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Abstract

When the same graphical user interface (GUI) is being
used on multiple devices with different properties, usability
problems arise, especially when GUI pages are too large
for a (small) screen. Scrolling is a usual approach in such a
situation, but it also depends on device properties. For desk-
top PCs used with a mouse, it is well-known that scrolling
should be avoided. In contrast, for touch-based devices like
tablet PCs or smartphones used with fingers, scrolling es-
pecially in vertical direction is widely used and accepted.
So, providing several GUIs tailored for multiple devices is
desirable but expensive, and it takes time.

Automated GUI generation may help, when different
GUIs can be generated from the same high-level interac-
tion design model. This is still an issue, however, since
usually adaptations to high-level models have to be made
manually. Our approach just requires a device specification
with a few parameters for automated GUI tailoring, which
employs heuristic optimization techniques. Our fully imple-
mented approach even offers different tailoring strategies
for automated GUI generation.

1 Introduction

GUIs for multiple devices need to take device charac-

teristics like available screen space into account to avoid

related usability problems. For example, on desk-top PCs

used with a mouse (i.e., fine-grained pointing and no touch

gestures), scrolling should be avoided [8, 10]. However, on

smartphones used with fingers (i.e., course-grained point-

ing and touch gestures), vertical scrolling is considered part

of the user experience [2, 9]. So, tailoring strategies are

required, especially with regard to scrolling.

For the case that scrolling is to be avoided, we previously

formulated the following objectives [16]:

1. maximum use of the available space,

2. minimum number of navigation clicks, and

3. minimum scrolling (except list widgets).

When taking screen space into account as a constraint, a

GUI can be tailored for a specific device through optimiz-

ing it according to given optimization objectives (such as

the ones above) and this constraint. This can even be done

automatically through heuristic optimization search. Such

an approach requires that alternative GUIs can be generated

and evaluated, and in this way (at least in principle) com-

pared with each other.

Our approach as presented in this paper offers three dif-

ferent strategies to be taken into account for automated GUI

tailoring, from which only the first one was supported by

our previous approach [16]:

1. tailoring without scrolling,

2. tailoring with vertical scrolling, and

3. tailoring with horizontal scrolling.

Additional usability aspects like different interaction

techniques or the in-depth consideration of specific GUI

guidelines are out of the scope of our approach. Such as-

pects are difficult to address in an automated way, so we im-

plemented a semi-automatic approach that also allows the

designer to customize generated GUIs manually [12].

The remainder of this paper is organized in the follow-

ing manner. First, we present some background material, in

order to make this paper self-contained. Then we explain

our three tailoring strategies in more detail. After that, we

explain the search space and the objective function. Based

on them, we present our heuristic constraint optimization

search and our automated device tailoring process, which

uses the results of the optimization search. Finally, we eval-

uate our approach based on recent user studies and contrast

it with previous approaches.

2 Background

The implementation of our automated GUI tailoring

approach is based on the GUI generation framework of
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Figure 1: Vacation Planning Initial Interaction (Start Screen) Discourse Model Excerpt

the Unified Communication Platform (UCP).1 UCP sup-

ports the use of Discourse-based Communication Mod-

els to specify the interaction between two parties device-

independently [3]. Figure 1 shows an excerpt of the Dis-

course Model of a vacation planning application, which

models the initially available interaction between the User
and the System (corresponding to the start screen of the

application). In particular, this model presents a welcome

message and allows the user to select either an event or an

article from two corresponding lists. We use this Discourse

Model as a running example to illustrate our approach.

The basic interaction units of such models are

Communicative Acts, which are depicted as rounded

rectangles and assigned to one of the interacting parties, il-

lustrated through their fill-color (green/dark for the User
and yellow/light for the System). The welcome mes-

sage, for example, is modeled through the Informing
Communicative Act uttered by the System as shown on

the left side of Figure 1. Communicative Acts are re-

lated through Adjacency Pairs, which are depicted

as diamonds and model typically turn-takings in a con-

versation (e.g., question-answer or request-accept/reject).

