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Abstract—We present a hybrid program analysis framework
that automates the synthesis of stateful system call policies
that describe admissible behaviors of containerized programs.
Given a container image as input, the framework generates a
reference policy that encodes a security automaton obtained
by symbolically micro-executing the corresponding container’s
binary entrypoint under the constraints extracted from the
container image metadata and environment.

We demonstrate the utility and practicality of our approach
by synthesizing security policies for 25 challenges in the DARPA
Cyber Grand Challenge (CGC) corpus, 5 real-world containerized
programs, including the widely used NGINX web server, and
a complete microservice application from public benchmarks.
We run each program or microservice using both benign and
attack scenarios under the protection of a runtime policy monitor.
Furthermore, we evaluate our approach by comparing our
synthesized policies to those generated by four state-of-the-art
system call specialization tools. Our results demonstrate that our
techniques can scale to large programs and accurately extract
concise reference application models for security monitoring.

Index Terms—system call specialization, microservices, cloud
security, language-based security, binary analysis, security
monitoring.

1. Introduction

The widespread adoption of service architectures have
created opportunities for compromising sensitive information
and hijacking computing resources. A typical microservice
architecture splits application components into multiple self-
contained filesystem images (called containers) that an
orchestration engine manages across a set of physical computing
nodes. While this model streamlines service provisioning, it
also significantly increases administration complexity, posing
security risks that can be traced in part to the current inability
of automatically refining enforceable, least privilege access
policies around the deployed microservices.

Several solutions for securing microservice architectures
have been proposed, including the detection of anomalous
behavior in log data and metrics produced by containers [1],
advanced monitoring tools to lock down container privileges [2],
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[3], [4], and the application of static analysis techniques to
automatically infer inter-service security policies for networked
applications [5]. These approaches restrict the set of system
calls that an application can invoke in order to reduce the
attack surface available for escaping the container abstraction.
Nonetheless, they miss the opportunity to automate the creation
of reference security policies around the treasure trove of
information stored in container images.

A container image is a layered filesystem that contains an
entrypoint program, and all the files and dependencies needed
to execute the entrypoint within a sandboxed environment.
Prior work has successfully collected system call sequences
using instrumented compilers [6], while compiler tool chains
can be used to walk the control flow graph (CFG) and learn
application behaviors [7]. However, these approaches require
access to source code or an intermediate representation, and
statically estimating system call sequences in a CFG requires
heuristics and over-approximation, since some paths in the
CFG may never occur in real executions. Moreover, pure
compiler analyses have a limited view of how a program
interacts with its environment during execution. By contrast,
dynamic approaches that learn program behavior through
execution tracing often produce large models that could be
condensed by using information obtained statically about
the program. In addition, it can be difficult to differentiate
identical system call traces produced by different program
components using purely dynamic techniques.

More recently, prior work [2] has demonstrated the utility
of deriving security policies through lightweight static analysis
over library source code and scanning functions called by
binaries. However, such an approach naturally produces
stateless policies, does not consider concrete arguments passed
to system calls obtained from user input or a container
environment, and may miss system calls issued by dynamically
generated code. In addition, prior work is primarily geared
towards excluding vulnerable system calls from a workload
in order to limit the possibility of kernel exploits. This
prevents compromised containers from hijacking control of
the kernel, but still allows container workloads to become
compromised. The technique can lead to security issues when
adversaries exercise system calls permitted by a stateless model
to achieve a malicious goal such as those seen in mimicry
attacks. For example, an attacker can issue a connect system
call to reach out to a remote command and control server,
when the connect is intended for a host located within the
microservice. In practice, the attack is known as a server-side
request forgery (SSRF) [8].



To overcome these limitations, this paper introduces
pPolicyCraft, a hybrid program analysis framework that
automates the generation of specialized reference security
policies that efficiently track control and data flows associated
with the system calls generated by containerized programs. Our
key observation is that the shift to containerized environments
facilitates the introspection into well-defined units of work from
which stateful security policies can be derived with minimal
human intervention and co-evolve with the microservice
development lifecycle. Given a container image as input,
wpPolicyCraft generates a reference policy that encodes a
security automaton obtained by statically micro-executing [9]
the corresponding container’s binary entrypoint under the
constraints imposed by the microservice image, the application
inputs, and configurations. The security automaton describes
the entrypoint’s states and admissible state transitions, which
represent partially ordered sets of system calls guarded by
constraints over their argument values. A security monitor can
enforce the generated policy by tracking the observable effects
of the microservice execution—the interactions of the program
with its environment (e.g., process, network, filesystem).

Microservice architectures are best suited for our analysis
because an individual microservice’s computing environment is
represented by an immutable container image. Each container
image is represented as a layered filesystem that contains
a program and all of its configuration files and runtime
dependencies. The information given on an image often
dictates the behavior of the program, both in terms of what
system calls it will issue and the entities with which the
program interacts. By micro-executing a microservice against
its container image, we obtain concise and stateful security
policies that are bound to a specific configuration of a program.
In contrast, prior system call specialization techniques [2],
[10], [4], [11], [12] employ under-constrained analyses that
over-approximate a program’s behavior and cause sensitive
resources to be left unprotected against compromised programs.

The framework lifts binary microservice programs into
an intermediate representation in which a symbolic micro
execution procedure built on the Binary Analysis Platform
(BAP) [13] computes an effect graph, a novel data structure
that summarizes the program’s effects guided by the con-
straints extracted from the container image metadata and its
environment (e.g., entrypoint path and arguments, filesystem
structure and configuration, environment variables). Effect
graphs compactly represent individual system call sequences
by highlighting program terms that invoke system calls within
a lifted intermediate representation of the program. We propose
a measurement of effect coverage to approximate effect graphs’
completeness for a container image.

pPolicyCraft translates this effect graph into a security
automaton, which encodes the security policy that can be
deployed and enforced at the computing edge. To demonstrate
the concept, we implemented a microservice-aware policy
monitor (MPM) that uses a system telemetry stream [14]
that encodes process provenance information and relates
process events to network and filesystem activity associated
with individual microservices. This telemetry stream allows
the MPM to efficiently exercise the security automaton
corresponding to each microservice’s security policy, flagging
and blocking inadmissible behaviors.

wPolicyCraft’s policies can protect against mimicry attacks
that are identified by malicious arguments in system calls. Other
mimicry attacks may achieve malicious goals by enumerating
the system calls given in our effect graphs. For example, a
policy may allow an adversary to connect to a microservice,
obtain data stored in memory, and send the data out using
the original connection. Note that effect graphs limit the
direction of communication between microservices and that
such mimicry attacks would be unable to impact any resource
excluded from the effect graph. As a result, an adversary
cannot deviate from the effect graph to spawn reverse shells
and execute commands of their own choosing. In practice,
minimizing the potential impact of mimicry attacks requires
analyst review (e.g., modeling adversarial capabilities to
constrain effect graphs) and assistance from defenses aimed at
preventing adversaries from exploiting running processes (e.g.,
control-flow integrity [15]).

To evaluate our approach, we synthesize policies for the
challenges obtained from the DARPA Cyber Grand Challenge
(CGC) corpus [16]. This corpus of applications was designed
to evaluate program analysis tools’ ability to automatically
detect, exploit, and mitigate software vulnerabilities, and
therefore serve as a good candidate and baseline to evaluate
pPolicyCraft’s ability to automatically synthesize and detect
policy violations, since ground truth with documented security
vulnerabilities is provided for all challenges. To demonstrate
that our approach can scale to real-world programs, we
apply pPolicyCraft to containerized binary programs, as
microbenchmarks, and a complete microservice application,
as a macrobenchmark. The microbenchmarks consist of 5
containerized programs (NGINX, a file sharing microservice
implemented in Golang, vsftpd, cron, and nullhttpd).
Furthermore, we compare pPolicyCraft to four existing
system call specialization tools by comparing the tools’
performance and output while modeling the NGINX webserver.
Evaluating pPolicyCraft on microbenchmarks and comparing
its capabilities to other tools allow us to confirm that
pPolicyCraft can efficiently model and protect real-world
programs and detect additional attack scenarios that evade
existing defenses. Finally, we evaluate pPolicyCraft on a
macrobenchmark by modeling and protecting a complete
microservice from the DeathStarBench benchmark suite [17].
This shows that pPolicyCraft can protect real microservices
in addition to individual containerized programs.

Our evaluation shows that pPolicyCraft can efficiently
generate stateful security policies that embed the additional
context obtained from container images to accurately model
the intended control and data flow behaviors of programs
that rely on the operating system’s networking and filesystem.
These stateful security policies can be obtained quickly,
without domain expertise, and can inform runtime monitors
to limit application privileges and prevent adversaries from
hijacking containers. Furthermore, while purely static tools may
produce stateless policies faster than pPolicyCraft, the policies
produced by pPolicyCraft are bound to specific configurations
of general purpose programs, and can be created in less than
40 minutes when analyzing large programs.



Contributions. Our contributions are the following:

o We present an effect graph abstraction and formal
semantics for reasoning about program behaviors that
restrict the admissible control and data effects of running
containers, and a method for automatically converting
these graphs into stateful security policies.

o We propose a microservice-aware policy monitor (MPM)
that instantiates these policies as security automatons and
efficiently tracks the effects generated by containers to
detect policy violations.

o We describe our prototype implementation and evaluation,
which successfully modeled 25 challenges given in the
DARPA Cyber Grand Challenge (CGC) corpus, 5 real-
world programs packaged as container images, and a
complete microservice application from the DeathStar-
Bench benchmark suite [17]. pPolicyCraft detected policy
violations for all attack scenarios we present in our
experiments. We have open-sourced pPolicyCraft!.

