

Proceedings of the 36th Haw
0-7695-1874-5/03 $17.00

Content Based File Type Detection Algorithms

Mason McDaniel and M. Hossain Heydari1
Computer Science Department

James Madison University
Harrisonburg, VA 22802

Abstract

 Identifying the true type of a computer file can
be a difficult problem. Previous methods of file type
recognition include fixed file extensions, fixed
“magic numbers” stored with the files, and
proprietary descriptive file wrappers. All of these
methods have significant limitations. This paper
proposes algorithms for automatically generating
“fingerprints” of file types based on a set of known
input files, then using the fingerprints to recognize
the true type of unknown files based on their content,
rather than metadata associated with them.
Recognition is performed by three different
algorithms based on: byte frequency analysis, byte
frequency cross-correlation analysis, and file
header/trailer analysis. Tests were run to measure
the accuracy of these algorithms. The accuracy
varied from 23% to 96% depending upon which
algorithm was used.

These algorithms could be used by virus
scanning packages, firewalls, intrusion detection
systems, forensic analyses of computer hard drives,
web browsers, or any other program that needs to
identify the types of files for proper operation. File
type detection is also important to the operating
systems for correct identification and handling of
files regardless of file extension.

I. Introduction

Computers use a tremendous array of file
formats today. All types of files are frequently
transmitted through intranets and the Internet.
Currently, operating systems, firewalls, and intrusion
detection systems have very few methods for
determining the true type of a file. Perhaps the most
common method used is to identify the type of a file
aii International Conference on System Sciences
 © 2002 IEEE
by the file’s extension. This is an extremely
unreliable method, as any user or application can
change a file’s name and extension at any time. As a
result, some users are able to conceal files from
system administrators simply by renaming them to a
filename with a different extension. While this
doesn’t conceal the existence of a file, it can conceal
the nature of a file and can prevent it from being
opened by the operating system. In addition, many
virus-scanning packages default to only scanning
executable files. These packages may miss any
viruses contained within executable files that had
non-executable file extensions. This could introduce
vulnerabilities into a network, even if it contained
virus protection.

The other common method of identifying file
types is through manual definition of file recognition
rules. This is an extremely time-consuming process,
whereby an individual examines a file type
specification, if one is available, and identifies
consistent features of a file type that can be used as a
unique identifier of that type. In the absence of a
specification, the individual must manually examine
a number of files looking for common features that
can be used to identify the file type. Not only is this
time-consuming, but it can require an individual with
a highly technical background that is capable of
doing a hexadecimal analysis of files.

Manual rule definition is the method used by
many Unix-based operating systems, as well as tools
used in forensic analysis of computer disks during
investigations. Regardless of the investigating
authority, automated file type recognition is a critical
part of this sort of computer forensic analysis.

An efficient, automated algorithm to perform this
kind of file type recognition would be of tremendous
benefit to organizations needing to perform forensic

1 This research is supported in part by a grant from the Virginia Commonwealth Technology Research Fund and
supported in part by a grant from the Department of Defense Information Assurance Scholarship program.
 (HICSS’03)

Proceed
0-7695-
analyses of computer hard drives. It could also be
used by virus protection software, intrusion detection
systems, firewalls, web browsers, and security
downgrading packages to identify the true nature of
programs passing through the protected systems.
Finally, this kind of algorithm could be of use to the
operating systems themselves to allow for correct
identification and handling of files regardless of file
extension.

This paper describes an attempt to extend the
concept of frequency analysis and apply it to the
general case of generating a characteristic
“fingerprint” for different computer file types, and
subsequently using the fingerprint to identify file
types based upon their characteristic signatures. The
process could be almost entirely automated, and
would not be affected if a user changed a file name or
extension.

I.1 Previous work

To date, there have been relatively few methods
for identifying the type of a file. One of the most
commonly used methods is the use of file extensions.
Microsoft’s operating systems use this method almost
exclusively. They come preset with associations
between file extensions and file types. If different
associations are desired, they must be manually
reconfigured by the user [7]. As mentioned above,
this approach introduces many security
vulnerabilities. A user can change the extension of a
file at any time, rendering the operating system
unable to identify it. They can also change the file
extension associations to fool the operating system
into handling files in an inappropriate manner, such
as trying to execute a text file.

Another approach is that taken by many Unix-
based operating systems. These make use of a
“magic number” which consists of the first 16 bits of
each file. A file, such as /etc/magic then associates
magic numbers with file types [9]. This approach has
a number of drawbacks as well. The magic numbers
must be predefined before the files are generated, and
are then built into the files themselves. This makes it
very difficult to change them over time, since a
change might interfere with the proper operation of
many files that were generated using the old magic
number. Furthermore, not all file types use magic
numbers. The scheme was initially intended to assist
with the proper handling of executable and binary
formats. With only 16 bits allocated, a number of
extensions had to be introduced over time, such as
using the “#!” magic number to identify a command
to execute on the rest of the file [8].

