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Abstract

Proxy server caches reduce Internet traffic and improve
response times. However, limited duplication among re-
quests restricts most proxy server hit rates to under 50%,
requiring other methods to expand cache sharing. This pa-
per proposes a taxonomy for distributed network caching
based on discovery, dissemination, and delivery methods.
We analyze the match between taxonomy categories and
Web characteristics, and use the taxonomy to classify cur-
rent Web caching projects. Next we describe our cooper-
ative Web caching protocol, in which proxy servers locate
cache copies by looking in local metadata directories. Local
lookup provides fast discovery, and allows multiple criteria
be used to select a cache site. We propagate metadata by
lazy prefetching, in which returned objects carry metadata
for related or popular objects. The protocol is simulated us-
ing empirically-derived analytical workloads. Results indi-
cate it substantially reduces server load and connection de-
nials as compared to standard proxy server caching.

1. Introduction

Rapid growth and the bursty nature of Internet HTTP
traffic have increased connection refusals and response
time variability. Connection refusals occur when a Web
server lacks sufficient resources to handle the current load.
Large and unpredictable response times occur when network
routers and exchange pointsbecome congested. These prob-
lems are exacerbated by the poor scalability of HTTP’s di-
rect client-server connection protocol.

Caching is widely viewed as necessary for improving
scalability and reliability of the Web. However, caching
does not scale if all users access a single cache group. Or-
ganizing users into groups and using a different cache for
each group solves the scalability problem, but limits hit
rates because it restricts the amount of available sharing.
This is exactly the case with Web proxy servers. A proxy
server caches Web objects for its clients, and shares cached
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objects across its user community. Unfortunately, there is
not enough request duplication within most communities to
achieve high hit rates. Studies show that even with infinite
cache size, the maximum hit rates of proxy server caches
range from about 30% to 50% [1], [7], [10]. To improve hit
rates, the Web needs a scalable method for widespread cache
sharing.

In this paper, we discuss guidelines for designing dis-
tributed Web caches, introduce a taxonomy for distributed
network caches, and propose a Web caching protocol built
upon cooperating proxy servers. The taxonomy is useful for
comparing caching projects because it separates basic de-
sign choices from implementation details. Further, it helps
focus on factors that may not be measured in simulation
or performance studies. We analyze how alternative ap-
proaches in the taxonomy match characteristics of the Web.
Although our analysis is qualitative, it serves as a guideline
for basic design decisions.

Guided by the taxonomy analysis, we describe a coopera-
tive Web caching protocol designed to reduce both response
time and network congestion. Our design organizes proxy
servers into a flat mesh, which incurs much lower delivery
cost on wide-area networks than do hierarchical organiza-
tions [21]. However, flat organizations have the problem of
discovering where objects are cached. Our answer is to use
local metadata directories [21] that store information about
data in other caches, and to propagate the metadata using a
piggybacking technique we term lazy prefetching. When a
proxy returns a cached object to another proxy, it piggybacks
a list of the most popular files in its cache. After an initial
warmup period, proxies know cache locations of many pop-
ular objects. This takes advantage of the skewed popularity
of Web pages [4], [19] to build a cache mesh with low dis-
covery cost and low delivery cost.

Metadata directories have a second advantage in that they
separate location discovery from location selection. That is,
proxies first obtain a list of cache sites with copies, then se-
lect a cache from the list. This separation allows various cri-
teria be used to choose a cache site, such as site load, net-
work proximity, copy time, or security privileges. Any num-
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ber of criteria are possible, provided the metadata includes
the necessary information.

We begin by describing design guidelines for distributed
Web caches in Section 2. Section 3 tabulates characteris-
tics of Web server workloads reported in the literature and
extracted from our traces. Section 4 describes our taxon-
omy and Section 5 uses it to classify related research in Web
caching. Our cache design is explained in Section 6, simula-
tion results are given in Section 7, and conclusions presented
in Section 8.

