

o Options 2 Options

8 0501 £ 050

< ® 00vs. 03 p(0)=0 < ® 00 vs. 03 p(0)= 0.17

5 0251 02 vs. 03 p(0)=0 5 0251 02 vs. 03 p(0)= 0.65

B b 8 ; y
0.00+ T T T T 0.00 T T T T

0 1 2 3 0 1 2 3

Relative Absolute Difference between a Clone Pair

Relative Absolute Difference between a Clone Pair

Figure 6: The difference between the O0/O2 optimized and the O3 optimized function. a) Relative string editing distance.
0.264 indicates that around 26.4% percent of bytes are different between two options for the same source code function. b)
Relative absolute difference in the count of vertices and edges. 0.404% indicates that one function has 40.4% more vertices

and edges than the other.

Compiler optimization O2 and O3

Baselines BusyBox CoreUtils Libgmp ImageMagick Libcurl LibTomCrypt OpenSSL SQLite zlib PuTTYgen Avg. p
BinGot [4] 490 4] [4] 2] [7) 2] 2] 4] [4] 490 @)
Composite 789 .643 910 787 .842 .646 783 777 813 8IHI 38 783 O
Constant 437 338 202 11 522 440 365 368 .549 571 450)
Graphlet .309 268 .355 262 321 297 212 313 406 148 .289)
Graphlet-C .662 581 .680 .678 .689 .559 .586 .687 730 795 .665 [
Graphlet-E 278 225 362 270 271 219 .199 280 399 355 .286 ®
MixedGram 811 .663 .906 792 .848 .652 789 .804 858 .865 798 ®
MixedGraph 445 413 436 427 486 .379 .350 458 564 .533 449 [
n-gram 774 .644 874 739 814 .593 748 760 812 781 754)
n-perm .803 .654 912 788 .848 .646 785 799 850 .855 793 ®
FuncSimSearch 157 169 .848 514 .663 .698 726 533 488 .363 516 ®
PV(DM/DBOW) .895 899 .959 952 927 945 919 .898 873 823 .909 ®
Asm2Vec* 954 929 973 971 951 991 931 926 .885 .891 940 ©)
Compiler optimization O0 and O3
Baselines BusyBox CoreUtils Libgmp ImageMagick Libcurl LibTomCrypt OpenSSL SQLite zlib PuTTYgen Avg. P
BinGo¥ [4) 317 [4) [4] [4] [4) [2] [2] [2] [4] 317 @]
CAComparef .844 [9) [4) .893 794 [9) 795 [4) [4) 17 808 | O
Composite 013 .031 .019 .017 .004 .005 .007 .004 .036 127 .026 ®
Constant 239 128 .101 .610 .369 258 270 182 .360 439 .296 ®
Graphlet 017 .008 .049 .010 .023 011 .009 014 .029 016 .019)
Graphlet-C 018 .020 012 .022 027 .001 034 012 .065 102 .031 [)
Graphlet-E 021 011 075 .019 017 .003 018 019 .051 .058 .029)
MixedGram 016 .033 .019 018 011 .005 .007 006 .036 116 .028)
MixedGraph 034 028 062 .024 .039 015 .023 030 .064 .097 .042 ®
n-gram 011 .029 012 .021 011 .010 .005 .003 .036 129 .027)
n-perm 017 029 021 021 011 .006 .007 .005 .036 129 .028)
FuncSimSearch .008 .019 323 .039 .036 .030 220 011 .054 .040 .078 ®
PV(DM/DBOW) 745 677 .760 .802 792 821 759 758 713 615 744 ®
Asm2Vec* 856 781 763 837 .850 921 792 776 722 788 809 O

TABLE 1: Clone search between different compiler optimization options using the Precision at Position I (Precision@]1)
metric. It captures the ratio of assembly functions that are correctly matched at position 1. In this case, it equals Recall
at Position 1. Asm2Vec is our proposed method. Tdenotes cited performance. O and @ respectively indicate p > 0.05 and
p < 0.01 for Wilcoxon signed-rank test between Asm2Vec and each baseline.

bytes of a function are modified and none of the functions
are identical. 40% of a control flow graph is modified and
65% function pairs share similar graph complexity. It can
be considered as the best situation where the optimization
strategies used in two binaries are similar. The compari-
son between OO and O3 is the most difficult one. It can
be considered as the worst situation where there exists a
large difference in the optimization strategies (Figure 6).
On average, 34% bytes of a function are modified and
none of the functions are identical. 82% of a control flow
graph is modified and 17% function pairs share similar
graph complexity. Table 1 presents the results in these two
situations. Due to the large number of cases, we only list
the results for these two cases to demonstrate the best and
worse situations. The results of other cases lie between these
two and follow the same ranking.

Andriesse et al. [22] point out that using supervised

machine learning may risk having invalid experiment results.
For example, splitting coreutils binaries into training set
and testing set may lead to an invalid good result since
these binaries share a very similar code base. This issue
is not applicable to our experiment. First, we follow the
unsupervised learning paradigm, where the true clone map-
ping is only used for evaluation. Second, our training data
is very different to the testing data, as shown in Figure 6
and Figure 7. For example, the coreutils library comes with
many binaries but we statically linked them into a single
binary. We train the OO0-optimized binary and match the
O3-optimized binary. These two binaries are very different.

We use the Precision at Position 1 (Precision@ 1) met-
ric. For every query, if a baseline returns no answer, we
count the precision as zero. Therefore, Precision@ I captures
the ratio of assembly functions that are correctly matched,
which is equal to Recall at Position 1. We benchmark

479

nine feature representations proposed in [8]: mnemonic n-
grams (denoted as m-gram), mnemonic n-perms (denoted
as n-perm), Graphlets (denoted as Graphlet), Extended
Graphlets (denoted as Graphlet-E), Colored Graphlets (de-
noted as Graphlet-C), Mixed Graphlets (denoted as Mix-
Graph), Mixed n-grams/perms (denoted as MixGram), Con-
stants, and the Composite of n-grams/perms and Graphlets
(denoted as Composite). The idea of using Graphlet orig-
inated from [23]. These baseline methods cover a wide
range of popular features from token to graph substructure.
These baselines are configured according to the reported
best settings in the paper. We also include the original PV-
DM model and PV-DBOW model as a baseline where each
assembly function is treated as a document. We pick the best
results and denote it as PV-(DM/DBOW). We only tune the
configurations for PV-(DM/DBOW) as well as Asm2Vec on
the zlib dataset. FuncSimSearch is an open source assembly
clone static search toolkit recently released by Google?. It
has a default training dataset that contains a ground-truth
mapping of equivalent assembly functions. The state-of-
the-art dynamic approach BinGo [12] and CACompare [13]
are unavailable for evaluation. However, we conduct the
experiment in the same way using the same metric. Their
reported results are included in Table 1. We also include the
Wilcoxon signed-rank test across different binaries to see if
the difference in performance is statistically significant.