This paper is organized as follows. We provide background
for our work, including related work and our threat model (§2).
We describe our system design and formalize our security policy
synthesis procedure (§3). We detail our technical approach in
(§4), followed by our evaluation (§5), and discussion (§6).
Finally, we conclude (§7) and provide an Appendix (§A).

2. Background & Threat Model

This section discusses the key concepts used throughout the
paper, including micro execution and system call specialization.
We also describe related work and finish with our threat model.

Micro Execution. Micro execution [9] is a software testing
technique for automatically executing binary code fragments
without the need to manually define test harnesses. This
capability can save significant time for testing arbitrary regions
of binary programs that may be difficult to execute with
traditional tools or without standing up a production environ-
ment. To execute arbitrary code fragments, a micro execution
engine must accurately model a program’s environment, which
includes memory regions, environment variables, the filesystem,
and library dependencies. For example, a micro execution
engine can execute a sequence of machine instructions that
dereference pointers by trapping segmentation violations and
returning random data at each dereference.

Our work leverages micro execution to automatically
generate a security policy that summarizes how a containerized
program interacts with its environment, including how the
program affects other processes, memory, the filesystem, and
the network (see §3). We term these program effects. We
argue that this approach helps alleviate the burden of manually
maintaining quality security policies that a cloud operator can
use to detect security violations using container telemetry.
Microservices are especially suited to this analysis because
each microservice container comes with an immutable layered
filesystem that contains all dependencies and configuration
files required to run a program. Our technique can be applied
to regular binary programs, although in more general settings
the program effects may need to be permissive (e.g., the cp
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TABLE 1: A comparison of policy features available in recent
system call specialization frameworks and pPolicyCraft.

program can interact with all files accessible by a user). Effects
can also be tailored to a specific computing environment, such
as the configuration files found on a specific server. Though our
micro execution approach could improve standalone program’s
security, microservices are especially suitable for this analysis
since every container is packaged with all files necessary to
produce specialized program effects.

System Call Specialization. Specializing a restricted set of
system calls a program may issue is related to defining the
scope of norm for application operation [18]. For example,
a compact representation of the system call sequences a
workload may issue can be obtained by defining n-grams, i.e.,
a table of finite length containing rows that express system call
sequences of length n [19], [20], [21], [22], [23]. In lower
level contexts, the n-gram approach has also been shown to be
useful for specializing the memory access patterns for a given
workload [24]. Other approaches specialize program behaviors
through rule learning [25], automata generation [26], [27],
Hypergraphs [28], Bayesian networks [29], Hidden Markov
Models [22], [30], and neural networks [31]. Gao et al. [32]
introduced the concept of an execution graph, which is built
from a combination of observed system calls and concrete
return addresses visited during execution. This complements
static analysis that restricts system calls to individual resources
in a program’s environment [33], [34], [35].

More recent specialization approaches allowlist [36] system
calls that can be invoked by applications by using program
analysis techniques. For example, Saphire [37] performs static
analysis over PHP applications combined with system call
profiles of library functions found in PHP’s runtime to generate
system call sandboxes for web applications. Other approaches
seek to restrict the network activity of Java microservices by
detecting calls to network APIs [5].

System Call Specialization for Native Programs. Table 1
summarizes key attributes of recently proposed system call
specialization approaches for native executables, contrasting
them to pPolicyCraft. All frameworks can specialize a
subset of allowable system calls (allowlisting). The temporal
order attribute denotes the capability of generating policies
that capture state transitions in program execution. We
differentiate between approaches that identify constant system
call arguments, such as constant integer values passed directly
to library functions, and complete arguments that require
examining the contents of structures during execution, which
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Figure 1: A segment of the security policy for a network
server that proxies requests to an upstream application server
detecting an SSRF attack.

pPolicyCraft does. Container awareness refers to the extent a
tool uses information found in a container image’s filesystem
while generating a policy.

CONFINE [2] combines manually defined system call
profiles of library functions, static call graph analysis, and
monitoring initial container system calls to generate seccomp
allowlists. Its awareness of the container image is limited to
the finite monitoring window used to observe initial system
calls. In contrast, pPolicyCraft examines every interaction a
workload performs on a container image. Chestnut [10] refines
seccomp filter generation by combining a compiler analysis to
detect system calls in external libraries with binary analysis
and optional binary refinements on annotated executables.
Alternatively, sysfilter [4] walks the function call graph (FCG)
in a native executable lifted into a binary analysis framework
to inform the generation of system call allowlists as seccomp
BPF filters.

Generating a system call allowlist can also be considered
as a program synthesis problem. In this setting, static analysis
generates a set of predicates over system call arguments
that hold for the given program. Abhaya [11] uses a policy
synthesizer that takes system calls and argument predicates as
input and synthesizes policies to be enforced by seccomp on
Linux, or Pledge on BSD operating systems, where the input
predicates are restricted to constant values and arrays. Recent
work attempts to divide an application between “initialization”
and “server” stages to prevent adversaries from achieving
mimicry attacks that execute system calls intended only for
initialization [12].

Effectful System Call Policies. Fig. 1 provides a snippet
of a pPolicyCraft policy that cannot be expressed by prior
system call specialization approaches. In this security policy,
pPolicyCraft restricts several system calls to specific arguments
that cannot be expressed as constant values or array elements
passed to the system call. For example, restricting the accept
and connect system calls to a specific host and port requires
examining the contents of structures passed to network system
calls. Moreover, this security policy is stateful, and enforces a
specific temporal order that is more precise than assigning lists
of system calls to distinct execution phases. By temporally
ordering system calls with state transitions constrained by
system call arguments, pPolicyCraft policies allow security
monitors to differentiate between different invocations of the
same system call (different contexts). In this example, the
policy allows a monitor to detect an attempted SSRF attack
once an adversary tricks the workload into connecting to a
malicious command and control host to install malware onto a
hijacked container.

In general, such effectful policies can detect mimicry
attacks that succeed against stateless policies by using

manipulated system call arguments. Existing system call
specialization techniques are primarily evaluated by their
ability to restrict access to system calls that can be exploited
to compromise a victim service, including the kernel and
system resources. By filtering security-relevant system calls
that are irrelevant to a program execution, such allowlisting
approaches provide a coarse-grained reduction of attack surface.
By contrast, pPolicyCraft policies model program behaviors
by extracting an effect model that specializes system call
sequences constrained by system call arguments that are bound
to the operating environment and the context in which these
system calls are invoked (such as the systems resources they
affect).

In this paper, we demonstrate that micro-executing
containers enables the automatic creation of accurate security
policies that can be enforced over lightweight telemetry
without overburdening a cloud operator’s resources. The
generated policies encode admissible microservice program
behaviors (e.g., process control flow, filesystem, and network
activity) as concise nondeterministic finite automata specialized
with concrete value constraints obtained from the container
image. This enables runtime security monitors to detect more
subtle exploit attempts against microservices. For example,
uPolicyCraft policies can identify exploits that inject malicious
arguments into a legitimate system call. Our framework can
therefore enhance existing security monitors, such as reference
monitors that enforce mandatory access control policies and
endpoint detection and response systems.

Policy Generation. Related to system call specialization are
works that use safety policies to alert or enforce (sandbox)
program behaviors based on a language-based security
automaton [38]. Chari et al. [39] created a fine-grained policy
language for limiting program capabilities from accessing
certain resources, such as files. Some works operate as reference
monitors (RM) inside the OS kernel [39], as a language
runtime [40], within another process [41], [42], or as a
combination of kernel and userspace mechanisms [43]; others
are based on control-flow integrity [15]. Using stateful security
policies in an RM still imposes large performance penalties
compared to stateless policies that simply restrict a process to
a set of system calls over finite resources on the system [39].
For this reason, state-of-the-art reference monitors available
in commodity Linux systems, such as AppArmor [44] and
SELinux [45], specify stateless policies for restricting the
activity of protected processes. More recently, much of the
research focus has been on developing both static [2], [4], [11]
and dynamic [3] analysis techniques to generate seccomp [46]
policies for system processes and microservices. A seccomp
policy is useful for limiting the set of system calls usable by a
program, yet it does not impede the misuse of the permissible
set. Most closely related to our work is Wagner et al. [6],
which used static analysis to build a call graph, and used
the call graph as a security policy for comparison against a
window of system calls. By contrast, our approach uses micro
execution to build the policy, which takes into consideration
a program’s environment and parameters to build a more
accurate security automaton. Furthermore, our policy monitor
enforces these policies over a flow-based, entity-relational
container telemetry [14], as opposed to a window of individual
system calls.
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Figure 2: Architectural overview of pPolicyCraft protecting a
container image by synthesizing an effect graph G for the
image entrypoint (step @) which a microservice-aware policy
monitor (MPM) leverages to detect violations in telemetry
produced by a running container (step @).

Program Understanding. Specification mining [47], [48] is a
technique for verifying an application in order to automatically
extract a formal specification of the code, which is then
used by a developer to look for errors. Specification mining
automates program comprehension, which can then be used to
generate plausible security policies. Program understanding
is a key goal of pPolicyCraft. Unlike specification mining,
which is mostly based on runtime discovery, our approach
uses micro execution to create models.

Threat Model. Our work assumes the following threat
model. A cloud operator deploys container images from

a continuous integration/continuous delivery (CI/CD) pipeline.