Another approach is to define a proprietary file
format that encapsulates other files and provides

ings of the 36th Hawaii International Conference on System Sciences (
1874-5/03 $17.00 © 2002 IEEE
information regarding their type. One example of
this approach is the Standard File Format (SAF)
developed by the Advanced Missile Signature Center
(AMSC) [6]. There are many down sides to this
approach. The specification must be written defining
how to encapsulate and identify each file format. An
individual or external system must identify the type
of the file before it can be correctly encapsulated in
the standard format in the correct manner. The most
significant problem, however, is that this type of file
can only be used within the small proprietary system
that recognizes the “standard” format. The files
cannot be exported to external systems such as the
Internet without removing the encapsulation, and thus
negating its benefit.

II. Algorithms

The design goals for the proposed file recognition
algorithm are as follows:
• Accuracy – The algorithm should be as accurate as

possible at identifying file types.
• Automatic generation of file type fingerprints.
• Small fingerprint files – The fingerprint file sizes

should be minimized.
• Speed – Comparisons should be as fast as possible

for a given fingerprint file size.
• Flexibility – The algorithm should provide a

customizable tradeoff between speed and accuracy.
• Independence from file size.
These design goals can be achieved by implementing
the three algorithms described in this paper, each of
which could be selected independently, or used
together for increased accuracy. Due to space
limitation, detailed explanation of these results is
available in [1].

II.1 Byte frequency analysis (BFA) algorithm

A computer file is a collection of bytes, which

correspond to eight-bit numbers capable of
representing numeric values from 0 to 255 inclusive.
By counting the number of occurrences of each byte
value in a file, a frequency distribution can be
obtained. Many file types have consistent patterns to
their frequency distributions, providing information
useful for identifying the type of unknown files.
Figure II.1 and Figure II.2 show the frequency
distributions for a typical RichText (RTF) and a
Graphics Interchange Format (GIF) file, respectively.
Many file types likewise have characteristic patterns
that can be used to differentiate them from other file
formats.

This section describes the methods used to build
the byte frequency distribution of individual files and

HICSS’03)

Procee
0-7695
to construct a fingerprint representative of the file
type.

II.1.1 Building the byte frequency distribution

The first step in building a byte frequency
fingerprint is to count the number of occurrences of
each byte value for a single input file. This is done
by constructing an array of size 256 (indexed 0 to
255), and initializing all array locations to zero. For
each byte in the file, the appropriate element of the
array is incremented by one. Once the number of
occurrences of each byte value is obtained, each
element in the array is divided by the number of
occurrences of the most frequent byte value. This
normalizes the array to frequencies in the range of 0
to 1, inclusive. This normalization step prevents one
very large file from skewing the file type fingerprint.
Rather, each input file is provided equal weight
regardless of size.

Some file types have some byte values that occur
much more frequently than any other. If this
happens, the normalized frequency distribution may
show a large spike at the common values. Figure II.3
shows the frequency distribution for an executable
file that demonstrates this. The file has large regions
filled with the byte value zero. The resulting graph
has a large spike at byte value zero, with insufficient
detail to determine patterns in the remaining byte
value ranges.

Figure II.1 - Byte frequency distributions for two

RTF files.

A way to solve this problem would be to pass the
frequency distribution through a companding

function to emphasize the lower values. Common
companding functions, such as the A-law and µ-law
companding functions used in telecommunications
[2], can be roughly approximated by the following

function, which can be very rapidly computed.
The same file shown in Figure II.3, after being

passed through this equation, produces the frequency
distribution shown in Figure II.5. This graph shows

dings of the 36th Hawaii International Conference on System Sciences
-1874-5/03 $17.00 © 2002 IEEE
more of the detail across all byte frequencies, and
therefore may allow for more accurate comparisons.
Experimental results indicated that β = 1.5 is the
optimal β value for the most accurate file type
recognition [1]. The optimal value of β is defined as
the value that produces the greatest difference
between the fingerprint with the highest frequency
score and the fingerprint with the second-highest
frequency score.

Figure II.2 - Byte frequency distributions for two

GIF files.

Figure II.3 - Frequency distribution for a sample
executable file.

The companding function results in a frequency

distribution that is still normalized to 1. This is true
since the most frequent byte value was normalized to
1, and the companding function with an input value
of 1 results in an output value of 1.