As shown in Table 1, Asm2Vec significantly outperforms
static features in both the best and worse situation. It also
outperforms BinGo, a recent semantic clone search approach
that involves dynamic features. It shows that Asm2Vec is
robust against heavy syntax modifications and intensive
inlining introduced by the compiler. Even in the worse
case, the learned representation can still correctly match
more than 75% of assembly functions at position 1. It even
achieves competitive performance against the state-of-the-
art dynamic approach CACompare for semantic clone. The
difference is not statistically different, due to the small sam-
ple size. Asm2Vec performs stably across different libraries
and is able to find clones with high precision. On average,
it achieves more than 93% precision in detecting clones
among compiler optimization options O1, 02, and O3. As
the difference between two optimization levels increases,
the performance of the Asm2Vec decreases. Nevertheless, it
is much less sensitive than the other static features, which
demonstrates its robustness.

Discovre and Genius are two recent static approaches
that use descriptive statistics and graph matching. Both of
them are not available for evaluation. CACompare has been
shown to outperform Discovre [7], Genius [6] and Blan-
ket [10]. Our approach achieves comparable performance to
CACompare, which indirectly compares Asm2Vec’s perfor-
mance to Discovre and Genius.

In the best situation where we compare between op-
timization level O2 and O3, the baseline static features’
performance is inline with the result reported in the original
paper, which shows the correctness of our implementation.

3. Available at https://github.com/google/functionsimsearch

480

In the worse case, we notice that the Constant model out-
performs the other static features based on assembly instruc-
tions and graph structures. The reason is that constant tokens
do not suffer from changes in assembly instructions and
subgraph structures. We also notice that BinGo, in the worse
case, outperforms static features. However, in the best case,
its performance is not as good as static features, such as
Graphlet-C and n-grams, because the noise at the symbolic
logic level is higher than at the assembly code level. Logical
expressions promote recall and can find clones when the
syntax is very different. However, assembly instructions can
provide more precise information for matching.

The largest binary, OpenSSL, has more than 5,000 func-
tions. Asm2Vec takes on average 153 ms to train an assembly
function and 20 ms to process a query. For OpenSSL,
CACompare takes on average 12 seconds to fulfill a query.

5.2. Searching with Code Obfuscation

Obfuscator-LLVM (O-LLVM) [24] is built upon the
LLVM framework and the CLANG compiler toolchain. It
operates at the intermediate language level and modifies
a program’s logics before the binary file is generated. It
increases the complexity of the binary code. O-LLVM uses
three different techniques and their combination: Bogus
Control Flow Graph (BCF), Control Flow Flattening (FLA),
and Instruction Substitution (SUB). Figure 7 shows the
statistics on differences.

e BCF modifies the control flow graph by adding a large
number of irrelevant random basic blocks and branches.
It will also split, merge, and reorder the original basic
blocks. BCF breaks CFG and basic block integrity (on
average 149% vertices/edges are added).
FLA reorganizes the original CFG using complex hier-
archy of new conditions as switches (see an example in
Figure 1). The original instructions are heavily modified
to accommodate the new entering conditions and vari-
ables. The linear layout has been completely modified
(on average 376% vertices and edges are added). Graph-
based features are oblivious to this technique. It is also
unscalable for a dynamic approach to fully cover the CFG.
SUB substitutes fragments of assembly code to its equiva-
lent form by going one pass over the function logic using
predefined rules. This technique modifies the contents of
basic blocks and adds new constants. For example, addi-
tions are transformed to @ = b — (—c). Subtractions are
transformed to r = rand();a = b—r;a = a—c;a = a+r.
And operations are transformed to a = (bA « ¢)&b. SUB
does not change much of the graph structure (91% of
functions keep the same number of vertex and edge).
BCF+FLA+SUB uses all the obfuscation options above.
O-LLVM heavily modifies the original assembly code. It
breaks the CFG and the basic blocks integrity. By design,
most of the static features are oblivious to the obfuscation.
By using the CLANG compiler with O-LLVM, we success-
fully compile four libraries used in the last experiment and
evaluate Asm2Vec using them. There were compilation er-
rors when compiling the other binaries with the CLANG+O-

a) Empirical Distribution of String Editing Distance

b) Empirical Distribution of Count of Vertex+Edge

1.00 - 1.00 = .
avg=0 g o»®
avg=1:335 @ <l
—~ ! —~
%, 0.754 Options '%)-, 0.754 Options
o 0504 avg=0.122 ® FLAp(0)=0 =4 0504 av.g=2.536 ® FLAp(0)=0.02
é ® SUBp(0)=0.01 § avg=3.765 ® SUBp(0)=0.91
E 0.251 ® BCFp(0)=0 $ 0254 ® BCF p(0)= 0.05
4 ALL p(0)=0 . ALL p(0)= 0.04
0.00+ T = - T T T T 0.00 T T T T T
0.0 05 1.0 1.5 2.0 0.0 25 5.0 75 10.0

Relative Absolute Difference between a Clone Pair

Relative Absolute Difference between a Clone Pair

Figure 7: The difference between the original function and the obfuscated function. a) Relative string editing distance. 0.122
indicates that around 12.2% percent of bytes are modified. b) Relative absolute difference in the count of vertices and edge.
1.49% indicates the obfuscated function has 149% more vertices and edges in CFG.

O-LLVM - Bogus Control Flow Graph (BCF) O-LLVM - Instruction Substitution (SUB)
Baselines Libgmp ImageMagick LibTomCrypt =~ OpenSSL Avg. Libgmp ImageMagick LibTomCrypt = OpenSSL Avg.
Composite 226 224 312 .246 252 .620 .675 .600 .766 .665
Constant 130 .592 412 318 .363 173 .622 492 .360 412
Graphlet .003 .005 .033 .007 .012 .198 158 411 .308 .269
Graphlet-C 112 118 165 124 130 .626 572 .539 .585 .581
Graphlet-E .026 011 .050 .014 .025 454 216 .286 271 .307
MixedGram 220 234 375 .303 .283 .585 .642 .563 743 .633
MixedGraph 011 .007 .049 014 .020 .356 325 495 488 416
n-gram 134 134 295 .195 .190 466 516 513 .670 .541
n-perm 233 224 374 274 276 .557 .624 .558 736 619
FuncSimSearch .109 .022 .029 .027 .047 .685 442 .699 .330 .539
PV(DM/DBOW) .784 .870 .842 .768 816 .935 .968 .964 .958 .956
Asm2Vec * 802 920 933 .883 .885 940 960 981 961 961