Once deployed into the computing nodes managed by the
cloud operator’s container orchestration engine, we make the
following assumptions about the containers that pPolicyCraft
protects, and the capabilities of an adversary who successfully
compromises a container:

o The entrypoints for the container images are binary
programs implemented in systems languages such as
C/C++, Go, or Rust.

o An adversary can interact with a container process running
on a computing node through a network socket.

e The program contained in the image or any of its
library dependencies may contain a vulnerability that,
when exploited, allows an adversary to issue arbitrary
system calls to the operating system kernel running
the container process, which can lead to privilege
escalation, information disclosure, or process control-flow
hijacking [49].

3. System Overview

pPolicyCraft is a program analysis framework specifically
designed to automate the generation of system call policies

that can be used to monitor and harden container workloads.
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Figure 3: A simplified intermediate representation (IR).

The hybrid program analysis symbolically micro-executes a
container’s entrypoint to produce a stateful security policy that
a runtime monitor can use to flag non-adherent behaviors.
Fig. 2 shows an overview of the framework, which comprises
offline and runtime phases.

Policy Synthesis. During security policy synthesis (step @), a
container image is downloaded from a registry and the container
entrypoint (bootstrap program) is analyzed by a micro execution
framework with all available program parameters, environment
variables, and configuration files in an offline analysis. The
micro execution framework extracts a directed graph that
summarizes all the interactions a well-behaved program can
have with its environment, including files, networks, OS
objects, and other processes. Such effects are distilled from
the program by analysis of the system calls (including their
arguments) found during micro execution. The resulting effect
graph is synthesized into a security policy that is deployed to
the microservice-aware policy monitor (MPM).

Policy Monitoring. The container image is then deployed by a
container orchestration engine, which launches the container
alongside the MPM in the cloud environment (step @) during
runtime. The MPM takes the security policy generated in the
previous step and instantiates a finite automaton encoding
the security policy. The stream of system event information
T exercises the security automaton, generating alerts and
optionally stopping the container when the event sequence
does not match the flow of the automaton (step ®).

3.1. Security Policy Synthesis

For explanatory precision, we define pPolicyCraft’s secu-
rity policy synthesis procedure on a simplified intermediate
representation (IR) obtained through binary program disassem-
bling. This representation abstracts binary programs across
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Figure 4: Operational semantics of lifted programs with effects.

different instruction set architectures and models the effects
observed by the micro execution semantics explicitly.

Intermediate Representation. Fig. 3 presents the language
syntax. Programs P are represented by lists of commands,
denoted ¢. Commands consist of variable assignments, pointer-
dereferencing assignments (stores), conditional branches,
function invocations, function returns, system call invocations
(abstracted as special invocations), and program termination
statements. Expressions evaluate to typical value representations
n, and comprise variables, numerical values, binary operations,
and loads from memory locations. Variable names range over
register identifiers, function names, and system call identifiers.
We omit a formal static semantics and assume that programs
are well-typed. Execution contexts are comprised of a store o
relating locations to values and variables to locations and an
environment A mapping variables to values. Additionally, to
express the semantics of effects for external function calls
(e.g., runtime library API calls), we include a function table ¢
that maps external function names to their entrypoints, an
interpreter context A4 that dictates whether and how each
external function generates observable effects, and the call stack
=. The effects returned by A are expressed as customizable
mappings from function parameters 7 (represented as register
values) to a sequence of effects € generated by f. Effects €
in our analysis are defined as pairs (id,7), where id denotes
system call identifiers and 7 denotes the system call parameters.
Note that external functions may consume files given on the
container image, in addition to files that represent test inputs.
See §4.1 and §5.1 for implementation details and the interface
for defining test inputs.

Micro Execution Semantics. Fig. 4 presents an operational se-
mantics defining how effects are generated by a micro-executed

program. In this work, we implement pPolicyCraft against an
existing micro execution framework. This semantics provides
analysts a blueprint for generating an effect graph in any
analysis environment that supports micro execution. Expression
judgments are large-step ({}), while command judgments are
small-step (—1). Abstract machine configurations consist of
tuples (o, A, Z, pc, 1), where pc is the program pointer and ¢
is the current instruction. Notation A[v — n] denotes function
A with v remapped to n, and notation Ppc] refers to the
program instruction at address pc. We omit P from machine
configurations, since it is static.

Expressions in the language are pure and programs are
non-reflective. The semantics of load e read the value stored in
memory location e. In the event that the memory location expr
maps to an invalid location, the micro execution framework
may substitute either a fixed or random value for load e. This
can be useful for modeling programs that rely on complex state
that is irrelevant to the program’s effects, such as language
data structures like those found in the Go runtime. Note that
this behavior enables a probabilistic address space to model
difficult-to-test code (see §4). A probabilistic address space
models memory regions using random number distributions.
Conversely, store e; es stores es into location e;. In C
programs, these model pointer dereferences and dereferencing
assignments, respectively. Variable assignment is a sequential
instruction v := e that evaluates e, updates the environment
with the new mappings of v, and transitions to the next
instruction pc + 1.

External function calls call f create a new stack frame
fr with function arguments A[rq]--- Afry], and jump to the
callee’s entrypoint. Returns ret e then consult the interpreter
context A to appropriately collect the sequence of effects €
generated by the function based on its input arguments. Context
A can be customized and reused across micro executions to
specify how effects are generated by external libraries without
requiring the analysis to directly micro execute library code.
This design choice allows the symbolic space to be kept small
during micro execution and significantly expedites policy
synthesis. Similar to load, the micro execution framework
can substitute fixed values (e.g., a success status code like 0)
for specific external function calls, random values written
to return registers or relevant memory regions, or high level
functions written in the analysis environment (see §4). This
provides an analyst flexibility in modeling external libraries
to understand the effects of a given program. Specials are
commands that invoke system calls. The semantics of spec id
generates effect e = (id, A[ry]--- Alr,]), where id indexes
the system call type and A[r1]--- A[r,] denotes the system
call parameters according to the calling convention. Termination
command halt n» immediately stops the program and updates
the environment with the return value n.

Effect Graph. pPolicyCraft’s micro execution procedure
leverages this operational semantics to produce a directed graph
G that summarizes the admissible sequences of observable
effects that a program can generate during execution. More
precisely, G = (V,E,E — {(v1,v2) | (vi,va) € V?2}),
where the pair (pc,7) € V' is a node encoding a program state
(including register values used as parameters to system calls),
and id € E is a labeled edge representing an observed system
call. This effect graph therefore describes a finite automaton



that can be used as a reference security policy for restricting
permissible program behaviors. It is worth noting that we can
produce effect graphs for multi-threaded programs by treating
the creation of a thread as a clone operation and micro-execute
thread entrypoints in parallel. See §4.1 for implementation
details.

Effect Coverage. Measuring the total effects contained in
a container can help an analyst determine whether a given
effect graph sufficiently captures a container’s behavior. The
effect coverage of a given graph is defined as the fraction
of the graph’s effects over the total number of effects in the
container’s binary and library dependencies. Micro-executing
every function located in external libraries allows pPolicyCraft
to automatically obtain a map of functions to individual effects
which are represented as system call identifiers. We micro-
execute each function by exploring all paths reachable from
a specific entrypoint (up to a configured path limit), ignore
any memory violations, and bind every observed system call
id to the function. This approach helps observe concrete
identifiers that pass through several different registers r before
reaching a system call instruction. This defines a mapping that
allows us to mark the individual terms in the intermediate
representation that incur effects, such as a call instruction
to an effectful function. The final effect coverage therefore
provides an approximate measurement of an effect graph’s
completeness and identifies uncovered effectful terms. This
allows an analyst to quickly inspect the effects missing from
their effect graph, identify terms that should be included in
the effect graph, and rule out others that are irrelevant to a
configuration. For example, an effect graph missing a web
server’s functionality as a mail server is fine if the server is
configured as a TLS proxy to a backend application server.

3.2. Policy Monitoring for Microservices

The pPolicyCraft runtime instantiates G as a reference
security policy to the MPM co-located with the protected
container. The policy monitor consumes a telemetry stream
that records the container activity and detects any container
behaviors that deviate from the policy. The telemetry stream
provides the runtime monitor with the means to exercise the
security policy in lockstep with the observed system events.
Any state transition not recognized by the reference policy
triggers an alert and optionally halts the container.

Flow-based Monitoring. The system telemetry stream fed into
the MPM is not merely a sequence of system calls, but rather
a higher-level abstraction that lifts system call information
into program behaviors [14]. As an entity-relational format,
the telemetry has three types of objects: entities, events, and
flows. Entities represent components or resources that are
monitored on the system and include containers, processes,
and files, while events and flows represent entity behaviors.
They describe how a process interacts with resources in its
environment including files, networks, and other processes.
An event represents individual behaviors that are broken out
due to their importance, their rarity, or because the order of
operations is important (e.g., process clone, process exec, or
file delete). Event types include process events (PE) and file
events (FE). By contrast, a flow is a volumetric aggregation
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Figure 5: A security policy for the front end server (Fig. 5a)
of a microservice, and a telemetry trace that contains a policy
violation (Fig. 5b).

of multiple events that fit together to describe a particular
behavior. For example, all network interactions of a process
and a remote host are composed of events such as connect,
send, receive, and close, and can be summarized in
a single bidirectional network flow (NF), while all events
associated with a process’s opening and reading a file can be
summarized in a single file flow (FF). We chose to employ
this flow-based semantics because it is more conducive to
building simple (compact) yet powerful graph structures on
streaming datasets that can be easily mapped to our security
policies.