II.1.2 Combining frequency distributions into a

fingerprint

A fingerprint is generated by averaging the
results of multiple files of a common file type into a
single fingerprint file that is representative of the file
type as a whole. To add a new file’s frequency
distribution to a fingerprint we use the following
simple averaging equation, where NFPS is the new
fingerprint score, OFPS is the old fingerprint score,

(HICSS’03)

Proceedin
0-7695-1
PNF is the previous number of files, and NFS is the
new file score.

()

1+
+×=

PNF
NFSPNFOFPSNFPS

Aside from the byte frequency distributions,
there is another related piece of information that can
be used to refine the comparisons. The frequencies
of some byte values are very consistent between files
of some file types, while other byte values vary
widely in frequency. For example, note that almost
all of the data in the files shown in Figure II.1 lie
between byte values 32 and 126, corresponding to
printable characters in the lower ASCII range. This
is characteristic of the RichText format. On the other
hand, the data within the byte value range
corresponding to the ASCII English alphanumeric
characters varies widely from file to file, depending
upon the contents of the file.

This suggests that a “correlation strength”
between the same byte values in different files can be
measured, and used as part of the fingerprint for the
byte frequency analysis. In other words, if a byte
value always occurs with a regular frequency for a
given file type, then this is an important feature of the
file type, and is useful in file type identification.

A correlation factor can be calculated by
comparing each file to the frequency scores in the
fingerprint. The correlation factors can then be
combined into an overall correlation strength score
for each byte value of the frequency distribution.

The correlation factor of each byte value for an
input file is calculated by taking the difference
between that byte value’s frequency score from the
input file and the frequency score from the
fingerprint. If the difference between the two
frequency scores is very small, then the correlation
strength should increase toward 1. If the difference is
large, then the correlation strength should decrease
toward 0. Therefore, if a byte value always occurs
with exactly the same frequency, the correlation
strength should be 1. If the byte value occurs with
widely varying frequencies in the input files, then the
correlation strength should be nearly 0.

A function that would provide more tolerance for
small variations and less tolerance for larger
variations is a bell curve with a peak magnitude of 1
and the peak located at 0 on the horizontal axis. The
general equation for this type of bell curve is:

 −

=
2

2

2
)(

σ

x

exF
where F(x) is the correlation factor and x is the
difference between the new byte value frequency and
the average byte value frequency in the fingerprint.

gs of the 36th Hawaii International Conference on System Sciences
874-5/03 $17.00 © 2002 IEEE
Experimental results indicated that σσσσ = 0.0375 is
the optimal σσσσ value for the most accurate file type
recognition [1].

Figure II.5 - Frequency distribution for a the

figure II.3 file after passing through the
companding function.

Once the input file’s correlation factor for each

byte value is obtained, these values need to be
combined with the correlation strengths in the
fingerprint. This is accomplished by using the
following simple averaging equation, which directly
parallels the method used to calculate the frequency
distribution scores, where NCS is the new correlation
strength, OCS is the old correlation strength, PNF is
the previous number of files, and NCF is tne new
correlation factor.

()
1+
+×=

PNF
NCFPNFOCSNCS

II.1.3 Comparing a single file to a fingerprint

When identifying a file using the byte frequency
analysis algorithm (BFA):
 Compute a score for each fingerprint identifying
how closely the unknown file matches the
frequency distribution in the fingerprint. The score
is generated by comparing each byte value
frequency from the unknown file with the
corresponding byte value frequency from the
fingerprint. As the difference between these values
decreases, the score should increase toward 1. As
the difference increases, the score should decrease
toward 0.
 Compute an “assurance level” for each fingerprint,
indicating how much confidence can be placed on
the score. The file type’s byte frequency
correlation strengths are used to generate a numeric
rating for the assurance level. This is because a file
type with a characteristic byte frequency

(HICSS’03)

Proceed
0-7695
distribution will have high correlation strengths for
many byte values.
 Compare the unknown file’s byte frequency
distribution to the byte frequency scores and the
associated correlation strengths stored in each file
type fingerprint and pick the best match.

Figure II.7 shows the byte frequency distribution

for the HTML fingerprint, with the frequency scores
shown by a solid line and the correlation strengths
shown by a dotted line. Figure II.8 shows the byte
frequency distribution scores and correlation
strengths for the ZIP fingerprint.

Using this scheme, the HTML file format would
have a high assurance level for the byte frequency,
since many byte values have high correlation
strengths, whereas the ZIP file format would have a
low assurance level for the byte frequency,
suggesting that perhaps other algorithms should
be used to improve accuracy for this type.

II.2 Byte frequency cross-correlation (BFC)

algorithm

While BFA algorithm compares overall byte
frequency distributions, other characteristics of the
frequency distributions are not addressed. One
example can be seen in Figure II.7. There are two
equal-sized spikes in the solid frequency scores at
byte values 60 and 62, which correspond to the
ASCII characters “<” and “>” respectively. Since
these two characters are used as a matched set to
denote HTML tags within the files, they normally
occur with nearly identical frequencies.