O-LLVM - Control Flow Flattening (FLA) O-LLVM - SUB+FLA+BCF

Baselines Libgmp ImageMagick LibTomCrypt =~ OpenSSL Avg. Libgmp ImageMagick LibTomCrypt =~ OpenSSL Avg.
Composite 138 129 .052 .027 .086 219 .226 .015 .009 117
Constant .105 480 215 .209 252 137 .591 173 159 .265
Graphlet .000 .002 .000 .000 .000 .000 .005 .000 .000 .001
Graphlet-C .003 .008 .000 .001 .003 .107 124 .000 .000 .058
Graphlet-E .001 .002 .000 .000 .001 .020 012 .000 .000 .008
MixedGram .148 .143 .075 .036 .101 221 234 018 .010 121
MixedGraph .003 .003 .000 .000 .002 .006 .010 .000 .000 .004
n-gram .095 .093 .059 .030 .069 154 .144 .013 .007 .079
n-perm .133 126 .055 .033 .087 224 222 018 .008 118
FuncSimSearch .095 .001 .004 .008 .027 110 .025 .003 .008 .037
PV(DM/DBOW) 852 938 .786 .763 .835 .780 .873 .639 .595 722
Asm2Vec * 772 .920 890 795 844 854 .880 830 690 814

TABLE 2: Clone search between the original and obfuscated binary using the Precision at Position 1 (Precision@ I) metric.
It captures the ratio of functions that are correctly matched at position 1, which is equal to Recall at Position 1 (Recall@]1)
in this case. The difference between Asm2Vec and each baseline is significant (p <0.01 in a Wilcoxon signed-rank test).

LLVM toolchain. According to Figure 7, there is a significant
difference between the original and the ones obfuscated with
BCF and FLA. BCF doubles the number of vertices and
edges. FLA almost doubles the latter. With SUB, the number
of assembly instructions significantly increases. We use the
same set of baselines and configurations from the previous
experiment except for BinGo and CACompare, since they
are unavailable for evaluation and the original papers do
not include such an experiment.

We first compile a selected library without any obfusca-
tion techniques applied. After, we compile the library again
with a chosen obfuscation technique to have an original and
an obfuscated binary. We link their assembly functions by
using debug symbols and generate a one-to-one clone map-
ping between assembly functions. This mapping is used for
evaluation purposes only. After stripping binaries, we search
the original against the obfuscated. Then, we search for the
obfuscated against the original. We report the average. We
use the Precision@] as our evaluation measure. In this case,

Precision@] equals Recall@], since we treat ‘no-answer’
for a query as a zero precision.

Table 2 shows the results for O-LLVM. We find that
instructions substitution can significantly reduce the perfor-
mance of n-gram. SUB breaks the sequence by adding in-
structions in between. n-perm performs better than n-gram,
since it ignores the order of tokens. Graph-based features
can still recover more than 60% of clones, since the graph
structure is not heavily modified. Asm2Vec can achieve more
than 96% precision against assembly instruction substitu-
tion. Instructions are replaced with their equivalent form,
which in fact still shares similar lexical semantic to the
original. This information is well captured by Asm2Vec.

After applying BCF obfuscation, Asm2Vec can still
achieve more than 88% precision, where the control flow
graph already looks very different from the original. It shows
that Asm2Vec is resilient to the inserted junk code and
faked basic blocks. The FLA obfuscation destroys all the
subgraph structures. This is also reflected from the degraded

481

(a) Recall rates across different threshold K

(b) Precision-recall curve for the top 1 to 200 query results.

(c) Sensitivity Test

33
08|\
0
064

0.54

coo-
Nowoo

)
o oo
258

0.4+

o
©

0.34

Recall (log-scaled
o
o
=
o
N

Precision (log-scaled)
o

”?:‘0309 0819 0819 082

[1@vospag

0853 0856 0856

1 osa

204-0NY

1 0376 0378 0378
037 T

¥d-0NY.

32976 351‘202
262028 e
118326

o
K

S N O S O 0 O O O
LPELELLL S

Number of results retrieved.

Asm2Vec

Constant
Methods
Composite —— GraphletColored -~ MixGram

— GraphletExtended -7~ MixGraph
n-gram

121.707 123.072

Recall 1204112419

108.433

‘(s\u) owi] porees | | (su) ewr xepul ‘ \

n-perm

PV(DM/DBOW) 100 200 300 400
Vector Size (Metrics calculated based on top-200 results)

Figure 8: Baseline comparison for the third experiment. There are 139,936 assembly functions. We search each one against
the rest. The set is a mixture of different compilers, compiler optimization settings, and O-LLVM obfuscation settings. a)
Recall rates are plotted for different top- K retrieved results. b) Recall-Precision Curve. c) Sensitivity test on dimensionality.

performance of graph sub-structure features. Most of them
have a precision value around zero. Even in such situations,
Asm2Vec can still correctly match 84% of assembly function
clones. It shows that Asm2Vec is resilient to sub-structure
changes and linear layout changes. After applying all the
obfuscation techniques, Asm2Vec can still recover around
81% of assembly functions.

Asm2Vec can correctly pinpoint and identify critical
patterns from noise. Inserted junk basic blocks or noise
instructions follow the general syntax of random assembly
code, which can be easily predicted by neighbor instructions.
The function representation in Asm2Vec captures the missing
information that cannot be provided by neighbor instruc-
tions. It also weights this information to best distinguish
one function from another.

5.3. Searching against All Binaries

In this experiment, we use all the binaries in the pre-
vious two experiments. We evaluate whether Asm2Vec can
distinguish different assembly functions when the candidate
set is large. We also evaluate its performance with varying
retrieval thresholds to inspect whether true positives are
ranked at the top. Specifically, there are in total 60 binaries,
which are a mixture of libraries compiled for different
compiler options (O0-O3), different compilers (GCC and
CLANG), and different O-LLVM obfuscation configurations.
Following the experiment in Genius [6] and Discovre [7],
we consider assembly functions that have at least 5 basic
blocks. However, we do not use sampling. We use all of
them. In total, there are 139,936 assembly functions. For
each of them, we search against the rest to find clones.
We sort the returned results and evaluate each of them in
sequence. We use the same set of baselines and configuration
from the last experiment except for FuncSimSearch, since
it throws segmentation fault when indexing all the binaries.

We collect recall and precision at different top-%k posi-
tions. We plot recall against k£ in Figure 8(a). We remove

482

Graphlet from the figure, since it does not perform any
better than Graphlet-Extended. Even with a large size of
assembly functions, Asm2Vec can still achieve a recall of
70% for the top 20 results. It significantly outperforms other
traditional token-based and graph-based features. Moreover,
we observe that token-based approaches in general perform
better than subgraph-based approaches.

We plot precision against recall for each baseline in
Figure 8(b). This curve evaluates a clone search engine
with respect to the trade-off between precision and recall,
when varying the number of retrieved results. As shown in
the plot, Asm2Vec outperforms traditional representations of
assembly code. It achieves 82% precision for the returned
top clone search result where £ = 1. The false positives
on average have 33 basic blocks (¢ = 231). On the other
hand, all the functions in the dataset on average have 47
basic blocks (o 110) as a prior. By using a one-sided
Kolmogorov-Smirnov test, we can conclude that false posi-
tives have a smaller number of basic blocks than the overall
population (p < 2.2¢716). We conduct a sensitivity test
based on top-200 results to evaluate different choices of
vector size. Figure 8 (c) shows that with difference vector
size Asm2Vec is stable for both efficacy and efficiency. We
tried to incorporate more neighbor instructions. However,
this increases the possible patterns to be learned and requires
more data. In our experiment, we did not find such design
effective.