Vulnerable Proxy Server. To illustrate our approach, consider
the public component of a microservice application, a webserver
that acts as a frontend proxy to one or more microservices that
run on a private subnet within a computing cloud. This server
performs the important role of the microservice application’s
public endpoint to the Internet. In this role, the server must
prevent slow or malicious clients from tying up resources to
the backend application server and maintain up-to-date public
key infrastructure (PKI) certificates and keys to enable secure
communication with clients.

Fig. 5a shows the security policy for the frontend server as
generated by the policy synthesis step. The policy describes the
server first opening, reading, and then closing a configuration
file, and then receiving and sending packets on port 443.
After receiving a request, the server connects to the upstream
server to forward the request, receive a response, and send
the response back to the original client. This stateful security
policy ensures that a server will only read from a file once,
and thereafter only act on sockets bound to a specific port and
connect to a single host specified in the policy. An adversary
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Figure 6: An MPM detecting an attempt to obtain sensitive
user information through a disallowed network path within the
Hotel Reservation microservice application.

who gains access to the disk cannot disclose configuration
data, since the policy forbids reading after network activity
begins. Furthermore, the policy forbids an adversary from
connecting to any host with the exception of the upstream
server. The configuration file path, listening port, and the
upstream host are automatically extracted from the program

environment during our symbolic micro execution procedure.

This ensures the construction of a specialized model that is
tailored to the targeted microservice deployment.

When the MPM receives this security policy, it instantiates
the effect graph (G) as a finite automaton structure, with the
root node of the policy assigned as the automaton’s initial
state. Edges in the automaton represent events or flows, while
vertices represent the entities present in the telemetry in order
to enable a state transition. As the MPM processes each
flow-based record, it attempts to advance the automaton with
the events contained in that record. A given telemetry trace
(T') conforms to a security policy if the MPM can always

advance the security automaton and not get stuck (G = T).

For example, the trace in Fig. 5b shows a malicious user
successfully exploiting a bug in the server and connecting to a
remote command and control (C & C) server. The first record
in the trace will activate the automaton (state P). The next file
flow (FF) record will advance the automaton through opening
(O), reading (R), and closing (C) the server’s configuration
file. Note that this incurs three separate state transitions in the
security automaton which happen in sequence. The network
record will advance the automaton through accepting (A),
receiving (R), and sending (W) to a network socket opened
on port 443. The next record advances the automaton through
connecting (C), receiving (R), and sending (W) to the network
socket made to the upstream server. The final record causes
the MPM to halt, since a CONNECT event is only permitted to
an upstream server. Once the MPM halts, it issues a policy
violation event. The effect graph also tracks the program’s
user and group ids, which enables the MPM to detect privilege
escalation attempts.

Vulnerable Microservice Application. Fig. 6 visualizes
an attack against the Hotel Reservation application from
DeathStarBench [17]. Since a single microservice’s effect
graph cannot express every combination of effects generated
by the entire microservice application, pPolicyCraft creates
a distributed effect graph composed of the effect graphs
generated for each individual microservice. In addition to
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Figure 7: The different representations of a binary file lifted
into BAP, and the Primus Machine (new contributions of this
work are highlighted in red).

specializing system resources and process permissions used by
each individual microservice, the distributed effect graph also
encodes the valid communication patterns that occur between
microservices. Our evaluation is presented in §5.4.

In this setting, each container is assigned an effect graph.
An adversary who hijacks the search container and issues
their own network requests can circumvent the geo container
to obtain the complete history of users’ locations. Since the
MPM can monitor multiple microservices simultaneously,
it can detect the policy violation in the search effect graph.
The search effect graph forbids communication with the geo
service’s mongodb database. Even if an adversary successfully
takes control of the database, they cannot directly connect to
any microservice or external host to exfiltrate information.
This is because the effect graphs and the flow-based runtime
monitor track the direction of network communication (e.g., by
differentiating between ACCEPT and CONNECT). To exfiltrate
information from the database, an adversary has to take control
of the database socket opened by the geo container.

4. Implementation

Our implementation consists of 3,624 lines of OCaml code
that synthesizes effect graphs through micro execution and
960 lines of Primus LISP. This prototype represents our novel
effect tracking plugin and supporting functionality. The MPM
consists of 765 lines of Go code and is implemented as a
plugin to an open-source security monitoring framework [50].

4.1. Synthesizing Security Policies

Security policies are synthesized using a new analysis
plugin that we implemented within the Binary Analysis
Platform (BAP) [13]. Here, we briefly introduce BAP, and
describe how it enables pPolicyCraft to build effect graphs
for container entrypoints.

Binary Analysis Platform. Fig. 7 visualizes how BAP
processes an individual binary program. On its own, BAP is a
framework for performing analysis on binaries lifted into a BAP
Intermediate Language (BIL) and Intermediate Representation
(BIR) that preserves the semantics of the binary’s instruction
set architecture and BIL operations, respectively. As shown,
loading a value into the RAX register is accomplished by a
mov instruction in the BIL. A special mem variable permits



describing loading from and storing to memory in the BIR.
To lift a binary into the BIL and BIR, BAP must accurately
recognize and reconstruct each function’s control flow graph
(CFG) via recursive descent disassembly [51], [52], [53]. The
full reconstruction of program control flow graphs is generally
undecidable, since one cannot establish a bijection between the
set of all source programs and binary executables; however,
this does not inhibit programs from recovering control flow
graphs in real applications.

BIL micro execution is performed through a BAP plugin
called Primus [54], which allows custom plugins to execute
the BIL starting at arbitrary addresses. To automatically track
the effects incurred by a given program, we implemented a
new plugin that explicitly collects the effects produced by
the BIR, as specified in §3.1. Our plugin tracks individual
program effects by using the micro execution APIs provided by
BAP and Primus, and extends Primus with advanced file and
network I/O functionality to obtain accurate effect graphs. The
plugin also extends Primus’ string processing capability. These
extensions generate a consistent view of system resources to
micro-executed programs, which is critical when analyzing
networked applications.

Probabilistic Address Space. Binary programs often use
routines located in external libraries. During micro execu-
tion, Primus substitutes calls to external (e.g., undefined)
functions with random values. This heuristic works fine for
modeling programs that can execute without exact library
dependencies. Furthermore, Primus allows micro execution
within a probabilistic address space. This is useful when
programs use internal state that is difficult to model, such as
internal language data structures like those found within Go
executables. When performing a 1oad instruction, Primus
will trap any memory access on an invalid (i.e., unmapped)
source address and substitute a random value for memory at
the address. This prevents programs from getting “stuck” due
to an incomplete model of application memory. As illustrated
in Fig. 7, pPolicyCraft can use a normal distribution (i.e.,
N(0,10)) as a substitute for the contents of memory given by
the rdx register. This probabilistic address space ensures that
instructions always execute, but it is insufficient to support
program fragments that process strings or always expect
well-formed input from byte streams.

Application Binary Interface. To accurately model external
functions, we leverage the Primus LISP interpreter to model
the application binary interface (ABI) of an executable. We
implement LISP wrappers to abstractly interpret the effects of
commonly shared library functions without micro-executing
them explicitly—corresponding to context A in the operational
semantics shown in §3.1. The level of abstraction in Primus
LISP is intentionally kept close to the machine, and this enables
a convenient way to alter the machine state without leaving
the “familiar comforts of functional programming” [55]. This
significantly expedites our analysis, as it curtails symbolic state
explosion and reduces micro execution steps. For example,
Fig. 7 shows a LISP stub for the ctype data structures
that binary programs commonly use to transform characters
via an array lookup. Without such functionality, system call
arguments would often be excluded from our analysis. By
default, BAP provides a subset of the Standard C Library
implemented in Primus LISP. To support our evaluation, we

improved the existing code and added our own functions.
Most of the modifications and additions were related to string
processing, and supporting file and network operations.

The string processing functions we modified or contributed
include strtok, atoi, getopt, in addition to the data
structures required by the ctype interface. All of the binaries
in our evaluation heavily rely on ctype’s data structures to
process configuration data or input. Leaving out a correct
implementation of the lookup tables that support translating
individual characters would limit the accuracy of our effect
graphs. In addition, we contributed portions of the socket and
file API. For the socket API, these are implemented enough
so that networked applications properly accept our test inputs
as socket data. For the file API, we provide more advanced
functionality that permits introspecting files, enumerating
directories, and looking ahead on file descriptors. In some
cases, modeling these functions can be done by simply calling
a custom Primus LISP function. In others, we use the full
features of Primus LISP to perform complex input/output.
This is necessary when modeling the readv and writev
functions, which perform file IO by using arrays of iovec
structs in memory.

Model Specialization. To provide micro execution with working
versions of more complex APIs, we call out to the OCaml
runtime through Primus LISP. This provides a feature-rich
programming language for specializing program effects and
providing working versions of complex functions, such
as stat, which obtains detailed information about files
in the container image. Implementing variadic functions
like sprintf is also more convenient using OCaml, as
exemplified in Fig. 7. Arguments in the socket and file API
can often be represented symbolically, especially when a
program uses sprintf to determine a hostname.

To illustrate, suppose the format argument (fmt) passed
to sprintf describes a microservice’s domain (i.e.,
%s.domain). Accurately fulfilling the string substitution
could be a source of runtime false positives if we are unable
to enumerate the list of sub-domains that sprintf could
encounter. For this reason, pPolicyCraft cleverly substitutes
the wildcard with a restricted regular expression to limit
communication to any subdomain. To model servers receiving
individual connections, we store the content of each network
connection as a regular file in a queue consumed by accept.
For the web servers in our evaluation, each file corresponds to a
single HTTP request made to the server during micro execution.
Analysts may automate ABI generation by dynamically
generating return values and behaviors for external functions
that are too complex to implement in Primus LISP. We have
found this technique useful for modeling the Go ABI used by
our evaluation microservices (see §A.1). This differentiates
our approach from prior works that obtain system call policies
through purely static analysis of a binary. Static techniques
are unable to accurately predict system call sequences and
concrete arguments generated by a binary bound to a specific
container environment.