2. Design guidelines for distributed Web caches

A distributed network cache should improve both indi-
vidual user performance and global network performance.
A cache design is unacceptable if it improves an individual’s
response time at the expense of increased network conges-
tion and causes longer delays for other users. Unlike caches
for memory and disks, cache sites on wide-area networks
are not inherently faster than servers because cache sites do
not necessarily have faster hardware or larger bandwidths.
If caches and servers have similar resources and connection
bandwidths, remote network caching actually increases av-
erage response time unless it offsets discovery overhead and
cache miss penalties by reducing delivery time. We can re-
duce delivery time if we know which cache sites have copies
and then select the fastest site. Unfortunately, it is difficult
to predict response times because they depend upon current
server load and network congestion, as well as upon static
factors such as server capacity and network topology. Be-
cause Web pages typically consist of several independent
objects, we can reduce overall page retrieval time by con-
currently retrieving objects from different cache sites. This
concept is similar to parallel HTTP, in which browsers send
concurrent requests to the same server. However, paral-
lel HTTP perturbs the TCP/IP congestion control mecha-
nism by generating multiple client-server connections that
use the same network route [5]. Spreading the concurrent
requests across different sites reduces the traffic per route,
which reduces burstiness because queuing delays on differ-
ent routes are independent. To summarize, design goals for a
distributed Web cache should include 1) low discovery cost,
2) object dissemination that adapts to rapid shifts in popu-
larity, 3) a method for selecting fast cache sites, and 4) con-
current delivery of page or object components from different
cache sites.

3. Characterization of HTTP workload

Cache designs perform well only if they match the work-
load, so first we examine the pattern of HTTP requests. Ta-
ble 1 summarizes statistical characteristics of HTTP server
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workloads reported by a number of researchers, and Ta-
ble 2 reports the HTTP workloads we observed on two Web
servers at the University of Texas at San Antonio: UTSA-
CS and UTSA-VIS. Characteristics of the UTSA traces ap-
pear similar to traces reported in the literature. Studies uni-
formly show skewed popularity distributions: most Web re-
quests are for a small fraction of the objects. Arlitt and
Williamson [4] report object size is well-modeled by Pareto
distributionsand the interrequest intervals for individual ob-
jects follow exponential distributions. Seltzer’s results [19]
show object popularity varies by region, and Web invariants
apply most strongly to the more popular servers.

3.1. Web page statistics

Two statistics not reported in these earlier studies are the
fraction of embedded image requests and the number of em-
bedded images per page. These data are important for eval-
uating client prefetching or concurrent retrieval algorithms.
In the UTSA traces, we found embedded images account for
an average of 41% of the transfers and 33% of the returned
bytes, with an average of 3.2 images per page.

3.2. HTTP session statistics

We categorize HTTP requests as either session requests
or component requests. Users initiate a session request when
they instruct the browser to retrieve a Web page or an inde-
pendent object. For Web pages, the browser first retrieves
the HTML file (the session request), then issues component
requests for the embedded objects. Requests for indepen-
dent objects such as multimedia, postscript, and text-only
HTML files generate only a session request; no component
requests follow. In the UTSA traces, we observed an aver-
age of 59% session requests and 41% component requests.
Within the session requests, 13% correspond to multi-object
Web pages and 46% to single, independent Web objects.

Distinguishing between session and component requests
is important because human-initiated session requests are
uncorrelated, while machine-generated component requests
are correlated with other requests within the session. Con-
sequently, we expect different arrival time behaviors. For
FTP, TELNET, SMTP and NNTP, Paxson and Floyd [18]
find Poisson distributions are valid for user session arrivals,
but not for machine-generated requests. Machine-generated
requests exhibit burstier behavior that is better modeled by
self-similar processes. In particular, Paxson and Floyd show
FTP session arrivals follow a Poisson distribution, while
FTPDATA connections within a session are clustered into
bursts for which Poisson modeling fails.
10.00 (c) 1999 IEEE 2
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Characteristic Reference Detail

Server load is growing exponentially Seltzer [19] Requests and documents stored show exponential growth.

Most requests are from remote clients Arlitt [4] Remote clients: � 70% of requests and� 60% of bytes.

Arrival time distribution is heavy-tailed Mogul [15] Appears log-normal

Most transfers are small Arlitt [4] Mean size <21 KB
Almeida [2] Image 13 KB, Text 4 KB, Audio 179 KB, Video 2300 KB

Object size distribution is Pareto Arlitt [4] 0:40 < � < 0:63 for transferred objects
Crovella [9] � = 1:06 for transferred objects

Most transfers are images or HTML Arlitt [4] Image 36-78% HTML 20-50% Dynamic 0-7%
Gwertzman [12] Image 65% HTML 22% Dynamic 9%
Almeida [2] Image 75% HTML 19% Dynamic 0%

Audio 5% Video 0.4%

Object popularity is skewed Arlitt [4] 10% of objects sent satisfy 90% of transfers
Bestavros [7] 5% of bytes sent satisfy 85% of byte traffic

Most transfers are duplicates Arlitt [4] >97% sent more than once.