5.4. Searching Vulnerability Functions

In the above experiments, we evaluate Asm2Vec’s overall
performance on matching general assembly functions. In
this case study, we apply Asm2Vec on a publicly available
vulnerability dataset* presented in [18] to evaluate its perfor-
mance in actually recovering the reuse of the vulnerabilities
in functions. The dataset contains 3,015 assembly functions.

4. Available at https://github.com/nimrodpar/esh-dataset- 1523

ESH [18] Asm2Vec
Vulnerability CVE FP ROC CROC |FP ROC CROC
Heartbleed 2014-0160 | O 1 1 0 1 1
Shellshock 2014-6271| 3 0.999 0.996 | 0 1 1
Venom 2015-3456 | 0 1 1 0 1 1
Clobberin’ Time 2014-9295 |19 0.993 0.956 | 0 1 1
Shellshock #2 2014-7169 | 0 1 1 0 1 1
ws-snmp 2011-0444 | 1 1 0.997 | 0 1 1
wget 2014-4877| 0 1 1 0 1 1
ffmpeg 2015-6826 | 0 1 1 0 1 1
TABLE 3: Evaluating Asm2Vec on the vulnerability

dataset [18] using the False Positives (FP), Receiver Oper-
ating Characteristic (ROC), and Concentrated ROC (CROC)
metrics. For all the cases, Asm2Vec retrieves all results
without any false positives.

For each of the 8 given vulnerabilities, the task is to retrieve
its variants from the dataset. The variants are either from
different source code versions or generated by different
versions of GCC, ICC and CLANG compilers. This dataset
is closely related to the real-life scenario.

Figure 9 shows an example of using Asm2Vec to search
for the Heartbleed vulnerability in the dataset. The query
is a function containing the Heartbleed vulnerability in
OpenSSL version 1.0.1f, compiled with Clang 3.5. There
are total 15 different functions containing this vulnerability.
The pie chart in each ranked entry indicates the similarity.
Each ranked entry contains the assembly function name and
its corresponding binary file. As shown in the ranked list,
Asm2Vec successfully retrieves all the 15 candidates in the
top 15 results. Therefore, it has a precision and recall of 1 for
this query. The first entry corresponds to the same function
as the query. However, it does not have a similarity of 1
since the query’s representation is estimated but the one in
repository is trained. However, it is still ranked first.

We implement Asm2Vec as an open source vulnerability
search engine and follow the same experimental protocol to
compare its performance with the state-of-the-art vulnerabil-
ity search solution in [18]. Table 3 shows the results. We use
the same performance metrics as [18]: False Positives (FP),
Receiver Operating Characteristic (ROC), and Concentrated
ROC (CROQ). For all the vulnerabilities, Asm2Vec has zero
false positives and 100% recall. Therefore, it achieves a
ROC and a CROC of 1. It outperforms [18].

Tigress [25] is another advanced obfuscator. It trans-
forms the C Intermediate Language (CIL) using virtual-
ization and Just-In-Time (JIT) execution. Tigress failed to
obfuscate a complete library binary due to compilation er-
rors. Therefore we were unable to evaluate Asm2Vec against
Tigress in the same way as against O-LLVM in Section 5.2.
We increase the difficulty on the vulnerability search by
using the Tigress obfuscator. In this experiment, for each
of the 8 different vulnerabilities, we obfuscate the query
function with literals encoded, virtualization, and Just-In-
Time execution. Then, we try to recover their original
variants from the dataset. Encode Literals: Literal integers
are replaced with opaque expressions. Literal strings are
replaced with a function that generates them at runtime.
Virtualization: This transformation turns a function into an

483

& bin2018-01-07 21-51-59 [1 functions]
rhu func-2018-01-07 21-51-59

U I3 [©) dtls1_process_heartbeat @ clang.3.5_openssl.1.0.1f.0

(7} 131 [© dtis1_process_heartbeat @ clang.3.4_openssl.1.0.1f.0

7] 31 [© dtis1_process_heartbeat @ clang.3.5_openssl.1.0.1e.0

U 1t { dtis1_process_heartbeat @ clang.3.5_ httpd_dtis1.0

“ I3 [©) dtis1_process_heartbeat @ gcc.4.8_openssl.1.0.1.f.0

byp dtis1_process_heartbeat @ gcc.4.9_openssl.1.0.1e.0

€] I3 O dtis1_process_heartbeat @ gcc.4.9_openssl.1.0.1.f.0

° I3 [©) dtis1_process_heartbeat @ gcc.4.6_openssl.1.0.1.f.0

~ 131 [© dtis1_process_heartbeat @ icc.15.0.1_openssl.1.0.1e.0

("] I3 O dtis1_process_heartbeat @ icc.14.0.4_openssl.1.0.1f.0

0 I3 O dtls1_process_heartbeat @ icc.15.0.1_openssl.1.0.1f.0

° 31 [©) dtis1_process_heartbeat @ clang.3.5_openssl.1.0.1g.0

[131 [© dtis1_process_heartbeat @ gcc.4.9__apache.2__httpd__dtls1.0

(7 I3 O dtis1_process_heartbeat @ gcc.4.9_openssl.1.0.1g.0

¢ 31 @ dtis1_process_heartbeat @ icc.15.0.1_openssl.1.0.1g.0

‘ 31 [©) recurse_tree @ gcc.4.9_coreutils.8.23_tsort.o

[§ I3 © fchmod_or_Ichmod @ gcc.4.9_coreutils_8.23_copy.o

([§ 131 @ recurse_tree @ gce.4.6_coreutils.8.23_tsort.o

‘ 31 [©) xstreoll_df_extension @ clang.3.5_coreutils_8.23_ls.o

[§ 31 © xstreoll_df_name @ clang.3.4_coreutils.8.23_ls.0
Figure 9: Searching the Heartbleed vulnerable function in
the vulnerability dataset. The binary name indicates the
compiler, library name, and library version. For example,
clang.3.5_openssl.1.0.1f indicates that the binary is library

OpenSSL version 1.0.1f compiled with clang version 3.5.

interpreter with specialized byte code translation. By design,
it is difficult for a static approach to detect clones protected
by this technique. JIT: It transforms the function to generate
its code at runtime. Almost every instruction is replaced with
a function call. By design, a static approach can hardly
recover any variants. Our result shows that Asm2Vec is
still able to recover 97.2% with literals encoded, 35% with
virualization, and 45% with JIT execution (see Table 4). We
inspect the result and find that Asm2Vec tries to match any
similar information neglected by the obfuscator. However,
after applying three obfuscation techniques at the same time,
Asm2Vec can no longer recover any clone.