This relationship, or cross-correlation, between
byte value frequencies can be measured and scored as
well, strengthening the identification process. This
section describes the methods used to build the byte
frequency cross-correlations of individual files, to
construct a fingerprint representative of the file type,
and to compare an unknown file to a file type
fingerprint, obtaining a numeric score.

Figure II.7 - Byte frequency distribution with
correlation strength for HTML fingerprint.

ings of the 36th Hawaii International Conference on System Sciences
-1874-5/03 $17.00 © 2002 IEEE

Figure II.8 - Byte frequency distribution with

correlation strength for ZIP fingerprint.

II.2.1 Building the byte frequency cross-
correlation

There are two key pieces of information that

need to be calculated concerning the byte frequency
cross-correlation analysis: the average difference in
frequency between all byte pairs and a correlation
strength similar to the BFA algorithm. Byte value
pairs that have very consistent frequency
relationships across files, such as byte values 60 and
62 in HTML files, as mentioned above, will have a
high correlation strength score. Byte value pairs that
have little or no relationship will have a low
correlation strength score.

In order to characterize the relationships between
byte value frequencies, a two-dimensional 256×256
cross-correlation array is built (byte values are
between 0 and 255), with indices ranging from 0 to
255 in each dimension.

Note that if byte value i is being compared to
byte value j, then array entry (i, j) contains the
frequency difference between byte values i and j
while array entry (j, i) contains the negative of the
corresponding (i, j) location. Hence, half of the array
contains redundant information and storing both of
them is unnecessary. We use the lower half of the
array to store the correlation strengths of each byte
value pair. So now if byte value i is being compared
to byte value j, then array entry (i, j) contains the
frequency difference between byte values i and j
while array entry (j, i) contains the correlation
strength for the byte pair. Furthermore, a byte value
will always have an average frequency difference of
0 and a correlation strength of 1 with itself, so the
main diagonal of the array can be used to store any
other information that is needed for the comparisons.
We use the first entry of the main diagonal (0, 0) to
store the number of files that have been used to
compute the fingerprint.

Calculating the difference between the
frequencies of two bytes with values i and j involves
simply subtracting the frequency score of byte value i
from the frequency of byte value j. Since byte value

 (HICSS’03)

Proceedi
0-7695-
frequencies were normalized, with a range of 0 to 1,
this results in a number with a possible range of –1 to
1. A score of –1 indicates that the frequency of byte
value i was much greater than the frequency of byte
value j. A score of 1 indicates that the frequency of
byte value i was much less than the frequency of byte
value j. A score of 0 indicates that there was no
difference between the frequencies of the two byte
values.

II.2.2 Combining cross-correlations into a

fingerprint

Once the frequency differences between all byte-
value pairs for an input file have been calculated, the
new fingerprint can be calculated using the following
equation, similar to the one used in BFA algorithm,
where NFPD is the new fingerprint difference, OFPD
is the old fingerprint difference, NFD is the new
frequency difference, and PNF is the previous
number of files.

()
1+

+×=
PNF

NFDPNFOFPDNFPD

A correlation factor can be calculated for each
byte value pair, by comparing the frequency
differences in the input file to the frequency
differences in the fingerprint. The correlation factors
can then be combined with the scores already in the
fingerprint to form an updated correlation strength
score for each byte value pair. As more files are
added to construct the fingerprint, the correlation
strengths more accurately reflect the file type.

If at least one file has been previously added into
a fingerprint, then the correlation factor for each byte
value pair is calculated by subtracting the pair’s
frequency difference from the new file and the same
pair’s average frequency difference from the
fingerprint. This results in a new overall difference
between the new file and the fingerprint. If this
overall difference is very small, then the correlation
strength should increase toward 1. If the difference is
large, then the correlation strength should decrease
toward 0. New correlation strength is calculated
using the same equations as the BFA algorithm.

After the average frequency differences and
correlation strengths for each byte value pair of the
new input file have been updated in the fingerprint,
the Number of Files field is incremented by 1 to
indicate the addition of the new file.

It is interesting to compare the frequency
distribution graphs of BFA algorithm to the byte
frequency cross-correlation plots generated from
BFC algorithm. Figure II.7 shows the frequency
distribution for the HTML file format, and Figure II.9
shows a graphical plot of the HTML fingerprint

ngs of the 36th Hawaii International Conference on System Sciences
1874-5/03 $17.00 © 2002 IEEE

cross-correlation array. Note that there are ranges of
byte values in the frequency distribution that never
occurred in any files (they appear with 0 frequency.)
These regions appear in the cross-correlation plot as
mid-tone gray regions of 0 frequency difference.
Furthermore, the intersection of 60 on the vertical
axis with 62 (corresponding to the ASCII values for
the “<” and “>”) shows a dark dot representing a
correlation strength of 1, as expected.