Objects have long lifetimes Bestavros [7] JPEG 100 days GIF 85 days HTML 50 days

Popularity varies by region Seltzer [19] Clients tend to access geographically related servers.

Popularity can change rapidly Seltzer [19] Objects and server popularity can change very fast, producing flash crowds.

Table 1. HTTP Web servers characteristics summarized from the literature.
Characteristic UTSA-CS UTSA-VIS

Dates Apr 97 - Sept 97 May 96 - Aug 96, Dec 96 - Aug 97
Number of requests 561,292 547,272
Traffic (bytes transferred) 3.8 GB 2.9 GB
Remote clients 82.4% 77.9%
Mean object size <12 KB <11 KB

Object type Size Transfers Bytes Size Transfers Bytes
HTML 4 KB 44.2% 15.2% 4 KB 41.9% 15.2%
Image 15 KB 47.6% 61.8% 6 KB 53.7% 30.4%
Audio 200 KB 0.4% 7.6% 81 KB 0.1% 1.1%
Video na 0.0% 0.0% 452 KB 0.9% 40.2%
Application 135 KB 1.0% 12.2% 386 KB 0.3% 10.2%
Dynamic 1 KB 3.6% 0.3% 1 KB 0.1% 0.0%
Other 11 KB 3.2% 2.9% 10 KB 3.0% 2.9%

Object popularity 10% of objects = 69% of transfers 10% of objects = 79% of transfers
Duplicate transfers >99% sent more than once >99% sent more than once
Embedded images 37% of transfers 43% of bytes 46% of transfers 24% of bytes
Request types:

Session, single file 50% 41%
Session, multi-file 13% 13%
Component 37% 46%

Embedded images per page 2.9 3.5

Table 2. UTSA Web server characteristics.
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Service Categories Details

Discovery Fixed cache Client always sends request to the same cache.

Group query Client queries a group of cache sites.
Manual Clients maintain individual member addresses.
Auto Clients maintain a group address.

Directory lookup Client looks up object in a metadata directory.
Centralized One centralized directory for each server.
Distributed Metadata directory is distributed across nodes;

(distributed structure may be hierarchical, mesh, etc.)

Dissemination Client-initiated Object cached as a result of client request (pull-caching)
Server-initiated Server decides what, where and when to cache (push-caching)

Delivery Direct Object always returned directly to the client.
Indirect Object may pass through several sites before reaching client.

Table 3. A taxonomy for distributed network caches.
4. Taxonomy of distributed network caches

Distributed network caches provide three services: dis-
covery, dissemination and delivery of cache objects. Dis-
covery refers to how clients locate a cached object. Dissem-
ination is the process of selecting and storing objects in the
caches; that is, deciding which objects are cached, where
they are cached, and when they are cached. Delivery defines
how objects make their way from the server or cache site to
the client. Our taxonomy is given in Table 3 and explained
in the sections below.

4.1. Discovery

In fixed cache discovery, a client sends all cache requests
to a single, pre-configured location. Servers are stateless; it
is the client who maintains knowledge of the cache location.
Stateless server caching has two advantages: no caching in-
formation is lost in the event of server failure, and the design
requires no changes to existing Web servers. Fixed cache
discovery is used in proxy server caching, where browsers
are configured to send all requests to their site’s proxy server.