Developer Efforts. Significant effort went into modeling relevant
sections of the C Standard Library and Go runtime to support
our analysis. This leaves less work for analysts who can
use our existing ABIs. We observed that the time to model
real-world applications decreased as we refined our ABI



over increasingly complex programs. Starting on the simple
nullhttpd server allowed us to incrementally define a C
ABI used by each successive program. This greatly simplified
modeling NGINX, which heavily used the previously defined
ABIs. With the ABIs in place, modeling NGINX took three
days worth of effort.

For modeling complex library dependencies, analysts can
use the techniques previously described to model additional
ABIs. Using the probabilistic address space can automatically
model library data structures. Alternatively, an analyst can
assign specific return codes to groups of methods. Functions
that incur effects may require a partial implementation in
either Primus LISP or OCaml. This provides analysts the
flexibility to exclude effectless libraries (such as complicated
mathematics or cryptography libraries) and focus on modeling
libraries that cause interaction with system resources. The
latter may often require simply adapting library arguments to
existing C library stubs in our ABI.

Identifying Function Effects. We obtain the effects of external
functions without having to construct the state necessary to
invoke each function. This part of our Primus plugin relies on
an execution style available in Primus that micro-executes all
the basic blocks contained in a function in a “brute force”
manner. Our plugin uses this to identify the concrete system
call passed to the syscall instruction. System calls are
identified by micro-executing each basic block reachable from
the function’s entrypoint (up to a maximum path length) while
using the probabilistic address space. This identifies system
calls that may be given in other registers or derived via some
computation.

Constructing the effect graph. The core of pPolicyCraft’s
BAP plugin is a graph data structure called the effect graph,
which encodes all the system call sequences observed during
micro execution, along with the arguments passed to each
system call. Every node v in the graph represents a specific
term ID in BIR that produces effects in the form of system
calls. A term ID in BAP uniquely identifies a specific location
in the IR. This can be either a system call issued directly by
the binary, or by calling an external library function that issues
system calls, such as bind. Along with the term ID that
issues a system call, every node vy also contains the concrete
arguments passed to the system call obtained by examining the
contents of registers. In some cases, symbolic arguments can be
assigned instead, for example with sprintf. Storing system
call arguments in nodes allows us to derive more precise
security policies from the effect graph. Every edge vy, vs in
the effect graph is labeled by the system call issued by the
node v2. At the beginning of our analysis, the effect graph
starts with a single root node that represents the process before
executing the binary’s _start routine on process startup. If
pPolicyCraft observes that a library function invoked at node
v in the binary incurs an effect of interest, it creates an edge
in the effect graph between the last visited node v; and vs.
Storing the unique term ID in each node allows pPolicyCraft
to prevent creating duplicate nodes in the effect graph, and
instead create edges that refer to previously visited nodes. This
design choice leads to more compact and generalized models,
and prevents generating overly complex security policies while
micro-executing loops. At the end of the symbolic exploration,
the final graph represents a subset of all the valid system call
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sequences a program may issue in the context of the targeted
microservice deployment.

4.2. Microservice-Aware Policy Monitoring

The MPM monitors a concise flow-based telemetry stream—
as opposed to a stream of individual system calls. This
continuous stream of telemetry data is used by the MPM to
asynchronously check adherence of container behaviors to
their corresponding security policies. The driver captures
raw system calls by passively tapping the kernel through
eBPF [56]. System calls are aggregated into a flow-based
and entity-relational record abstraction, and the resulting
records are tracked by the MPM to enforce pPolicyCraft’s
policies. Processing system events using this record abstraction
significantly reduces the number of system events (up to 6
orders of magnitude [14]) that are streamed and processed by
the new MPM component.

Policy Monitoring with Finite Automata. When a new
container starts, the MPM instantiates the effect graph obtained
by micro execution into an equivalent security automaton.
Like the effect graph, each state in the automaton contains the
arguments for a specific system call, and the edges between
states are labeled by system call identifiers. The monitor
can advance the security automaton from a specific state s
to s’ if it observes a record with an event that matches an
edge from s to s’ and the entities given in the destination
state match those given in the record. As an optimization, to
prevent false positives for containers that prematurely exit,
the monitor appends a special state s..;; to the container’s
security automaton and enable a transition from every state s
t0 Serir USing an EXIT event. Note that the MPM can only
transition to this special s.,;; state if it encounters an exit
with a normal termination code (e.g., 0).

Policy Check. To enforce the container’s security policy,
whenever the MPM encounters a process event PE (e.g.,
CLONE, EXEC, EXIT), it checks whether the PE is permissible
from the current state in the automaton, or if the PE can
initialize the automaton. If so, it advances the automaton and
continues monitoring the container’s telemetry. It accumulates
all operations performed on file flows FF and network flows
NF into a cache until the MPM encounters another PE event.
Intuitively, the monitor caches sequences of file and network
flows and defers checking the security automaton until a PE
arrives and the workload changes, by exiting or creating a new
process. Recall that the telemetry source aggregates multiple
system calls into individual flows, so the size of this cache
is proportional to the number of system resources (e.g., file
paths, connection tuples) a workload interacts with, as opposed
to the number of system calls it issues. For example, if a
workload receives 1GB of data stream from a single network
connection, the MPM’s cache will contain a single record.

5. Evaluation

We evaluated pPolicyCraft against 25 containerized
binaries from the DARPA Cyber Grand Challenge (CGC)
corpus [16], 5 real-world containerized applications, and the
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Hotel Reservation microservice application from DeathStar-
Bench [17]. The CGC challenges were originally designed to
evaluate the efficacy of security tools to automatically detect,
exploit, and mitigate software security vulnerabilities, which
makes them an ideal test set to assess the effectiveness of
our approach. The higher complexity of the analyzed real-
world applications shows that our approach is practical and
motivates a new coverage-guided micro execution methodology
to incrementally build security policies for the MPM. Finally,
the Hotel Reservation microservice application demonstrates
policy enforcement by simultaneously protecting a group of
interconnected microservices. In our evaluation, the effect
graphs generated by p/PolicyCraft allow a policy monitor to
detect a security violation due to the combination of statefulness
and system call argument specialization. Furthermore, we show
that effect graphs can protect programs implemented in three
different languages, C/C++, Rust, and Go (DeathStarBench).

5.1. Experimental Setup

Our experimental setup consists of a single Ubuntu 22.04
LTS server with 32 Intel Xeon Gold 6130 2.10 GHz CPUs
and 126GB of RAM. The server runs Docker with the MPM
configured to receive container telemetry from the services
considered in our evaluation. To ensure consistent results
across all the artifacts in our evaluation, all binary container
images analyzed by pPolicyCraft are built on top of the same
Ubuntu 18.04 LTS image. The containerized binary programs
were built with GCC 5.4.0. In our preliminary experiments, this
was the most recent version of GCC that produced binaries for
Primus to micro-execute. Details on compiler configuration are
given in §5.1. The Go microservices analyzed by pPolicyCraft
were built on top of the Go 1.17.3 image. As of 2023, this
image has over one billion pulls on Docker Hub.

The only compiler flag we introduce for binary programs
in our evaluation is —fno-jump-tables. This prevents the
compiler from emitting jump tables. However, we have found
that the latest version of BAP can recover CFGs given by
jump tables. Primus can also follow indirect jumps when the
destination corresponds to a valid term in the BIL, such as in an
indirect function call. Debug symbols are not required. Primus
can micro-execute binaries produced by newer compilers,
including microservices built with a recent version of the Go
compiler, which we used in our evaluation.

Coverage-Guided Micro Execution. We used our imple-
mentation of effect coverage (§3.1) to derive a test suite that
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exercises a program’s effects when bound to a configuration in
a container image. The more effects that are covered, the less
likely a policy monitor using the produced effect graph will
raise false positives. Coverage-guided micro execution is an
iterative process where an analyst derives test inputs to cover
relevant program effects for a configuration. These test inputs
are represented as individual files that pPolicyCraft feeds to
the program. In general, workloads may dynamically incur
effects not statically captured by effect coverage. However,
Primus’ ability to observe effectful functions called via indirect
calls enables an analyst to include these cases in their effect
graphs. Fig. 8 shows an example of coverage-guided micro
execution achieving 50.0% effect coverage for an individual
CFG. The visibility provided by effect coverage allows an
analyst to determine when a particular effect graph is complete
for a configuration. For example, an analyst can see whether
all the effects of a specific configuration for NGINX fulfill the
role of a proxy server. If reaching an effectful term is difficult
using test inputs alone, the analyst can directly micro-execute
the routine or program fragment of interest. pPolicyCraft
maintains the location of effects within the lifted program’s
terms. This ensures that the observed effects are assigned to
the correct location in the final effect graph.

Effect coverage provides analysts with visibility into the
effect terms uncovered by a graph that, if ignored, can lead to
false positives in production. Furthermore, the number of effect
terms is manageable for an analyst to consume. For example,
only 113 terms are highlighted as effectful in NGINX. By
iteratively defining test inputs that cover missing relevant
effects, an analyst can reduce the risk of encountering false
positives later on when using effect graphs to enforce security
policies. Critically, covering only relevant effects can also
increase true positives in production that generic allowlisting
approaches may label as false negatives. For example, if an
adversary exploits a container and attempts to execute effectful
code in unused modules, an effect graph could catch the
deviation. However, an allowlist that permits all system calls
reachable in a binary would permit the attack. Furthermore, if
reaching an effectful term is difficult using test inputs alone,
the analyst can always directly micro-execute the routine
or program fragment that contains the term. We found this
to be useful for modeling Go microservices where service
functionality is given within handler functions (see §5.5).