Looking at a graphical plot of a GIF fingerprint
cross-correlation array (not shown to save space), a
sawtooth pattern in the frequency distributions is a
characteristic feature of the GIF file type, and it
manifests in the cross-correlation plot as a subtle grid
pattern in the frequency difference region.

II.2.3 Comparing a single file to a fingerprint

When identifying a file using the byte frequency
cross-correlation algorithm (BFC):
 Compute a score, similar to BFA, for each
fingerprint identifying how closely the unknown
file matches the fingerprint. The score is generated
by comparing the frequency difference for each
byte value pair from the unknown file with the
average frequency difference for the corresponding
byte value pair from the fingerprint. As the
difference between these values decreases, the
score should increase toward 1. As the difference
increases, the score should decrease toward 0.
 Compute the assurance level, indicating how much
confidence can be placed on the score. File types
that have characteristic cross-correlation patterns
should have high assurance levels, others should
have low assurance levels. As with the BFA
algorithm, the correlation strengths are used to
generate a numeric rating for the assurance level.
The higher the assurance level, the more weight
can be placed on the score for that fingerprint.
 Compare the unknown file’s cross-correlation array
to the cross-correlation scores and correlation
strengths stored in each file type fingerprint and
pick the best match.

II.3 File header/trailer (FHT) algorithm

BFA and BFC make use of byte value
frequencies to characterize and identify file types.
While these characteristics can effectively identify
many file types, some do not have easily identifiable
patterns. To address this, the file headers and file
trailers can be analyzed and used to strengthen the
recognition of many file types. The file headers and
trailers are patterns of bytes that appear in a fixed
location at the beginning and end of a file

 (HICSS’03)

Proceedin
0-7695-1
respectively. These can be used to dramatically
increase the recognition ability on file types that do
not have strong byte frequency characteristics.

This section describes the methods used to build
the header and trailer profiles of individual files, to
combine the ratings from multiple files into a
fingerprint for the file type, and to compare an
unknown file to a file type fingerprint, obtaining a
numeric score.

II.3.1 Building the header and trailer profiles

The first step in building header and trailer
profiles is to decide how many bytes from the
beginning and end of the file will be analyzed. If H
is the number of file header bytes to analyze, and T is
the number of trailer bytes to analyze, then two two-
dimensional arrays are built, one of dimensions H ×
256 and the other of dimensions T × 256. For each
byte position in the file header (trailer), all 256 byte
values can be independently scored based upon the
frequency with which the byte value occurs at the
corresponding byte position.

An individual file’s header array is initially set to
0. For each byte position in the header, from byte 0
(the first byte in the file) to byte H – 1, the array
entry corresponding to the value of the byte is filled
with a correlation strength of 1 (each row has 255
zeros and a single one). The only exception occurs
when an input file is shorter than the header or trailer
lengths. In this case, the fields in the missing byte
position rows will be filled with the value -1 to
signify no data. (Note that if a file length is greater
than the header and trailer lengths, but less then the
sum of the two lengths, then the header and trailer
regions will overlap.) The trailer array is similarly
constructed.

II.3.2 Combining header and trailer Profiles into a

fingerprint

A fingerprint is constructed by averaging the
correlation strength values from each file into the
fingerprint using the following equation, which is
similar to the ones used in BFA and BFC algorithms,
where NFPA is the new fingerprint array entry,
OFPA is the old fingerprint array entry, PNF is the
previous number of files, and NA is the new array
entry.

()
1+

+×=
PNF

NAPNFOFPANFPA

 A sample graphical plot of the file header
fingerprint array is shown in Figure II.11 (please note
the very light markings on the figure) for the GIF file

gs of the 36th Hawaii International Conference on System Sciences
874-5/03 $17.00 © 2002 IEEE

type. The first few bytes of the GIF header show high
correlation strengths (represented by dark marks,)
indicating that this type has a strongly characteristic
file header. The specification for the GIF format
states that the files shall all begin with the text string
“GIF87a” for an earlier version of the format, or
“GIF89a” for a later version. Further inspection of
Figure II.11 shows that rows 0-3 and 5 have
correlation strengths of 1 for the byte value positions
corresponding to ASCII values of “GIF8” and “a”.
In row four, byte values 55 and 57 (ASCII values for
“7” and “9”) both show correlation strengths roughly
balanced. This indicates that approximately equal
numbers of files of each version of the GIF format
were loaded into the fingerprint. Beyond byte
position six, there is a much broader distribution of
byte values, resulting in lower correlation strengths
and lighter marks on the plot.