In group query discovery, clients locate cached copies by
querying members of a cache group. This permits servers
to be stateless. Clients are responsible for knowing where
to send their queries, requiring some method for maintain-
ing group membership information and addresses. Two
methods have been proposed: manual configuration and au-
tomatic configuration. With manual configuration, clients
must be informed when the group membership changes.
Typically the clients’ systems administrators must manu-
ally modify their configuration files. This is the approach in
the Harvest [8] and Squid [20] caching software, which run
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on many national cache systems throughout the world [16].
Zhang and coauthors point out manual configuration is cum-
bersome, error-prone and does not scale. Instead, they pro-
pose using IP multicast to automatically configure cache
groups [22]. Queries are sent to a multicast address, so
clients need not be reconfigured every time a member joins
or leaves the group. The drawback to group query is that
competing factors constrain group size. If the cache group is
too large, the client floods the network with query packets.
IP multicasting will not relieve this flooding until true mul-
ticast routers are in wide-spread use, and even then, replies
to the query may cause congestion and overloading. On the
other hand, Web caching cannot achieve high hit rates unless
cache groups are large because there is not enough overlap in
client requests within smaller groups. Cache hierarchies at-
tack the size problem by organizing groups into a cache tree,
which increases the sharing exponentially with number of
levels. Although hierarchies improve aggregate hit rate, the
response time suffers because each subsequent cache level
miss spawns another remote network transfer of the object.
Thus distributed cache hierarchies cannot achieve both high
hit rates and low overall response time.

With directory discovery, the client locates cached copies
by looking in a metadata directory. Along with copy lo-
cations, directories may store timestamps or version num-
bers for cache consistency, access control data for security,
and site performance figures for use in resource selection.
Retrieving metadata involves the same discovery, dissemi-
nation and delivery issues as in retrieving the data objects.
However, metadata is almost always much smaller than the
corresponding data, which lowers propagation and prefetch-
ing costs.

Centralized directories store metadata for a server’s ob-
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jects together on one network node, with the obvious advan-
tage that clients immediately know which directory to con-
tact. Unfortunately, centralization does not scale and ulti-
mately leads to congestion and bottlenecks. Server-initiated
dissemination projects typically use stateful servers and cen-
tralized directories. Distributed directories spread metadata
for a server’s objects across the network.

4.2. Dissemination

Client-initiated dissemination (“pull-caching”) is a
client-driven technology in which clients determine what,
when and where to cache. Servers may be stateless because
they do not need to know client request patterns; the client-
driven nature automatically matches object distribution to
request patterns. The problem of cache consistency arises
if servers are stateless, but this not associated per se with
client-initiated dissemination. The major advantage of
client-initiated dissemination is that it automatically adapts
to rapidly changing request patterns. This is critical when
hot spots or flash crowds occur.

Server-initiated dissemination (“push-caching”) is a
server-driven technology in which servers choose what,
when and where to cache [7],[11]. Cache sites may,
however, have the authority to refuse or remove objects.
Replication is a server-initiated dissemination method
that restricts the authority of the cache sites to refuse or
remove objects. On the Internet, replication is commonly
associated with “mirror sites” that duplicate an entire Web
site. In general, server-initiated dissemination operates on
a finer scale by storing individual objects at remote cache
sites. Server-initiated dissemination uses stateful servers
because servers need historical data to make dissemination
decisions. This server-centric approach provides strong
consistency and assures objects with long-term demand
are not prematurely replaced by short-term, “hot” items.
Conversely, server dissemination does not cope well with
rapid or localized changes in request patterns [11]. A
second disadvantage lies in resource and security concerns
that arise because cache sites store unsolicited objects
instead of only storing objects requested by local users.
This raises serious concerns on the Internet, where sharing
occurs across different companies and governments. In
short, server-initiated dissemination works best for objects
with long-term or static request distributions, or for objects
where consistency is more important than response time.

4.3. Delivery

Direct delivery always returns the object directly from
the “hit site” to the client, where hit site refers to the cache
or server at which the object is found. This method assures
the lowest latency for delivery.
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In indirect delivery, the object may travel through in-
tervening cache layers on its path from hit site to client.
Each layer adds a store-and-forward network transfer, which
generates longer and more variable response times, and in-
creases the number of packets on the network. Performance
penalties are greatest for large multimedia objects. Typ-
ically, indirect delivery follows the reverse request path.
Intervening cache layers may save the object as it passes
through; combining delivery with dissemination.

The HTTP protocol has no provision for returning an ob-
ject other than via the request connection. This has reper-
cussions for multi-level cache protocols that may send the
request through several cache levels. Consider the follow-
ing scenario: 1) X requests an HTTP object fromC0, 2) C0

misses and requests the object from C1, and 3) C1 hits. Us-
ing HTTP, C1 cannot return the object directly toX because
C1 does not knowX made the request. Even ifC1 did know,
HTTP cannot deliver the reply through a new connection.
Consequently, multi-level Web caches must either use indi-
rect delivery or use a protocol other than HTTP.