By default, the micro-executed program has full access to
every file on the container image which permits access to
configuration data. To define a test suite for command-line
programs, an analyst can redirect Primus’ stdin file descriptor
to a file that holds the commands for the program. For the
network applications included in our evaluation, pPolicyCraft
refers to a directory of test cases that represent network
inputs. Every time the program accepts a new connection, or
asynchronously polls for events, uPolicyCraft supplies the
contents of the next test case to the socket. This allows an
analyst to iteratively explore new program behaviors by simply
storing different network inputs within the test suite directory.
Furthermore, this allows analysts to define sequences of events
that trigger new effects, since test cases are applied based on
the lexical ordering of their filenames. This is important for
modeling asynchronous servers like NGINX, where an analyst
needs to reply to a specific series of epoll events to trigger
a behavior.



Coverage-guided micro execution establishes specific
behavior models as goals, as opposed to an arbitrary threshold
for code coverage. This is helpful for modeling containers
since a complete model for a given container image will be a
function of the configuration given on the image—as opposed
to exercising some fraction of the entrypoint’s instructions. For
example, an analysis of an NGINX webserver configured as a
proxy for a microservice can be satisfied with a final model
that expresses all the behaviors of a proxy. Having visibility
into the program effects covered by test inputs during micro
execution enables informed decisions on constructing inputs
that generate the desired model and having confidence in the
final model. Contrast this with mandating specific thresholds of
code coverage in generic programs which may lead to models
that exhibit behavior not present for a given configuration.

5.2. CGC Challenges

Table 2 summarizes pPolicyCraft modeling the CGC
programs given in our data set. Overall, pPolicyCraft can lift
and model CGC programs in reasonable time frames, even on
programs that perform complex numeric processing on their
input, such as the FSK Demodulation program. Furthermore,
pPolicyCraft is able to handle the largest programs given
in the corpus. Observe that BAP’s ability to lift a given
executable is not necessarily dependent on program size, but
rather on the diversity of program elements. For example, the
CGC Hangman Game is the largest challenge in the corpus,
but only because it uses large array constants to store data.
For this reason, pPolicyCraft can easily model the challenge
because the actual code base is quite small. In contrast, the
EternalPass challenge is filled with varying functions and
structures used to generate passwords, resulting in longer
lifting times. pPolicyCraft is able to model the challenge
nonetheless.

To select the CGC challenges for our evaluation, we mod-
eled the challenges in numerical order while also considering
the largest challenges contained in both the main corpus and
challenges from the CGC qualifying event. Since all CGC
challenges only use 7 system calls, they typically have similar
security policies (i.e., allocate memory and transmit and receive
user input). Thus, these challenges produce similar container
telemetry (e.g., two file flow records). The challenges are
often limited to 5k LoC when ignoring data structures stored
in code. For these reasons, we chose to evaluate pPolicyCraft
on more complex real-world binaries.

5.3. Microbenchmarks

Our evaluation shows that 1.) pPolicyCraft can efficiently
construct effect graphs for real container workloads using image
meta-data, 2.) effect graphs are representative of container
behaviors, and 3.) the MPM generated from effect graphs
can efficiently monitor workloads at runtime. To further
demonstrate the security benefit of using the generated policies,
we describe detailed attack scenarios in §5.4.

Policy Synthesis Statistics. Table 3 shows all the policy
synthesis and monitoring statistics for three CGC challenges,
and five real-world applications. We monitor three CGC
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Size Static Analysis
Service —
LOC L (s) ME (m) PS (# states)

Palindrome Finder 67 1.71 0.07 4
Pseudo Random Number Generator 314  1.98 13.72 5
Command Line Games 368 2.16 0.05 15
Ti ARM Emulator 470  1.97 0.36 7
WhackJack CLI Game 512 2.27 0.06 14
Shortest Path Analysis 545 2.00 2.16 21
Network File System 549  3.11 0.42 6
Timecard Management System 603 2.19 2.94 4
SCRUM Database 667 2.24 0.48 15
FSK Demodulation 788  1.26 30.48 6
GPS Package Tracker 900 2.28 1.56 4
Flight Planner 900 2.84 0.47 21
16-bit Virtual System 1,206 3.07 1.08 4
PowerPlant Control System 1,227 3.33 0.01 49
Command Line Shell 1,253 3.16 0.30 27
Embedded Thermal Controller 1,400 3.01 0.24 8
Fitness Tracker 1,430 2.75 0.06 10
Monster Role Playing Game 1,925 3.54 1.18 35
Automotive Network 2,110 3.57 40.20 6
Network Database File System 3,079 4.82 0.29 5
Planet Markup Language Parser 5,363 9.02 4.93 27
Cable Grind 349k 60.10 5.08 8
Confident Authentication Terminal 34.4k 37.99 2.86 6
EternalPass 322k 1801.00 21.40 5
CGC Hangman Game 416k 1.79 0.16 23

TABLE 2: Security policy synthesis statistics for DARPA CGC
corpus included in our evaluation (L=Lifting time, ME=Micro
Execution time, PS=Policy Size).

challenges because all challenges share a similar telemetry
trace. Overall, the time required to lift an application to BIL
takes a few seconds on average and grows with the size of
the binary. The time needed to micro-execute a challenge
varied and increased for challenges that perform significant
computation on their input. For example, the FSK Demodulation
challenge must reconstruct an entire window of analog radio
transmissions before it renders an output, and for this reason,
it can take thirty minutes to produce its effect graph.

Policy Monitoring. Table 3 also summarizes the effect
coverage achieved during policy synthesis as well as, the
overall performance of pPolicyCraft. Observe that, while an
effect coverage of 27% for NGINX may appear low, this
effect graph sufficiently covers the functionality required of a
proxy server. In this setting, we restrict the general purpose
NGINX web server to a subset of its full functionality and, as
a result, obtain a restricted model that only applies to a proxy’s
duties, as opposed to covering all of NGINX’s functionality
which could lead to security problems. For example, if the
proxy server is permitted to exec while handling a request,
an adversary could use this to hijack control of the server.
Furthermore, the size of an effect graph is proportional to the
number of terms in the program that incur effects, such as a
direct call to writewv. This leads to compact models for large
programs like NGINX since effectful terms are often located
within reusable functions. Note that repeatedly enumerating
existing paths in an effect graph keeps the size of the graph
the same. New states are only added when new effectful
terms are encountered. This helps keep effect graphs compact
independent of the number of system call sequences a program
may generate.



Container Size Static Analysis Policy Monitoring
Entrypoint Pulls Binary (KB) Effect Coverage L (s) ME (m) PS (# states) Processing Time (ms) Transitions
Ti ARM Emulator? - 24 80% 1.97 4.95 7 1.50 3
FSK Demodulation® - 36 60% 1.26 3048 6 2.96 3
Network File System? - 44 60% 3.11 1.26 6 2.07 3
nullhttpd - 48 88% 1.86 3.83 19 12.85 23
cron 2M+ 60 73% 6.36 0.50 29 37.79 28
file sharing - 60 90% 1.61 0.20 70 30.33 52
vsftpd IM+ 192 46% 18.96  34.00 15 12.85 8
NGINX 1B+ 944 27% 69.50 39.85 27 14.23 11

TDARPA CGC corpus

TABLE 3: Evaluation statistics for protecting workloads (L=Lifting time, ME=Micro Execution time, PS=Policy Size).

Container Image Concretized Variables

Entrypoint  Symbolic Variables Baseline Metadata

nullhttpd 922 172 595 (43.40 x)
cron 1,344 44 611 (+13.9 x)
file sharing 847 30 467 (+15.5 X)
vsftpd 5,159 618 2,567 (+4.20 x)
NGINX 37,839 875 11,022 (+12.6 x)

TABLE 4: Measuring concretization of symbolic variables in
container images using image metadata against a baseline that
consists of an empty environment (gain is parenthesized).

To measure the performance of pPolicyCraft, we profiled
the handler within the MPM responsible for checking individual
records that appear in the telemetry stream. We measured the
amount of time the MPM takes to verify a single execution
trace produced by each attacked program over 100 trials in
order to understand the variability of the MPM’s runtime due
to external factors, such as the Go runtime and variations in
the operating environment. Overall, we observed time spent
processing records stays low. Furthermore, the individual traces
transitioned each program’s effect graph without incurring
false positives. Next, we detail specific attack scenarios and
MPM performance characteristics.

Environmental Impact on Policy Creation. To evaluate
wpPolicyCraft’s ability to protect programs by considering
both network inputs and environmental information stored
in a container image, we apply pPolicyCraft to 5 real-world
containerized applications: nullhttpd, cron, vsftp, NGINX,
and a Go-based filesharing application. Table 4 empirically
demonstrates the utility of relying on container image metadata
to generate security policies. In this experiment, we measured
the number of symbolic variables found in a container
entrypoint, which is given by the number of variables found
in the BIR, the program’s lifted static single assignment
(SSA) form [57]. We then count the number of symbolic
variables that are made concrete (i.e., assigned a value) during
micro execution, both on a baseline program that runs without
any environment and with a program that has access to the
container’s files. These results demonstrate that image metadata
allows pPolicyCraft to concretize substantially more symbolic

variables than simply using an empty environment as a baseline.