Figure II.9 - Byte frequency cross-correlation plot

for the HTML file type

 Figure II.12 shows a very similar plot of the file
trailer for the MPEG file type fingerprint, where the
end of the file is represented by byte position 0 at the
bottom of the plot. This plot shows a broad
distribution of byte values (resulting in extremely
faint marks) up until four bytes from the end of the
file. These final four bytes show a characteristic
pattern similar to the pattern described above for the
GIF file header.

Note that for file types that do not have a
characteristic file header or trailer, the corresponding
plots would appear essentially empty, with many

(HICSS’03)

Proceedin
0-7695-1
scattered dots with very low correlation strengths
(therefore producing almost white dots.)

II.3.3 Comparing a single file to a fingerprint

When identifying a file using the file headers and
trailers algorithm (FHT):
 Construct the file header and trailer arrays for the
unknown file as described above.
 Use the following equation to generate the score
for the file header and trailer, where C is the
correlation strength for the byte value extracted
from the input file for each byte position, and G is
the correlation strength of the byte value in the
fingerprint array for the corresponding byte
position. This equation produces an average of the
correlation strengths of each byte value from the
input file, weighted by the greatest correlation
strength at each byte position. This results in
placing greatest weight on those byte positions
with a strong correlation, indicating that they are
part of a characteristic file header or trailer, and
placing much less weight (ideally no weight) on
values where the file type does not have consistent
values.

n

nn

GGG
GCGCGCS

+++
+++=

K

K

21

2211

 The assurance level for the file header and file
trailer is simply set equal to the overall maximum
correlation strength in the header and trailer arrays,
respectively. This is different from the approach
used in BFA and BFC algorithms, where the
average of all correlation strengths was used.
 Compare the unknown file’s header/trailer
information to the cross-correlation scores and
correlation strengths stored in each file type
fingerprint and pick the best match.

 The GIF file header provides a clear example.
The first four byte positions each have a correlation
strength of 1 for a single byte. This indicates that all
input files of the GIF file type had the same byte
values for these positions. If an unknown file has
different bytes in these positions, it is a very strong
indicator that it is not a GIF file. On the other hand,
if the unknown file has a differing byte value at
position 20, which shows a very low correlation
strength, this offers no real information about
whether the unknown file is a GIF file or not since
there are no bytes in this position with a high
correlation strength.

Setting the assurance level equal to the
maximum correlation strength allows even a few
bytes with very high correlation strength, such as
those in the GIF file format to provide a strong

gs of the 36th Hawaii International Conference on System Sciences
874-5/03 $17.00 © 2002 IEEE
indication of file type. Therefore even a few bytes
can produce a strong influence in recognition. On the
other hand, if a file type has no consistent file header
or trailer, the maximum correlation strength will be
very low. This means little weight will be placed on
the header or trailer with the low assurance level.

Figure II.11 - File header plot for the GIF file

fingerprint

 The optimal header (trailer) length is the value
that results in the highest average level of
differentiation across all file types. Our experimental
results indicate that the optimum header and trailer
length for file type identification is five [1].

III. Experimental results

In this section we describe our experimental
results, using each of the 3 above-mentioned
algorithms to identify file types. Thirty file type
fingerprints are constructed and used for this test. To
run the accuracy test, four test files are selected for
each file type, resulting in a total library of 120 files.
Combining the file types ACD, DOC, PPT, and XLS
into a single OLE DOC fingerprint, using the average
of the four type fingerprints, resulted in a more
accurate type recognition for BFC and FHT
algorithms and a slight decrease for BFA. Following
shows the accuracy test results for each of the 3
algorithms. Type recognition reports were generated
for each of the 120 test files:
• Figure III.1 shows the resulting file type

identification grid for BFA algorithm. BFA’s
accuracy is only 27.50%. This is better than purely
random guesses but not accurate enough for
practical use. We should note that the accuracy of
this algorithm increases to 29.17% if separate

(HICSS’03)

Proceedi
0-7695-
fingerprints are used for ACD, DOC, PPT, and
XLS files, not a significant improvement.

• Figure III.2 shows the resulting file type
identification grid for BFC algorithm. BFC’s
accuracy is only 45.83%. This is a significant
improvement over BFA, but not accurate enough
for practical use.

• Figure III.3 shows the resulting file type
identification grid for FHT algorithm. FHT’s
accuracy is 95.83%. This is a significant
improvement over BFA and BFC and may be
accurate enough for some fault-tolerant
applications. We should note that using separate
fingerprints for ACD, DOC, PPT, and XLS files
decreases FHT’s accuracy to 85%, most of the
errors occurred between the ACD, DOC, PPT, and
XLS file type identification.