4.4. Analysis: Which methods match the Web?

Our taxonomy analysis argues the best distributed
caching approaches for Internet HTTP traffic are 1)
directory-based discovery using a distributed directory, 2)
client-initiated dissemination, and 3) direct delivery.

Directory discovery methods are best suited because Web
caching achieves high hit rates and low response time only
if caches are distributed, cache sharing is widespread, and
discovery overhead is low. Fixed cache and flat group query
methods do not allow scalable, widespread discovery, while
multi-level groups suffer from the latency of multiple store-
and-forward transfers. Distributed directories offer scalable
discovery, provided the metadata is propagated efficiently.
Further, the smaller size of metadata records opens up pos-
sibilities for prefetching and piggybacked propagation.

Client-initiated dissemination is preferred because it best
matches the Web’s rapid popularity shifts and flash crowds.
Direct delivery is preferred because it produces lower la-
tencies, fewer TCP/IP connections, and less network traf-
fic. Multi-level Web caches use indirect delivery because
they are constrained by HTTP semantics. This argues dis-
tributed Internet caches should be organized into a relatively
flat structure for delivery purposes.

5. Classification of Web caching research

Combining choices for discovery, dissemination and de-
livery yields twenty taxonomy classes. In Table 4, we clas-
sify some Web caching projects according to the taxonomy.1

1We assume the use of proxy server caching, therefore a protocol is clas-
sified as direct delivery if objects are returned directly to the proxy server.
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Discovery Dissemination Delivery Projects Ref.

Fixed cache Client-initiated Direct Proxy server caching [3]

Group query, Manual Client-initiated Indirect Harvest/Squid hierarchical caches [8]
NLANR, other national caches [16]

Group query, Automatic Client-initiated Indirect Adaptive Web Caching [22]
Cooperating WWW cache servers [14]

Directory lookup, Centralized Server-initiated Direct Geographic Push-caching [11]
Demand-based Document Dissemination [6]

Directory lookup, Distributed Server-initiated Direct Metadata hierarchy [21]

Directory lookup, Distributed Client-initiated Direct Server-Directed Proxy Sharing [13]

Table 4. Classification of some distributed Web caching projects.
Manual group query projects using Harvest and Squid
caches organize proxy servers into hierarchical groups.
When a cache enters or leaves the system, its siblings and
children must be manually reconfigured. The National Lab-
oratory for Applied Network Research (NLANR) manages a
hierarchical Internet cache system built upon Squid caches.
NLANR supplies the top level cache group, proxy servers
constitute the intermediate levels, and users make up the
bottom level. Cache misses in NLANR are expensive be-
cause each miss adds an HTTP connection and object trans-
fer, which are costly operations on wide-area networks.

The automatic group query project of Zhang, Floyd, and
Jacobson [22] partitions users into multicast groups for dis-
covery and dissemination. IP multicast allows for automatic
group configuration: caches join and leave groups without
having to reconfigure other group members. Within a cache
group, the request is multicast to all members. If no mem-
ber has the object, the request is forwarded via a cache in
the overlappinggroup closest to the server. Delivery follows
the reverse route, with the object multicast to every group
along the way. Acceptable performance will likely require
hardware IP multicast to avoid flooding the network with
queries. Because group members need to determine which
overlapping group is closest to the server, this project re-
quires some integration between caches and routers. Mal-
pani, Lorch and Berger [14] propose a different multicast
discovery design that uses a single group. If the group
misses, the protocol resorts to contacting the server. Here
the problem is scalability: a single group design does not
scale to the Internet, but smaller groups suffer from the same
lack of request overlap that limits proxy server hit rates.

Push-caching projects of Gwertzman and Seltzer [11]
and Bestavros and Cunha [6] use stateful servers who de-
cide what, where, and when to cache. Clients send requests
directly to the Web server, which redirects the client to a
“nearby” cache. Servers decide which cache is nearest the
client by comparing geographic or network topology (hop
count) information. However, Crovella and Carter [9] show
geographic distance and hop count both poorly predict the
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latency of Internet traffic. Consequently, these projects face
difficulties in responding to flash crowds and in selecting
cache sites.