6. Related Work

Static approaches such as k-gram [26], LSH-S [16], n-
gram [8], BinClone [15], ILine [27], and KamInO [17] rely
on operations or categorized operands as static features.
BinSequence [28] and Tracelet [14] model assembly code
as the editing distance between instruction sequences. All
these features failed to leverage the semantic relationship
between operations or categories. TEDEM [29] compares
basic blocks by their expression trees. However, even se-
mantically similar instructions result in different expressions
and side effects, which make them sensitive to instruction
changes. ILine [27], Discovre [T], Genius [6], BinSign [30],
and BinShape [31] construct descriptive statistic features,
such as ratio of arithmetic assembly instructions, ratio of
transfer instructions, number of basic blocks, and number
of function calls, among others. Instruction-based features
failed to consider the relationships between instructions and
are affected by instruction substitutions. In NLP tasks one
usually penalizes frequent words by filtering, subsampling
or generalization. For assembly language we find that fre-
quent words improve the robustness of the representation.

Searching with Obfuscation Options in Tigress

Name | Heartbleed ShellshocK Venom Clobberin’ Time Shellshock #2 ws-snmp wget ffmpeg avg.

CVE | 2014-0160 2014-6271 2015-3456 2014-9295 2014-7169 2014-4877 2014-4877 2015-6826

of Positives (k) 15 9 6 10 3 7 3 7
Encode Literal 100% 77.8% 100% 100% 100% 100% 100% 100% 97.2%
Virtualization 0% 0% 100% 20% 100% 0% 66.7% 0% 35.8%
JIT Execution 53.3% 0% 83.3% 30% 33.3% 0% 0% 100% 37.5%

TABLE 4: True Positive Rate (TPR) of the top-k results searching the obfuscated vulnerable function against the dataset
in [18]. k is chosen as the number of ground-truth clones in the dataset. For example, Venom CVE 2015-3456-4877 has 6
variants in the dataset. By inspecting the top-6 results from Asm2Vec we recovered 100% (6/6) for the query with literals
encoded, 100% (6/6) for the virtualized query, and 83.3% (5/6) for JIT-transformed query. After applying all the options at

the same time, Asm2Vec cannot recover any true positives.

Graph-based features are oblivious to CFG manipulations.
BinDiff [32] and BinSlayer [33] rely on CFG matching,
which is susceptible to CFG changes such as flattening.
Gitz [34] is another static approach that used at the IR level.
However, it operates at the boundary of a basic block and
assumes basic block integrity, which is vulnerable to split-
ting. [35] proposes a graph convolution approach. It might
be able to mitigate graph manipulation. However, it relies
on supervised learning and requires a ground-truth mapping
of equivalent assembly functions to be trained. Asm2Vec
enriches static features by considering the lexical semantic
relationships between tokens appearing in assembly code.
It also avoids direct use of the graph-based features and is
more robust against CFG manipulations. However, the CFG
is useful in some malware analysis scenarios, especially for
matching template-generated and marco-generated functions
that share similar CFG structure. One direction is to combine
Asm2Vec and Tracelet [14] or subgraph search [17].

Dynamic methods measure semantic similarity by dy-
namically analyzing the behavior of the target assembly
code. BinHunt [36], iBinHunt [37], and ESH [18] use a
theorem prover to verify whether two basic blocks or strands
are equivalent. BinHunt and iBinHunt assume basic blocks
integrity. ESH assumes strand integrity. They are vulnera-
ble to block splitting. Jiang et al. [38], Blex [10], Multi-
MH [11], and BinGo [12] use randomly-sampled values
to compare I/O values. Random sampling may not cor-
rectly discriminate two logics. Consider that one expression
outputs 1 if v! = 100; otherwise, 0. Another expression
outputs 1 if v! = 20, otherwise, 0. Given a widely-used
sampling range [—1000,1000], they have a high chance
of being equivalent. CACompare follows the similar idea
used in [39], [40], [41]. Besides of I/O values, it records
all intermediate execution results and library function calls
for matching. Using similar experiments to match assembly
functions, CACompare achieves the best performance among
the binary clone search literature at the time of writing this
paper. However, it depends on a single input value and only
covers one execution path. As stated by the authors, it is
vulnerable to CFG changes. Asm2Vec leverages the lexical
semantic rather than the symbolic relationship which is more
scalable and less vulnerable to added noisy logics. As a
static approach, Asm2Vec achieves competitive performance
compared to CACompare. CryptoHunt is a recent dynamic
approach for matching cryptographic functions. It can de-

484

tect wrapped cryptographic API calls. Asm2Vec focuses on
assembly code similarity, which is different to CryptoHunt.

Source code clone is another related area. CCFIND-
ERX [42] and CP-Miner [43] use lexical tokens as features
to find code clones. Baxter et al. [44] and Deckard [45]
leverage abstract syntax trees for clone detection. ReDe-
bug [46] is another scalable source code search engine. Re-
cently, deep learning has been applied on this problem [47].

7. Limitations and Conclusion

Asm2Vec suffers from several limitations. First, it is
designed for a single assembly code language and the clone
search engine is architecture-agnostic. At this stage, it is not
directly applicable for semantic clones across architectures.
In the future, we will align the lexical semantic space
between two different assembly languages by considering
their shared tokens, such as constants and libc calls. Second,
the current selective callee expansion mechanism cannot de-
termine the dynamic jumps, such as jump table. Third, as a
black box static approach, Asm2Vec cannot explain or justify
the returned results by showing the cloned subgraphs or
proving symbolic equivalence. It has limited interpretability.

In this paper, we propose a robust and accurate assem-
bly clone search approach named Asm2Vec, which learns
a vector representation of an assembly function by dis-
criminating it from the others. Asm2Vec does not require
any prior knowledge such as the correct mapping between
assembly functions or the compiler optimization level used.
It learns lexical semantic relationships of tokens appearing
in assembly code, and represents an assembly function as an
internally weighted mixture of latent semantics. Besides as-
sembly functions, it can be applied on different granularities
of assembly sequences, such as binaries, fragments, basic
blocks, or functions. We conduct extensive experiments
on assembly code clone search, using different compiler
optimization options and obfuscation techniques. Our results
suggest that Asm2Vec is accurate and robust against severe
changes in the assembly instructions and control flow graph.

Acknowledgments

The authors would like to thank the reviewers for the
thorough reviews and valuable comments. This research is
supported by Defence Research and Development Canada

(contract no. W7701-155902/001/QCL), NSERC Discovery
Grants (RGPIN-2018-03872), and Canada Research Chairs
Program (950-230623).

References

(1]

(2]

[3]

[4]

[5]

(6]

(7

[8]

[

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

A. Mockus, “Large-scale code reuse in open source software,” in
Proceedings of the International Workshop on Emerging Trends in
FLOSS Research and Development. 1EEE, 2007.

M. Sojer and J. Henkel, “Code reuse in open source software devel-
opment: Quantitative evidence, drivers, and impediments,” Journal of
the Association for Information Systems, vol. 11, no. 12, 2010.