 File 1 File 2 File 3 File 4 Score

3TF 3TF 3TF 3TF 3TF 4
ACD 3TF 3TF OLE OLE 2
AVI 3TF CRP RM 3TF 0
BMP 3TF 3TF FNT 3TF 0
CAT CAT CAT CAT CAT 4
CRP CRP CRP CRP CRP 4
DOC WPD 3TF 3TF 3TF 0
EXE FNT 3TF 3TF CRP 0
FNT 3TF 3TF 3TF GIF 0
GIF RM ZIP RM RM 0
GZ MP3 TAR ZIP CRP 0
HTML RTF TXT CAT CAT 0
JPG JPG GZ MP3 MP3 1
MDL CAT CAT CAT CAT 0
MOV CRP CRP RM RM 0
MP3 MP3 GZ MP3 MP3 3
MPEG CRP CRP MP3 CRP 0
PDF CRP PDF EXE TXT 1
PPT 3TF 3TF 3TF 3TF 0
PS TXT TXT CAT TXT 0
RTF RTF RTF RTF CAT 3
RM RM CRP RM CRP 2
RPM GZ CRP GZ GZ 0
TAR CRP CAT TXT ZIP 0
TXT TXT CAT TXT TXT 3
TTF TTF TTF TTF WPD 3
WAV CAT TXT FNT 3TF 0
WPD 3TF 3TF WPD TXT 1
XLS WPD FNT 3TF 3TF 0
ZIP GIF ZIP ZIP GIF 2

TOTAL CORRECT: 33
TOTAL FILES: 120

Accuracy: 27.50%

Figure III.1 Identified type of each test file with a
combined OLE DOC fingerprint, BFA algorithm.

IV. Conclusions and future work

The BFA algorithm proved to be the fastest of
the three algorithms. An unknown file takes an
average of 0.010 seconds to compare to 25
fingerprints and identify the closest match (All times
were taken on an 800 MHz Pentium III laptop with
512 MB RAM). Because of its poor accuracy, BFA
would be of a very limited use. The calculations

ngs of the 36th Hawaii International Conference on System Sciences (
1874-5/03 $17.00 © 2002 IEEE
performed in this algorithm, though, are used as the
basis for the BFC.

The BFC algorithm proved to be by far the
slowest and only moderately more accurate than
BFA. An unknown file takes an average of 1.19
seconds to compare to 25 fingerprints and identify
the closest match. This algorithm offers slightly
improved accuracy over BFA but its accuracy is still
too low to be of practical use in most applications.

The FHT algorithm provides the best
combination of speed and accuracy. An unknown
file takes an average of 0.015 seconds to compare to
25 fingerprints and identify the closest match, which
is almost as fast as BFA. This algorithm had by far
the highest accuracy at 95.83% for a combined OLE
DOC fingerprint and 85% for separate ACD, DOC,
PPT, and XLS fingerprints.

 File 1 File 2 File 3 File 4 Score
3TF 3TF 3TF 3TF 3TF 4
ACD OLE OLE OLE OLE 4
AVI OLE CAT OLE 3TF 0
BMP 3TF 3TF TTF 3TF 0
CAT CAT CAT CAT CAT 4
CRP CRP CRP CRP CRP 4
DOC OLE OLE OLE OLE 4
EXE OLE OLE OLE OLE 0
FNT 3TF 3TF 3TF 3TF 0
GIF GIF GIF 3TF 3TF 2
GZ 3TF 3TF 3TF 3TF 0
HTML RTF TXT CAT CAT 0
JPG 3TF 3TF 3TF 3TF 0
MDL MDL CAT MDL MDL 3
MOV GIF GIF 3TF 3TF 0
MP3 3TF MP3 MP3 MP3 3
MPEG 3TF MPEG 3TF OLE 1
PDF PDF PDF PDF TXT 3
PPT OLE OLE OLE OLE 4
PS TXT TXT CAT TXT 0
RTF RTF TXT RTF TXT 2
RM OLE RM RM RM 3
RPM RPM OLE RPM RPM 3
TAR OLE CAT 3TF RPM 0
TXT TXT CAT TXT TXT 3
TTF TTF TTF OLE OLE 2
WAV TXT TXT TXT TXT 0
WPD WPD WPD WPD TXT 3
XLS 3TF OLE OLE OLE 3
ZIP 3TF 3TF 3TF 3TF 0

TOTAL CORRECT: 55
TOTAL FILES: 120

Accuracy: 45.83%

Figure III.2 Identified type of each test file with a

combined OLE DOC fingerprint, using BFC
algorithm

Although FHT performs considerably better than
the other algorithms, 95.83% accuracy, there would
be a tradeoff in only using this algorithm. Not all file
types have consistent file headers or trailers and
would most likely not be correctly recognized if only
FHT were used. BFA and BFC could help with the
identification of the few files FHT was unable to
identify. We are working on developing algorithms
that use a combination of these techniques to improve
type identification accuracy.