Most similar to our design is the metadata caching project
of Tewari, et.al [21]. As with our design, cache location in-
formation is stored and propagated separately from data ob-
jects. However, they store cache metadata in a distributed
hierarchy and propagate the metadata by moving it through
the hierarchy. Conversely, our design stores metadata in lo-
cal directories and propagates it by lazy prefetching during
object transfer.

6. Server-directed proxy sharing (SDP)

6.1. SDP components and features

SDP implements Internet-widecache sharing throughco-
operating proxy server caches. Proxies find cached copies
by looking in local metadata directories, and propagate the
metadata by piggybacking it onto data transfers. In concert
with directory-based discovery, SDP uses client-initiated
dissemination and direct delivery. Figure 1 shows SDP’s
components, and Table 5 highlights its major features.

SDP employs four information structures: Proxy Tables,
Proxy Lists, Cache Site Directories and Popular Lists. Each
server maintains a Proxy Table containing informationabout
copies of its objects, including cache IP addresses. From

Features of Server-Directed Proxy Sharing

Cooperating proxy servers share cached objects.

Proxy servers are organized into a flat mesh.

Proxies find cached copies by looking in local metadata directories.

Metadata is propagated by lazy prefetching.

Cache discovery is orthogonal to cache selection.

Proxy servers cache only objects requested by local clients.

Table 5. Features of the SDP cache design.
10.00 (c) 1999 IEEE 6
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Figure 1. Proxy to proxy request (top), and
proxy to server request (bottom).

the Proxy Table, the server compiles Proxy Lists of individ-
ual object metadata. Each proxy server maintains a Popu-
lar List and a Cache Site Directory. A proxy’s Popular List
points to the most popular objects in its local cache, while its
Cache Site Directory contains metadata for objects at other
cache sites. Metadata is used for both discovery and site se-
lection. Criteria for selecting sites can change, so metadata
records have variable length and use tags to indicate infor-
mation type. For example, metadata can include copy times-
tamp, security data and site performance informationsuch as
average load, network bandwidth, or latency history. Meta-
data is propagated by lazy prefetching: 1) when a server re-
turns an object, it appends a Proxy List for related objects
such as embedded images, and 2) when a proxy returns an
object copy, it appends its Popular List. After receiving ob-
jects from a few caches, a proxy knows where many other
globally popular objects are cached.

6.2. SDP protocol

Users send requests to their local proxy server. If the
proxy has the object cached, it returns a copy; otherwise it
retrieves the object as explained below. To better follow the
discussion, refer to pseudocode in Figures 2 and 3.

1. Client proxy looks in its local Cache Site Directory.
If the directory lists one or more cache sites for the object,
the client proxy selects a site. If directory lookup fails, the
proxy contacts the original server. Information in Cache Site
Directories is not meant to be comprehensive; its function is
to provide fast hints about copy locations, with small miss
penalties and low propagation overhead.

2. Client proxy selects a site.
Here we face a critical issue: how does the client proxy se-
lect a site? One benefit of SDP is that it separates discov-
0-7695-0001-3/99 $
proc SDP GET (object)
if (object in local data cache) then return object
else if (object is listed in Directory) then

select best cache site
request object from selected site
if (ok) then

store Popular List in Directory
return object

end if
end if

/* Object is not in Directory or request failed */
request object from primary server
if (Proxy List was attached to reply) then

store Proxy List in Directory
if (Proxy List and no object) then SDP GET(object)
return object

end

Figure 2. SDP client proxy

ery from site selection, allowing us to choose sites based
upon any criteria. The server is included in the list of can-
didate sites because it may be the best choice. Our current
criteria is a fast response time, as predicted by static, sta-
tistical and dynamic estimators. Static estimators include
site bandwidth and whether or not the client proxy and site
share regional or backbone networks. Statistical estimators
include the site’s average available bandwidth, server load,
and past performance for this client-site pair. Dynamic esti-
mators are run-time measurement of current conditions. and
include ICMP echoes (“pings”) for estimating latency and
ICMP packet pairs for estimating available bandwidth.