E. Juergens et al., “Why and how to control cloning in software
artifacts,” Technische Universitit Miinchen, 2011.

S. Brown. (2016) Binary diffing with kam1n0. [Online]. Available:
https://www.whitehatters.academy/diffing- with-kam 1n0/

J. Qiu, X. Su, and P. Ma, “Library functions identification in binary
code by using graph isomorphism testings,” in Proceedings of the
22nd IEEE International Conference on Software Analysis, Evolution,
and Reengineering, 2015.

Q. Feng, R. Zhou, C. Xu, Y. Cheng, B. Testa, and H. Yin, “Scalable
graph-based bug search for firmware images,” in Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications
Security, 2016.

S. Eschweiler, K. Yakdan, and E. Gerhards-Padilla, “discovre: Ef-
ficient cross-architecture identification of bugs in binary code,” in
Proceedings of the 23rd Symposium on Network and Distributed
System Security (NDSS), 2016.

W. M. Khoo, A. Mycroft, and R. J. Anderson, “Rendezvous: a
search engine for binary code,” in Proceedings of the 10th Working
Conference on Mining Software Repositories, 2013.

L. Luo, J. Ming, D. Wu, P. Liu, and S. Zhu, “Semantics-based
obfuscation-resilient binary code similarity comparison with appli-
cations to software plagiarism detection,” in Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, 2014.

M. Egele, M. Woo, P. Chapman, and D. Brumley, “Blanket execution:
Dynamic similarity testing for program binaries and components,” in
Proceedings of the 23rd USENIX conference on Security, 2014.

J. Pewny, B. Garmany, R. Gawlik, C. Rossow, and T. Holz, “Cross-
architecture bug search in binary executables,” in Proceedings of the
IEEE Symposium on Security and Privacy (SP). 1EEE, 2015.

M. Chandramohan, Y. Xue, Z. Xu, Y. Liu, C. Y. Cho, and H. B. K.
Tan, “Bingo: cross-architecture cross-os binary search,” in Proceed-
ings of the 2016 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, 2016.

Y. Hu, Y. Zhang, J. Li, and D. Gu, “Binary code clone detection
across architectures and compiling configurations,” in Proceedings of
the 25th International Conference on Program Comprehension, 2017.

Y. David and E. Yahav, “Tracelet-based code search in executables,”
in Proceedings of the 37th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, 2014.

M. R. Farhadi, B. C. M. Fung, P. Charland, and M. Debbabi, “Bin-
clone: Detecting code clones in malware,” in Proceedings of the 8th
International Conference on Software Security and Reliability, 2014.

A. Saebjornsen, ‘“Detecting fine-grained similarity in binaries,” Ph.D.
dissertation, UC Davis, 2014.

S. H. H. Ding, B. C. M. Fung, and P. Charland, “KamlnO:
Mapreduce-based assembly clone search for reverse engineering,” in
Proceedings of the 22nd ACM International Conference on Knowl-
edge Discovery and Data Mining (SIGKDD).

485

(18]

[19]

(20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

[31]

[32]

(33]

[34]

[35]

ference on ICT Systems Security and Privacy Protection.

Y. David, N. Partush, and E. Yahav, “Statistical similarity of binaries,”
in Proceedings of the 37th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, 2016.

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol.
521, no. 7553, pp. 436-444, 2015.

Q. Le and T. Mikolov, “Distributed representations of sentences
and documents,” in Proceedings of the International Conference on
Machine Learning, 2014, pp. 1188-1196.

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their compo-
sitionality,” in Proceedings of the Advances in Neural Information
Processing Systems, 2013.

D. Andriesse, A. Slowinska, and H. Bos, “Compiler-agnostic function
detection in binaries,” in Proceedings of the 2017 IEEE European
Symposium on Security and Privacy (EuroS&P), 2017, pp. 177-189.

C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna, “Poly-
morphic worm detection using structural information of executables,”
in Proceedings of the International Workshop on Recent Advances in
Intrusion Detection. Springer, 2006.

P. Junod, J. Rinaldini, J. Wehrli, and J. Michielin, “Obfuscator-
Ilvm-software protection for the masses,” in Proceedings of 2015
IEEE/ACM 1st International Workshop on Software Protection
(SPRO). 1EEE, 2015.

S. Banescu, C. S. Collberg, V. Ganesh, Z. Newsham, and
A. Pretschner, “Code obfuscation against symbolic execution attacks,”
in Proceedings of the 32nd Annual Conference on Computer Security
Applications, ACSAC 2016, Los Angeles, CA, USA, December 5-9,
2016, 2016, pp. 189-200.

G. Myles and C. Collberg, “K-gram based software birthmarks,” in
Proceedings of the 2005 ACM Symposium on Applied Computing.
ACM, 2005, pp. 314-318.

J. Jang, M. Woo, and D. Brumley, “Towards automatic software lin-
eage inference.” in Proceedings of the USENIX Security Symposium,
2013, pp. 81-96.

H. Huang, A. Youssef, and M. Debbabi, “BinSequence: Fast, accurate
and scalable binary code reuse detection.” in Proceedings of the
ACM Asia Conference on Computer and Communications Security
(ASIACCS). ACM Press, 2017.

J. Pewny, FE. Schuster, L. Bernhard, T. Holz, and C. Rossow, “Lever-
aging semantic signatures for bug search in binary programs,” in
Proceedings of the 30th Annual Computer Security Applications
Conference. ACM, 2014.

L. Nouh, A. Rahimian, D. Mouheb, M. Debbabi, and A. Hanna, “Bin-
Sign: Fingerprinting binary functions to support automated analysis
of code executables,” in Proceedings of the IFIP International Con-
Springer,
2017.

P. Shirani, L. Wang, and M. Debbabi, “BinShape: Scalable and robust
binary library function identification using function shape,” in Pro-
ceedings of the International Conference on Detection of Intrusions
and Malware, and Vulnerability Assessment. Springer, 2017.

T. Dullien and R. Rolles, “Graph-based comparison of executable
objects (english version),” SSTIC, vol. 5, no. 1, p. 3, 2005.

M. Bourquin, A. King, and E. Robbins, “Binslayer: accurate compari-
son of binary executables,” in Proceedings of the 2nd ACM SIGPLAN
Program Protection and Reverse Engineering Workshop. — ACM,
2013, p. 4.

Y. David, N. Partush, and E. Yahav, “Similarity of binaries through re-
optimization,” in Proceedings of the 38th ACM SIGPLAN Conference
on Programming Language Design and Implementation. — ACM,
2017, pp. 79-94.

X. Xu, C. Liu, Q. Feng, H. Yin, L. Song, and D. Song, “Neural
network-based graph embedding for cross-platform binary code sim-
ilarity detection,” in Proceedings of the 2017 ACM SIGSAC Confer-
ence on Computer and Communications Security. ACM, 2017, pp.
363-376.

[36]

[37]

[38]

[39]

(40]

[41]

(42]

[43]

[44]

[45]

[46]

[47]

D. Gao, M. K. Reiter, and D. Song, “Binhunt: Automatically finding
semantic differences in binary programs,” in Proceedings of the In-
ternational Conference on Information and Communications Security.
Springer, 2008.