The event and the article selection are modeled through

ClosedQuestion-Answer Adjacency Pairs. Such

Adjacency Pairs can be related through Discourse
Relations, which allow for modeling more com-

plex flows of interaction. We use a Title and an

Alternative relation in our running example, which

1http://ucp.ict.tuwien.ac.at

specify that all Communicative Acts are concurrently avail-

able.

All compliant Discourse-based Communication Models

can be automatically transformed to tailored GUIs using the

UCP tool [11]. To achieve this, UCP provides a predefined

basic set of transformation rules. In particular, it provides a

minimal basic rule set, which supports the transformation

of each compliant Communication Model to exactly one

GUI. The generation of alternative GUIs, which is required

to support automated tailoring, is enabled through the addi-
tional basic transformation rules [15].

Using these rules, UCP can generate GUIs automatically

through model-driven transformations. In particular, it de-

rives an intermediate Screen Model from a given Discourse-

based Communication Model. For more details, see [11, 12]

and below.

The properties of a given device are specified in an

Application-tailored Device Specification [6]. It can be

application-tailored in the sense that a special PC with a

touchscreen may be used with fingers or mouse, respec-

tively, which can be specified with the property pointing
granularity. The properties specifically used by our tailor-

ing approach are the display resolution (x, y) and two addi-

tional properties used by our strategies to allow for scrolling

up to a certain extent (scrollWidth and scrollHeight).

3 Tailoring Strategies

We defined four strategies that provide different options

for automatically tailoring a GUI for a specific device. Each

508



Figure 2: Search Tree for Vacation Planning Start Screen Discourse Model

of these strategies uses a different combination of proper-

ties given in the Application-tailored Device Specification.

The first strategy tries to avoid scrolling, which is compli-

ant with desktop GUI guidelines [8, 10]. The second and

the third strategy make use of scrolling in either vertical

or horizontal direction, which is again compliant with GUI

guidelines, but this time for touch-based devices [2, 9].

1. Screen-based Device Tailoring without Scrolling. This

tailoring strategy aims not to exceed the width and

height of the device screen as specified through the

properties x-resolution and y-resolution.

2. Screen-based Device Tailoring with Vertical Scrolling.
This strategy allows for vertical scrolling, but aims

not to exceed a multiple of the screen height as

specified through the property scrollHeight. So, a

virtual screen size is given by x-resolution and y-
resolution∗scrollHeight. This simple trick allows us

to use the same implementation of our tailoring ap-

proach as for the “Screen-based Device Tailoring with-

out Scrolling” strategy.

3. Screen-based Device Tailoring with Horizontal
Scrolling. This strategy allows for horizontal

scrolling, but aims not to exceed a multiple of the

screen width as specified through the property scroll-
Width. So, a virtual screen size is given by x-resolution
∗ scrollWidth and y-resolution. Again, this simple

trick allows us to use the same implementation of our

tailoring approach as for the first strategy.

In principle, a fourth tailoring strategy with two-

dimensional scrolling is available as well. However, it is

unlikely that it would generate usable GUIs.

4 Search Space

Our predefined rule set and UCP’s transformation engine

allow for more than one rule to be matched. This achieves

the generation of more than one GUI for a given Commu-

nication Model. So, this defines a search space, where each

GUI is defined through some combination of instantiated

transformation rules.

Let us illustrate such a search space with our vacation

planning Discourse Model shown in Figure 1. The rect-

angles in Figure 1 mark the five Communication Model

patterns matched by the transformation rules. Table 1

lists them with their patternIDs in the first column and the

matching minimal basic and additional basic transforma-

tion rules in the second and third columns. It shows that

more than one transformation rule is matched for patterns

A1, ADJ2 and ADJ3 each. The given pattern identifiers in

addition to the rule identifiers underline that these are actu-

ally transformation rule instantiations.