3. Server returns object and/or Proxy List
or Cache site returns object and Popular List.
When a server returns an object, it appends a Proxy List for
related objects and updates its Proxy Table. If a server is
too busy and the object is large, the server instead returns
a Proxy List for the object. When a cache site returns an ob-
ject, it appends its Popular List. If a cache site is too busy
or has removed the object, it returns an error and the client
proxy sends the server an ordinary HTTP request. Proxy
Lists and Popular Lists need not be comprehensive: large
lists are culled using static criteria mentioned above. Fol-
lowing successful requests, the client proxy stores the pig-
gybacked metadata in its Cache Site Directory, and returns
the object to the user.

6.3. Concurrent retrieval of embedded objects

If the requested object is a Web page, the client proxy
retrieves the embedded images concurrently from different
cache sites (see Figure 3). The client proxy selects the best
10.00 (c) 1999 IEEE 7
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proc SDP GET EMBEDDED (Web page)
select set of best cache sites
for each (embedded object)

send request to next site
mark site as ”Unavailable”

end

/* Receive objects as they come in and return them */
while (more objects)

if (object received) then
mark page site ”Available”
store Popular List in Directory
return object

else if (proxy timeout) then
request object from next available site

else if (proxy error) then
request object from primary server

else if (server timeout or error) then
return error

end
end

Figure 3. Concurrent image retrieval.

site, and sends it the first image request. Without waiting for
a response, the client selects the next best site and continues
until all images have been requested or all sites have out-
standing requests. That is, no site is sent more than one re-
quest at a time. To guard against excessive delay, the client
sets reply timers and sends the request to another site if a
timer expires. The request to the slower sites is cancelled
after the image is received. This technique can also be used
for other strongly related objects. For example, large inde-
pendent objects might be split up and retrieved concurrently.

6.4. Cache consistency issues

Standard proxy server caching does not guarantee cache
consistency: a proxy cache may return stale objects to its lo-
cal users. Object timestamps, expiration headers, and proxy
server directives are used to limit stale returns. SDP pro-
vides the same safeguards by including the timestamps and
expiration dates in the metadata, thereby ensuring cache
consistency is no worse for shared objects than for objects
returned from the local proxy cache.

7. Analytical simulation

We simulated SDP and normal proxy caching using
empirically-derived analytical workloads. Unlike trace-
driven workloads, statistical workloads can be easily var-
ied, which allows for a systematic investigation of perfor-
mance. Consequently, we can model the system over a wide
range of parameter space. While traces provide a more exact
0-7695-0001-3/99 
Workload Variable Distribution and Probability

Interarrival times
Session Exp(a) a = varied

Component Log10-normal(a;b) a = �0:7

mean = 221ms b = 0:3

Connection duration (sec) Log10-normal(a;b) a = �0:75

mean = 289ms b = 0:65

File size (KB) Pareto(a)
HTML a = 4 P = 0:430

Image a = 11 P = 0:506

Audio a = 140 P = 0:003

Video a = 452 P = 0:004

Application a = 260 P = 0:007

Dynamic a = 1 P = 0:019

Other a = 11 P = 0:031

Page request (multi-obj) Fixed Ppage = 0:13

Embedded objects per page Normal (a; b) a = 3:2; b = 1

Table 6. Simulation workload.

model, each trace represents only a single point in parameter
space. The ability to vary parameters is especially important
when traffic characteristics vary between sites or over time.
Paxson [17] provides a clear discussion of these and other
advantages in a study comparing analytical and empirical
models of wide-area TCP/IP traffic. Table 6 lists the work-
load distributions, parameters and probabilities we used in
the simulation. These were gathered from server traces cited
in Table 1 and from our own UTSA traces.

7.1. Interarrival times (Ta) and service times (Ts)

We use two interarrival time distributions: Poisson for
session requests and log-normal for component requests
generated by the session. Other research suggests overall
HTTP interarrival times are not Poisson, but these analy-
ses did not distinguishbetween session requests and compo-
nent requests. For FTP, Paxson and Floyd show session ar-
rivals do appear to be Poisson, while FTPDATA connections
spawned by the session are better approximated by a heavy
tailed distribution such as log-normal or log-logistic [18].
For normal proxy caching, we assume the client uses parallel
HTTP; that is, all inline image requests are sent concurrently
rather than sequentially. We model the average interarrival
time of a group of parallel inline requests as a heavy-tailed
log-normal distribution with respect to the end of the corre-
sponding HTML transfer, and randomly distribute arrivals
of the requests around this mean. Because these arrival
times of inline images reflect the time for the HTML file
to reach the client and an inline request to reach the server,
we used parameters that approximate the 207 ms measure-
ment of Mogul for round-trip (RT) pings of 536 byte pack-
ets [15]. The service time distribution is based on our in-
terpretation of Mogul’s graph of connection durations from
$10.00 (c) 1999 IEEE 8
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the DEC server traces [15]. For well-connected servers, the
connection duration will likely depend upon network band-
width of the proxy, therefore the duration distributionshould
be similar for most servers.