This shows that the additional information obtained from
the environment enables pPolicyCraft to explore more of a
program’s state space and construct a more precise effect
graph.
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System Modeling Time (M) Performance Overhead
Chestnut 0.12 +0.87%
sysfilter 0.16 +1.99%
CONFINE 2.93 +1.05%
Temporal Spec. 21.36 +2.14%
pPolicyCraft 39.85 +2.96%

TABLE 5: A comparison of modeling and monitoring with
different system call specialization tools.

MPM Performance. To assess the performance characteristics
of the MPM, we used Apache Benchmark (ab) to stream
a heavy workload of 1 million requests submitted by 10
simultaneous clients against the monitored proxy server
for the file sharing microservice. We perform three distinct
measurements to understand the performance overhead imposed
by the MPM. First, we measure the impact the MPM imposes
on the web server’s response times. To do so, we perform our
stress test on an unprotected NGINX instance that acts as a
baseline and an instance of NGINX monitored by the MPM.
Second, we monitor each web server’s resource consumption
during the stress test in order to identify whether the MPM
negatively impacts the server’s resource consumption. Finally,
we monitor the resource consumption of the MPM to ensure
the workload’s normal operation.

Overall, we observed that the security monitor increases
the server’s response time by (+2.96%), but the response time
for 99% of requests remains the same at 11ms. In both settings,
the NGINX server’s resource utilization stays consistent, with
memory usage staying flat and CPU activity showing that
the four workers and one management process can complete
their tasks often by utilizing less than 5 CPU cores. Resource
consumption stays consistent with respect to CPU and memory
utilization. The MPM processor consumed up to 40MB of
RAM and used at most 2 CPU cores throughout the test.
Increasing the number of effect graphs held by an MPM does
not drastically increase resource consumption since processing
runs sequentially on each telemetry record.

Tool Comparison. To assess pPolicyCraft’s ability to generate
accurate security policies, we generated security policies for
an NGINX container using four tools outlined in Section 2.
We excluded the Abhaya tool from the comparison since
its source code is not publicly available. We used each tool
to produce a security policy for NGINX, and repeated the
MPM performance evaluation while using seccomp to enforce
the policy. Table 5 summarizes the time required to create a
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Figure 9: Detecting a server-side request forgery (SSRF) attack against an NGINX web server.

security policy for the NGINX container, and compares the
performance overhead required to enforce the policy produced
by each tool. Overall, all the tools came to the consensus that
NGINX accepts and creates connections with remote clients,
processes socket events using the epoll system calls, and
may issue an execve system call. However, pPolicyCraft
emits the most restrictive policy that is tailored to a specific
NGINX configuration, as opposed to all possible configurations
supported by the binary. These stateful policies enable the
MPM to restrict the connect system call to the single host
present in the configuration, as opposed to any network entity.
Furthermore, pPolicyCraft only permits a single clone and
execve when the container’s entrypoint starts the NGINX
server. Further clones are allowed by the other tools but
forbidden by p/PolicyCraft after the master NGINX process
starts its worker processes.

5.4. Microservice Attack Scenarios

We present three attack scenarios that demonstrate
pPolicyCraft’s ability to synthesize security policies for non-
trivial binary programs, and detect runtime policy violations.
First, we describe an attack against a simple Rust microservice.
Next, we present attacks against a tiered microservice composed
of the backend file sharing service and the frontend NGINX
web server. The MPM monitors this complete microservice
stack using the security policies synthesized for each container.

While each of the attacks used in this evaluation may be
detected by orthogonal security measures, we argue that the
effect graphs synthesized by pPolicyCraft allow operators
to restrict a container’s activity without requiring domain
knowledge for a particular container, and the automated
security policy creation can co-evolve with the development
and security operations lifecycle.

Rust Microservice. An effect graph for a Rust microservice
is visualized in Fig. 10. This shows the effect graph generated
for a simple Rust microservice built with the standard library’s
std: :net module using the standard rustc compiler
(version 1.68.2). This microservice can be exploited by a
malicious request. The compromised microservice may change
the process’s effective user ID by issuing a SETUID system
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Figure 10: Security policy violation in a Rust microservice
implemented using the std: :net module and compiled
with rustc version 1.68.2.

call. An MPM enforcing this effect graph observes the policy
violation and executes a protective action.

File Sharing Service. The Go-based file-sharing microservice
used in our evaluation allows users to store and share files
within managed cloud object storage. In our specific scenario,
pPolicyCraft detects an exploit against the microservice that
attempts to EXEC a shell on the container. At runtime, the
MPM observes that the service’s effect graph policy forbids
the EXEC operation, and responds by raising a policy violation.
This demonstrates pPolicyCraft’s capability to model and
protect a modern microservice.

NGINX Web Server. NGINX is a widely used web server and
powers 33% of web sites found on the public Internet [58].
Fig. 9 depicts a subset of the security policy pPolicyCraft
generated for a container image containing NGINX version
1.20 that serves documents from a specific directory on the
filesystem and acts as a reverse proxy for a microservice. In
this example, an adversary who successfully gains access to
the web server can implement a server-side request forgery



(SSRF) attack, a top-10 OWASP security risk [59]. This allows
the remote client to trick the web server into connecting to
attacker controlled endpoints to disclose sensitive information
or install malicious software. In our evaluation, we use an effect
graph obtained from an NGINX container image to detect an
attempted SSRF attack with the MPM. When an adversary
attempts to connect to a command and control (C & C) server,
the security automaton within the MPM will not recognize the
malicious endpoint given in the telemetry trace. In contrast
to system call allowlisting approaches like CONFINE [2],
pPolicyCraft’s policies can differentiate between individual
contexts (i.e., calling program states) that issue the CONNECT
system call.

5.5. DeathStarBench Benchmark

We evaluate pPolicyCraft on a complete Hotel Reservation
microservice application from DeathStarBench [17], which
contains eight containers as shown in Table 6. We perform
coverage-guided micro execution on each microservice within
the microservice application. We then load the microservices’
effect graphs into the MPM, which monitors the entire
application for policy violations while running the DeathStar
benchmarks.

Micro Execution Performance. Table 6 breaks down the
performance of both modeling each individual microservice
and enforcing effect graphs on the application as a whole. In
this setting, the MPM uses container telemetry produced by all
of the application’s microservices to detect attempts to disclose
or alter system resources, or attempts to communicate with
external services or co-located microservices. These external
requests are disallowed by the security automaton. Results
indicate that pPolicyCraft can model non-trivial programs in
microservice applications that have large images and many
library dependencies.

Attack Detection. Recall the example from §3 where a
compromised search service attempts to disclose data from
the geo service’s database. Since the security automaton
produced by pPolicyCraft forbids communication between
search and geo’s mongodb instance, the MPM observes the
policy violation and raises an alert to an operator. Since
mongodb and memcached are isolated in the Hotel Reservation
application, we assign them a blanket effect graph that disallows
any network egress outside of fulfilling requests permitted by
other services’ effect graphs. Fig. 11 shows the detection of
this attack on the frontend service’s effect graph.

Each path within the effect graph represents the sequence
of effects incurred by an endpoint within the microservice.
For example, if an adversary creates a reservation by issuing
a request to the frontend microservice, the runtime monitor
will cause the MPM to transition the effect graph from the
Run node to the path beginning with the CheckUser node.
If the adversary succeeds in exploiting a bug, they may
attempt to connect to a mongodb container co-located with
the microservice to extract sensitive user data. The monitoring
event for the malicious CONNECT operation causes the MPM
to get “stuck” since a CONNECT to the mongodb container is
absent from the effect graph.

Model Validation. Our proposed coverage-guided micro
execution technique is designed to produce models relevant
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Figure 11: Detecting a security policy violation in the Hotel
Reservation’s frontend microservice. The dotted line visualizes
the path taken by the MPM while consuming frontend’s
SysFlow telemetry before encountering the violation.

to specific application configurations. Providing a model’s
effect coverage to an analyst allows them to decide whether
an effect graph is sufficiently “complete” for a service’s
configuration. To measure the frequency of false positives
while enforcing effect graphs with an MPM, we perform the
following procedure. The Hotel Reservation benchmark suite
contains a suite of test inputs to the microservice frontend that
exercise the services’ functionality. For example, searching
for recommendations causes the frontend service to make
API requests to the recommendation service, which generates
additional requests.

To test our model’s efficacy, we use time series split
cross-validation [60] for effect graph training and validation.
This technique divides the requests contained in the test suite
into k£ individual segments. Requests made to a microservice
application are naturally sequential, since each request may
either refer to a previously created entity or define a new one.
For this reason, we use the first £ — 1 segments to generate
effect graphs, and the final k& segment for validation (i.e., to
measure for false positives). Other cross-validation approaches
that mix the sequence of requests would likely produce lower-
quality data for modeling if out-of-order requests refer to
non-existing entities.