J. Ming, M. Pan, and D. Gao, “ibinhunt: Binary hunting with inter-
procedural control flow,” in Proceedings of the International Confer-
ence on Information Security and Cryptology. Springer, 2012.

L. Jiang and Z. Su, “Automatic mining of functionally equivalent
code fragments via random testing,” in Proceedings of the 18th
International Symposium on Software Testing and Analysis. ACM,
2009.

Y.-C. Jhi, X. Wang, X. Jia, S. Zhu, P. Liu, and D. Wu, “Value-based
program characterization and its application to software plagiarism
detection,” in Proceedings of the 33rd International Conference on
Software Engineering (ICSE). 1EEE, 2011.

F. Zhang, Y.-C. Jhi, D. Wu, P. Liu, and S. Zhu, “A first step
towards algorithm plagiarism detection,” in Proceedings of the 2012
International Symposium on Software Testing and Analysis. ACM,
2012.

X. Zhang and R. Gupta, “Matching execution histories of program
versions,” in Proceedings of the 10th European Software Engineering
Conference. ACM, 2005.

T. Kamiya, S. Kusumoto, and K. Inoue, “Ccfinder: a multilinguistic
token-based code clone detection system for large scale source code,”
IEEE Transactions on Software Engineering, vol. 28, no. 7, 2002.

Z. Li, S. Lu, S. Myagmar, and Y. Zhou, “Cp-miner: Finding copy-
paste and related bugs in large-scale software code,” IEEE Transac-
tions on Software Engineering, vol. 32, no. 3, 2006.

1. D. Baxter, A. Yahin, L. Moura, M. Sant’ Anna, and L. Bier, “Clone
detection using abstract syntax trees,” in Proceedings of International
Conference on Software Maintenance. 1EEE, 1998.

L. Jiang, G. Misherghi, Z. Su, and S. Glondu, “Deckard: Scalable
and accurate tree-based detection of code clones,” in Proceedings of
the 29th International Conference on Software Engineering. 1EEE
Computer Society, 2007.

J. Jang, A. Agrawal, and D. Brumley, “Redebug: finding unpatched
code clones in entire os distributions,” in Proceedings of IEEE
Symposium on Security and Privacy (SP). 1EEE, 2012.

M. White, M. Tufano, C. Vendome, and D. Poshyvanyk, “Deep
learning code fragments for code clone detection,” in Proceedings of
the 31st IEEE/ACM International Conference on Automated Software
Engineering. ACM, 2016.

486

Appendix A.
Extended Formulation of Asm2Vec

This appendix extends the original description and the
formulation of the Asm2Vec model training. Recall that we
define f; as an assembly function in the repository at the
beginning of Section 4. The Asm2Vec model tries to learn
the following parameters:

@ fs € R2Xd The vector representation of the function fs.
¥ € R4 The vector representation of a token ¢.
v’y € RY Another vector of token ¢, used for prediction.

TABLE 5: Parameters to be estimated in training.

All 5fs and ¥, are initialized to small random value
around zero. All v/ + are initialized to zeros. We use 2 X d
for fs; since we concatenate the vector for operation and
operands to represent an instruction. We also define the
following symbols according to the syntax of assembly
language:

S(fs) = seq[l : 1]
I(seq;) =in[l: j]

Multiple sequences generated from fs.
Instructions of a sequence seg;.
The jt" instruction in a sequence.

in;

j
A(ing) Operands of instruction in ;.
P(iny) The operation of instruction in.
T (iny) Represent the tokens of in;.

CT (iny) € R2X¢
CT(inj_l) € R2xd

Vector representation of an instruction in;.
Vector representation of in;’s previous in-
struction.

Vector representation of an instruction in;’s
next instruction.

Vector representation of the joint memory of
function fs and in;’s neighbor instructions.

CT(iTLj+1) € RZXd

6(inj7 fs)

TABLE 6: Intermediate symbols used in training.

For an instruction in;, We treat the concatenation of
its operation and operands as its tokens 7 (in;): T (in;) =
P(in;) || A(in;), where || denotes concatenation. CT (in)
denotes the vector representation of an instruction in.

A(in)

D

t

| A(in)]

The representation is calculated by averaging the vector
representations of its operands .A(in). The averaged vector
is then concatenated to the vector representation ¥p ;) of
its operation P(in).

As presented in Algorithm 1, the training procedure goes
through each assembly function f; in the repository and
generates multiple sequences by calling S(fs). For each
sequence seq; of function f;, the neural network walks
through the instructions from its beginning. We collect the
current instruction in;, its previous instruction in;_1, and
its next instruction #n;,1. We ignore the instructions that
are out-of-boundary. We calculate 7 (in;_1) and T (in;111)
using the previous equation. By averaging f,’s vector repre-
sentation 6, with CT (in; — 1) and CT (in; + 1), d(in, fs)
models the joint memory of neighbor instructions:

1.
d(ing, fs) = g(efs +CT (inj—1) + CT (inj+1))

CT (in) = Up(in)l|

487

For the current instruction 4n;, the proposed model
maximizes the following log probability:

T (ing)
arg max Z log P(te|fs,ing—1,in,41)

te

It predicts each token in the current instruction in; based on
the joint memory of its corresponding function vector and
its neighbor instruction vectors, as illustrated in Figure 5.

To model the above prediction, one can use a typical
softmax multi-class classification layer and maximize the
following log probability:

P(t.|6(inj, fs)) = P(v's |6(inj, f5))
_ JWh,8(iny, f))
Y F(V,,0(iny, £5)
F@W,,8(ing, f.)) = UR((v":,)" x 8(in;, f.))

D denotes the whole vocabulary constructed upon the repos-
itory RP. Uh(-) denotes a sigmoid function applied to each
value of a vector. The total number of parameters to be
estimated is (|D|+ 1) x 2 x d for each pass of the softmax
layout. The term |D| is too large to be efficient for the
softmax classification.

Therefore we use the k negative sampling approach [20],
[21], to approximate the log probability:

log P(t.|0(in, fs)) ~ log f(v'y,]6(in;, fs))

k
+ ZEtdWPn,(tc)([[td 7é tc]]log f(_l X U_'/tdv 5(inj7 fs)))

=1

By manipulating the value of the parameters listed in Ta-
ble 5, we can maximize the sum of the above log-probability
for all the instruction in;.

We follow the parallel stochastic gradient decent algo-
rithm. In a single training step, we only consider a single
token t. of the current instruction in;. We calculate the
above log probability and its gradients with respect to the
parameters that we are trying to manipulate. The gradients
define the direction in which we should manipulate the
parameters in order to maximize the log probability. The
gradients are calculated by taking the derivatives with re-
spect to each parameter defined in Table 5. The table below
defines the symbol of the gradients:

3 95.9 J(0) The gradient for current function fs’s 6, fo
s
8(2’ J(0) The gradient for the token ¢. of current
vt instruction in;.
817»# The gradient for the operation of instruction
Plng41)
W The gradient for the operation of instruction
=1 in j—1-
%J 6) The gradient for each operation of instruc-
Uty

tion i’l’Lj+1 and inj_l.