7.2. Simulation metrics

For offered load we compute the request intensity
(Ts=Ta), which normalizes request rate with respect to
service rate. Here Ta reflects the request rate generated by
client proxies. In normal proxy caching, the server receives
all these requests. In SDP many of the embedded object
requests are never seen at the server because they are sent
to cache sites. Hence the request rate at the SDP server is
lower than the request rate generated by the client proxies.
Larger request intensities indicate busier servers. For
normal proxy caching, the server becomes overloaded and
starts refusing connections at Ts=Ta = 1. We compared
SDP to normal proxy caching by computing server load
(arrivals/sec and MB/sec) and percent refused connections
as a function of request intensity.

7.3. Simulation results

Simulation results predict that SDP significantly reduces
server load when compared to normal proxy caching (see
Figures 4 and 5). Consequently, SDP allows the server to
handle more requests, thus reducing the number of denied
connections (see Figure 6). A particularly critical region lies
in the range 0:5 � Ts=Ta � 1:5, where servers become sat-
urated and begin to refuse connections. Within this region,
SDP reduces the server’s traffic load (MB/s) between 41%
to 63%, and reduces the request load (arrivals/s) between
26% to 38%. Past the critical region, the SDP advantage
levels off to approximately a 35%-40% reduction in traffic
load and a 10%-15% reduction in request load. More impor-
tantly, SDP does not begin connection refusals until well af-
ter normal proxy caching, and continues to refuse a smaller
number as traffic intensity increases.

8. Conclusions

The SDP protocol is designed to match known character-
istics of the Web, the most important being limited request
duplications within user groups, skewed popularity distri-
butions, rapid popularity shifts, fluctuating network con-
gestion, and the structure of Web pages. By organizing
cache sites as a flat mesh and propagatingmetadata with lazy
prefetching, SDP combines low delivery cost with low dis-
covery cost. Lazy prefetching takes advantage of skewed
popularities, and propagates metadata with little added net-
work traffic. This method is unique to our Web cache de-
sign. A second important feature of SDP is the separation of
0-7695-0001-3/99 $
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Figure 4. Simulation: Server request load.
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Figure 5. Simulation: Server byte load.

discovery from cache site selection, allowing site selection
to be based upon multiple and configurable criteria. Lastly,
we believe the Internet presents special problems for net-
work caching because it has no central controlling author-
ity. Our design takes into account this autonomous admin-
istrative nature. In push-caching, the local caches store un-
solicited objects that may not be needed by local users, rais-
ing security and resource-sharing issues. Hierarchical cache
designs require dedicated caches supported by government
funding or a “pay-for-services” plan; neither is a particularly
attractive option. In contrast, SDP requires only that local
proxy servers share information they previously cached for
their local users. Thus SDP matches both technical and po-
litical characteristics of the Web.

SDP’s combination of distributed directory-based dis-
covery, client-initiated dissemination, and direct delivery
might be adapted to form a potent replication strategy for
other distributed replication systems. However, the details
of the SDP protocol exploit specific characteristics found
10.00 (c) 1999 IEEE 9
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Figure 6. Simulation: Denied connections.

in typical Web behavior. Other distributed caching mecha-
nisms can utilize ideas from SDP to the extent that they have
similar properties: long periods with many reads between
writes, relatively large caches and skewed object populari-
ties, and collections of related objects that are replicated to-
gether. Implementation details that exploit such properties
are best tuned individually for different application services.

Our simulation shows SDP substantially reduces both
server load and the number of connection refusals as com-
pared to normal proxy caching, and is especially effective
in the range where servers begin to experience overloading.
Although our simulation did not compute response time, it
is a primary consideration in the SDP design. Currently we
are experimenting with site selection techniques to speed up
response time and lower network congestion, and are plan-
ning a prototype implementation.
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