To collect the first £ — 1 segments, we bring up a live
version of the Hotel Reservation application and collect all
the inputs to its microservices by collecting network traffic
with the tcpdump utility. Once we have obtained all the



Hotel Reservation Size Static Analysis Policy Monitoring

Microservice Binary (KB) Effect Coverage L (s) ME (m) PS (# states) Processing Time (ms) Transitions RP SC
frontend 5,392 91% 92 4.14 34 121.17 13 13,239 161,211
geo 5,743 89% 101 3.60 26 22.24 19 387 2,999
profile 5,556 87% 97 1.62 14 18.90 12 387 2,288
recommendation 5,665 91% 100 1.58 12 17.70 10 368 2,601
reservation 5,667 84% 100 2.34 17 18.60 12 400 2,332
rate 5,689 91% 100 1.74 14 18.28 11 380 2,002
search 5,312 91% 89 1.20 12 5.04 9 150 455
user 5,639 75% 100 1.60 14 24.88 10 404 4,449

TABLE 6: Evaluation statistics for protecting DeathStarBench’s Hotel Reservation microservices (L=Lifting time, ME=Micro
Execution time, PS=Policy Size, RP=Records Processed, SC=Number of system calls collected as relational flow records by the
telemetry pipeline). Test suite generated 100k requests against the frontend microservice.

traffic sent to each service we use this data as test inputs for
generating individual microservice effect graphs. Note that
an input to the service may contain a combination of JSON,
Protobufs, and URL-encoded request data. We use this data
as test inputs for micro-executing each microservice. This
produces an effect graph for each service that we provide to
an MPM. The MPM then enforces all effect graphs across
the entire microservice application. After enabling the MPM,
we replay the final &£ segment of inputs, which were not
known to micro execution. This allows us to empirically
measure the rate of false positive alerts while protecting
the hotel reservation application with an MPM. The results
shown in the policy monitoring portion of Table 6 demonstrate
that the MPM efficiently enforces effect graphs and that the
reservation system’s collective telemetry exercises all the
microservices’ effect graphs without incurring erroneous policy
violations. Furthermore, the MPM processes records from
all microservices. This shows the entire application is used
throughout the test. Note that each individual record processed
represents groups of system calls organized into operations
and flows made on a specific resource (e.g., reading from and
writing to a host’s network port). This enables a substantial
reduction (=10x) in the number of runtime events that must be
tracked, allowing the MPM to efficiently monitor the effects
produced by the large volume of 100k requests made by the
test suite.

6. Discussion

Effect Graph Applications. The MPM represents a single
application of the effect graph model for security tasks. Effect
graphs can also be transduced into mandatory access control and
safety policies for kernel-enforced reference monitoring, such
as policies enforced by AppArmor or seccomp (cf. Table 5),
which would provide complete mediation and terminate the
corresponding program as soon as a security policy violation
occurs. Moreover, a separate analysis can automatically derive
egress and ingress rules from an effect graph to inform a
firewall running alongside the container to prevent issues like
SSRF attacks.

Mimicry Attacks. Intrusion detection systems frequently fall
victim to mimicry attacks [61], where an attacker crafts a
system call sequence that conforms to a program’s security
policy but achieves malicious goals. Furthermore, these attacks
can be automatically generated [62]. In this work, a successful
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mimicry attack causes malicious behavior while strictly
conforming to a microservice’ effect graph (e.g., by issuing
API calls to permitted hosts). These mimicry attacks may
pose a security concern if permitted communication paths can
disclose sensitive information, or escalate privileges. Note the
direction of communication is always specified in effect graphs
and enforced by the MPM. This prevents adversaries from
calling out to remote hosts, or trying to issue a CONNECT
from microservices that only accept incoming connections.
Maintaining accurate effect graphs can isolate individual
services and limit the potential damage caused by these
mimicry attacks.

Interpreted Languages. pPolicyCraft can model microser-
vices implemented in interpreted languages (e.g., Python
or JavaScript) by micro-executing an interpreter with the
microservice container image as input. This enables the
detection of effects incurred by the interpreter that may not be
obvious by analyzing the microservice entrypoint on its own.
In our experience, modeling the ABI for an interpreter like
cpython requires significant effort. To simplify modeling
interpreted programs, the interpreter could be modified directly
to construct effect graphs during execution. Alternatively, the
microservice could be rewritten such that an external library
dynamically builds the effect graph by recording arguments
passed to effectful methods as well as the location of these
method calls within the program.

7. Conclusion

This paper presented pPolicyCraft, a system call spe-
cialization framework that synthesizes security policies for
container images through symbolic micro execution, and detects
policy violations over container telemetry. We presented an
intermediate representation (IR) for the programs accepted
by pPolicyCraft, outlined how pPolicyCraft produces effect
graphs for binaries by micro executing this IR, and detailed our
implementation and experiments. We evaluated pPolicyCraft
on 25 challenges from the DARPA Cyber Grand Challenge
(CGC) corpus, 5 real-world containers, and a complete
microservice application from public benchmarks for which
pPolicyCraft automatically produces effect graphs that can be
enforced by a security monitor. We show that pPolicyCraft
produces more precise policies compared to those produced
by four existing system call specialization frameworks. Our
results show that pPolicyCraft can model the effects of widely-
deployed microservice architectures.
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Appendix A.
Supplementary Material

A.l. Go ABI

In addition to supporting the ABI commonly used by
C/C++ programs in POSIX environments, pPolicyCraft also
supports modeling the Go ABI. Go is a popular statically typed
programming language that is commonly used to implement
individual services for micro-services. Similar to C ABIs, Go
programs can be compiled into dynamically linked executables
that use routines located in shared libraries located on a
container image. Golang programs are often compiled into
statically linked executables for production. In this work, we
assume that Go programs are built as dynamically linked
executables which is a compilation option supported by the
production Go compiler.

Modeling Go programs requires accurately modeling the
various components of the Go runtime. This includes the
built-in Go types, such as strings, slices, and dictionaries. In
addition, every Go executable maintains data structures for
the garbage collected heap and checks that ensure memory
reserved for local variables on the stack is not exhausted.
Rather than modeling a completely accurate ABI, we develop
policies for modeling specific fragments of the ABI that are
necessary to produce a realistic model and use an optional
Primus’ feature to create a “random” ABI.

For example, Go functions often return a pair of values.
The first may represent the return value for the function and
the second an error struct that allows a caller to determine
whether or not the function produced an error. To give the
illusion that all Go functions return successfully, we intercept
every external Golang function upon return and write O into
the register that holds the error struct. This ensures that all
external function calls appear successful, but the program
may act on any data structures returned by the function. To
ensure that data accesses or stores are performed successfully,
we use Primus’ ability to produce random values on invalid
memory accesses to define a “probabilistic address space”.
This drastically reduces the human effort required to generate a
model because, by default, all memory accesses and writes will
succeed. In the case of an external Go function call, a random
pointer will be returned as the function’s return value, and any
data read from that pointer will yield more random values. This
ensures that micro-executing any program fragment always
succeeds, even though it may lead to inaccurate models. An
accurate model can be obtained by iteratively adapting portions
of an ABI to be generated “randomly”, by fixed policies, or
by implementing functionality in either OCaml or Primus
LISP. Our current prototype implementation includes portions
of Go’s standard library (i.e., std) and popular libraries used
by the microservices found in our evaluation.

Moreover, Go features that support asynchronous program-
ming, such as the defer statement, pose a challenge for
our analysis. The defer statement allows a Go program to
delay executing an expression until the end of a function.
This is helpful for ensuring that resources such as files
are always properly closed after use. However, excluding
defer from our ABI produces incomplete models because
every call to defer causes the Golang compiler to construct a
continuation (i.e., some state that refers to where to jump
before the function returns). Without a correct implementation
of defer, the model will miss effects caused by deferred
statements. pPolicyCraft can accurately model defer by
capturing the destination address passed to the Golang runtime
and scheduling a new Primus machine to start running from
the destination address. Before the calling function returns, the
current machine will stop, Primus will run the new machine
on the continuation, and then return from the function. This
allows pPolicyCraft to correctly model valid execution paths
in programs that make use of asynchronous constructs like
defer. Note that pPolicyCraft’s implementation of built-in
constructs alleviates the need for an analyst to be aware of
them during modeling. From the analyst’s perspective, micro
execution proceeds as usual.
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Appendix B.
Meta-Review

B.1. Summary

The focus of this paper is system call specialization in
microservice environments. The authors present the design,
implementation, and evaluation of pPolicyCraft: a framework
generating and enforcing security policies about system calls
in microservices.

pPolicyCraft analyzes container images of microservices,
extracts the binaries involved, and automatically generates,
and subsequently enforces, a policy that encapsulates the
allowed system calls of the corresponding process(es). More
specifically, uPolicyCraft leverages the BAP framework to
lift binary code to BAP IL, and then employs micro-execution
to drive the code into executing benign system calls. During
micro-execution, pPolicyCraft puts together a so-called effect
graph, which is essentially a graph that describes benign state
transitions, during the execution of the target program, with
respect to system calls.

Once the effect graph has been extracted, pPolicyCraft
proceeds with enforcing the mined policy, by executing the
microservice atop a microservice-aware policy monitor (MPM),
which leverages telemetry data to check if the system calls
performed by the app follow allowed sequences.

pPolicyCraft is evaluated using 25 binaries from the
DARPA CGC corpus, as well as five real-world apps, reporting
numbers about the time needed for micro-executing the
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respective binaries, and size of the mined policy, etc. The paper
concludes with various attack scenarios and how pPolicyCraft
can detect the attack(s) involved.

B.2. Scientific Contributions

o Creates a New Tool to Enable Future Science
« Provides a Valuable Step Forward in an Established Field

B.3. Reasons for Acceptance

1) Valuable contribution to generating system call policies
that take into consideration system call arguments, and a
finite state machine using micro-execution, coupled with
a well-defined formal construction and relatively low
runtime overhead(s).

Effective solution that scales, solid systems approach to
a relevant problem, and clear merit compared to prior
work.

2)

B.4. Noteworthy Concerns

1) The paper does not evaluate an interpreted application.
Although pPolicyCraft can (successfully) execute the
CPython interpreter, this is different than operating on an
application implemented in an interpreted language.

2) The extent to which mimicry attacks are still possible is
under-discussed.
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