TABLE 7: Gradients to be calculated in a training step.

The equations below calculate the gradients defined
above.

GCCO0 GCCOl GCCO2 GCCO3

BusyBox 52,118 46,519 47,272 62,069
CoreUtils 38,176 36,168 35,117 41,421
Libgmp 12,919 15,534 14,602 16,234
ImageMagick 85,191 88,342 84,395 93,421
Libcurl 17,969 14,097 13,483 15,371
LibTomCrypt 12,021 10,135 10,258 13,451
OpenSSL 52,063 44,527 44,642 50,043
SQLite 27,621 24,978 29,332 38,699

zlib 2,898 2,747 2,668 3,706
PuTTYgen 5,495 4,957 5,065 7, 231
Total 306,471 288,004 286,834 341,646

TABLE 8: Number of basic blocks for each selected library
compiled using different optimization options.

Original BCF FLA SUB All
Libgmp 20,168 54,738 103,258 20,168 55,007
ImageMagick 83,704 218,315 434,599 83,702 216,904
LibTomCrypt 10,044 19,534 35,608 10,115 62,895
OpenSSL 46,298 100,315 160,265 46,278 289,657
Total 160,214 392902 733,730 160,263 624,463

TABLE 9: Number of basic blocks for each selected library
under different code obfuscation options.

k
(:) J(0) = 1ZEtmen(tn) ([ty = tc] — F@4,8(ing, £))
891"5 3 i
X ’l;;t
(0) = Tt =t = F(e3(im;.) % 3(im;.)

It will be the same equation for the previous instruction
inj_1, by replacing in;1 with in;_;.

0

0
DT (iny i) J(0) = (aﬂfs J(0))[0:d—1]
0 1 5
Tth(e) = A (aé}s J(0))[d : 2d — 1]

ty € A(inj+1)

After, we use back propagation to update the values of all the
involved parameters according to their gradients in Table 7,
with a learning rate.

Appendix B.
Extended Descriptive Statistics of the Dataset

This appendix provides additional descriptive statistics
on the experimental dataset used in Section 5.1, Section 5.2,
and Section 5.3

In the compiler optimization experiment (Section 5.1,
ImageMagick generally has the largest number of assembly
basic blocks while z/ib has the least. By adopting different
compiler optimization options, the generated number of
basic blocks greatly varies. Specifically, OO0 is very different
from the other optimization levels. Ol and O2 appear to
share a similar number. O3 has the largest number of basic
blocks, which is generated by intensive inlining. Figure 12

)

488

1
e

\
Y

=l == sl

Figure 10: A function obfuscated by O-LLVM Control Flow
Graph Flattening. Only the penultimate level (red filled)
basic blocks contains the modified original logics.

shows the empirical distribution of the assembly functions
length under different optimization levels. O3 tends to pro-
duce assembly functions that are much longer than OO0, O1,
and O2. Ol and O2 share similar distributions on function
length.

In the O-LLVM obfuscation experiment (Section 5.2),
we evaluate the the clone search methods before and after
obfuscation. O-LLVM significantly increases the complexity
of the binary code. Table 9 shows how the number of basic
blocks have been changed across different obfuscation level.
Figure 13 shows the empirical distribution of the assembly
functions length under different obfuscation options. There
are three different techniques and their combination:

e BCF modifies the control flow graph by adding a large
number of irrelevant random basic blocks and branches.
It will also split, merge, and reorder the original basic
blocks. It almost double the number of basic blocks after
obfuscation (see Table 9).

FLA reorganizes the original CFG using complex hier-
archy of new conditions as switches (see an example in
Figure 1). Only the penultimate level of the CFG contains
the modified original logics. It completely destroys the
original CFG graph. The obfuscated binary on average
contains 4 times of basic blocks than the original.

v

i

and

xor
movzx

ecx,
ecx,
edx,
edx

esi,
esi

edx,
ecx,
esi,
eax,
ecx,
eax,
eax,
edx,

byte ptr [r13+1]
8

ecx

eax
movzx
shl
or
movzx

ecx,
ecx,
ecx,
eax,

byte ptr [rbp+1]
8 8D8113F6h
OECoh

eax
byte ptr [rbp+2] 8D8113F6h
9

edx
esi
ecx
byte ptr [r13+2]

Figure 11: An assembly fragment obfuscated by O-LLVM
Instruction Substitution. Left: the original fragment. Right:
the obfuscated fragment.

e SUB substitutes fragments of assembly code to its equiva-
lent form by going one pass over the function logic using
predefined rules. This technique modifies the contents
of basic blocks and adds new constants. SUB does not
change much of the graph structure Figure 11 shows an
example. Figure 13 shows that it increase the length of
the original assembly function.

Empirical Distribution Function Empirical Distribution Function

Empirical Distribution Function Empirical Distribution Function
1.00+
- - — P
<232, p=09) (<310, p=09)
3075+ 3075+ 3075 3075+
o 1) Q [}
o o o {2
8 0.50- 8050 £ 0.50 8050+
c c c c
@ (7] Q Q
<4 o e <4
$o25- $o25- Fozs 0254
0.00 T T T T T T 0.00+ T T T 0 T T 0.00 T T T T T T 000+ T T T T T T
0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
Number of Assembly Instructions Number of Assembly Instructions Number of Assembly Instructions

Number of Assembly Instructions

Figure 12: The empirical distribution function of the assembly function length in terms of number of instructions. From
left to right, each diagram corresponds to the optimization options O0, O1, O2, and O3.

Empirical Distribution Function Empirical Distribution Function Empirical Distribution Function Empirical Distribution Function Empirical Distribution Function
1.004 - 1,00 > 1.00- - 1,004 -
. * - * Qi<e76. p=09)
Ui<211, p=0.9) s (1<507, p=0.9) . (1<562, p=0.9) _ <256, p=0.9) _ . P
So75- 20754 2075+ 20754 20757
o o o o
- 2os0. Soso. 8ol [os0]
guso»“ Lo 2 goso7 | g»
g g |/ g g S ..
1 1 25- | 25+ 5~
goz- | Fozs “ oz ‘ o025 | K “
|
000+ | : 1 0.00- ‘ ! 1 0.00- | : 1 0004 | : : 0.00- ! : :
0 500 1000 o 500 1000 0 500 1000 0 500 1000 0 500 1000
Number of Assembly Instructions Number of Assembly Instructions Number of Assembly Instructions Number of Assembly Instructions Number of Assembly Instructions

Figure 13: The empirical distribution function of the assembly function length in terms of the number of instructions. Each
diagram from left to right corresponds to the original binary, the obfuscation techniques Bogus Control Flow Graph, Control
Flow Flattening, Instruction Substitution, and the application of all the obfuscation techniques provided by Obfuscator-LLVM.

489