HICSS’03)

Proceedi
0-7695-
Other improvements could be investigated in the
methods used to compute the score for BFA and
BFC. Perhaps more sophisticated curve-matching (or
other) algorithms could be tested to see if they would
improve the accuracy of these options. Improvements
could, also, be made in computing the score and
correlation strength for header and trailer analysis as
well. The header and trailer tests both showed
degradation in performance as longer header and
trailer lengths were used. It should be possible to
modify the scoring algorithm to prevent this
degradation

Overall, the algorithm proved effective at
correctly identifying the file types of files based
solely upon the content of the files. FHT algorithm
identified executable files with 100 percent accuracy.
This option could therefore be of use to virus
scanning packages that are configured to only scan
executable files. FHT is extremely fast and for
header and trailer lengths of five bytes, the total
fingerprint size for an executable fingerprint would
be only 53 bytes. The algorithm could possibly be of
use to cryptanalysts as well. It could be used to
automatically differentiate between real data and
“random” encrypted traffic.

A number of other systems could also benefit
from the described file recognition approach. These
include forensic analysis systems, firewalls
configured to block transfers of certain file types,
web browsers, and security downgrading systems.
Further refinements would be required, however,
before the algorithm would be fast enough or
accurate enough to be used by an operating system
that must reliably deal with a large number of varied
file types.

Bibliography

[1] Mason McDaniel, Automatic File Type

Detection Algorithm, Masters Thesis, James
Madison University, 2001.

[2] Bellamy, John, Digital Telephony, Second
Edition, John Wiley & Sons, Inc., New York,
New York, 1991, pp 110-119.

[3] The Binary Structure of OLE Compound
Documents, available online from:
http://user.cs.tu-
berlin.de/~schwartz/pmh/guide.html

ngs of the 36th Hawaii International Conference on System Sciences (
1874-5/03 $17.00 © 2002 IEEE
[4] Kyler, Ken, Understanding OLE Documents,
Delphi Developer’s Journal, September 1998,
available online from:
http://www.kyler.com/pubs/ddj9894.html

[5] Stallings, William, Cryptography and Network
Security, Prentice Hall, upper Saddle River, New
Jersey, 1999, p. 32.

[6] The Advanced Missile Signature Center
Standard File Format, available online from:
http://fileformat.virtualave.net/archive/saf.zip

[7] To Associate a File Extension with a File Type,
Windows 2000 Professional Documentation,
available online from:
http://www.microsoft.com/WINDOWS2000/en/
professional/help/win_fcab_reg_filetype.htm

[8] Why do some scripts start with #!, Chip
Rosenthal, available online from:
http://baserv/uci/kun.nl/unix-faq.html

[9] /etc/magic Help File, available online from:
http://qdn.qnx.com/support/docs/qnx4/utils/m/m
agic.html

 File 1 File 2 File 3 File 4 Score

3TF 3TF 3TF 3TF 3TF 4
ACD OLE OLE OLE OLE 4
AVI AVI AVI AVI AVI 4
BMP BMP BMP BMP BMP 4
CAT CAT CAT CAT CAT 4
CRP CRP CRP CRP CRP 4
DOC OLE OLE OLE OLE 4
EXE EXE EXE EXE EXE 4
FNT FNT FNT FNT RPM 3
GIF GIF GIF GIF GIF 4
GZ GZ GZ GZ GZ 4
HTML HTML HTML HTML HTML 4
JPG JPG JPG JPG JPG 4
MDL MDL CAT MDL MDL 3
MOV MOV MOV MOV MOV 4
MP3 RM MP3 MP3 MP3 3
MPEG MPEG MPEG MPEG MPEG 4
PDF PDF PDF PDF PDF 4
PPT OLE OLE OLE OLE 4
PS PS PS PS PS 4
RTF RTF RTF RTF RTF 4
RM RM RM RM RM 4
RPM RPM RPM RPM RPM 4
TAR TAR TAR TAR TAR 4
TXT TXT TXT TXT TXT 4
TTF TTF TTF TTF TTF 4
WAV AVI WAV WAV AVI 2
WPD WPD WPD WPD WPD 4
XLS OLE OLE OLE OLE 4
ZIP ZIP ZIP ZIP ZIP 4

TOTAL CORRECT: 115
TOTAL FILES: 120

Accuracy: 95.83%

Figure III.3 Identified type of each test file with a
combined OLE DOC fingerprint, using FHT

algorithm.

HICSS’03)

	HICSS36 2003
	Return to Main Menu