Table 1: Transformation Rule Instantiations for Vacation

Planning Start Screen Discourse Model with Hierarchy

Levels

Pattern

Identifier

Minimal
Basic Rules

Additional
Basic Rules

Hierarchy

Level

T1 R1 T1 - 1

ADJ1 R4 ADJ1 - 3

A1 R2 A1 R3 A1 2

ADJ2 R5 ADJ2 R6 ADJ2 3

ADJ3 R5 ADJ3 R6 ADJ3 3

Figure 2 illustrates the search space defined by the Com-

munication Model excerpt in Figure 1 and the predefined

rule set. This search space has a tree structure. The tree’s

leaf nodes represent GUIs that can potentially be generated,

while the other nodes on the paths represent only partly

constructed GUIs. The edges are labeled with “patternID,

ruleID”. For example, the search tree includes only one

edge for T1 and ADJ1, respectively, because each of these

patterns is only matched by a single transformation rule.

A1 is matched by two rules (R2 and R3), resulting in two
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branches. ADJ2 and ADJ3 are also matched by two rules

each, resulting in eight GUIs (GUI 1 . . . GUI 8) that can be

generated for our example.

5 Cost Function

In order to automatically optimize, we operationalized

the given objectives into a mathematical formulation — an

objective function. More precisely, we formulated it as a

cost function, which is to be minimized.

The space actually needed by the generated screens of

a GUI is key for such an optimization approach. Unfor-

tunately, determining it exactly requires execution of the

model-driven transformations and subsequent calculation of

the complete layout (in a Structural Screen Model). This is

computationally intensive, especially when being done for

many alternative GUIs in a large search space. To reduce

this computational effort, we designed our cost function in

such a way that it calculates a cost value of a given GUI

through evaluating the transformation rules that define it.

Of course, this approach only provides estimates, but it al-

lows indirectly comparing all GUIs that can potentially be

generated before actually generating them and calculating

their complete layout.

By evaluating the transformation rules corresponding to

a specific GUI instead of a concrete GUI model, it is hard

to achieve good estimates of the space finally required by

the GUI. Fortunately, it is sufficient to provide estimates of

the space requirements of the GUIs relatively to each other,

which allow sorting the GUIs based on their correspond-

ing transformation rule combinations. Still, these estimates

have to relate to the optimization objectives.

For taking Objective 1 into account, the demand of

screen space of each transformation rule’s right hand side

(RHS) can be estimated. The RHSs of transformation

rules with the same LHS are compared, and sorted rela-
tively to each other. To estimate which rule has the higher

cost according to Objective 1, an estimate is determined of

which RHS requires less screen space than the other ones

that match the same LHS, because we want to minimize

the overall cost while maximizing the use of the available

space.

We defined a relativeSpace property for each trans-

formation rule, which allows us to sort all transforma-

tion rules with the same LHS. This relativeSpace prop-

erty is specified through an integer value and has been

set to a specific value c for all minimal basic transfor-

mation rules, because their LHSs are mutually exclusive.

When a new transformation rule is added, this property

has to be set either to a higher or lower value, depend-

ing on whether the rule’s RHS requires more space or less

than the corresponding transformation rule from the min-
imal basic rule set. An example is the additional ba-

sic transformation rule that renders a single-selection item

list as a drop-down box (instead of a radio button list),

where both rules match Closed-Question Answer
Adjacency Pairs (with the same defined content). We

assigned this additional basic rule a relativeSpace value of

c− 1, because its RHS requires less screen space compared

to the RHS of the corresponding minimal basic rule.

For taking Objective 2 into account, it can be determined

whether the transformation rule’s RHS requires additional

navigation clicks or not. This is defined as a boolean
value of each transformation rule through a rule property

named splitting. True means that the RHS splits the screen

(e.g., through generating a tabbed pane) and false signi-

fies that the screen is not split (e.g., through generating a

panel), which requires fewer navigation clicks than the split

version.

For taking Objective 3 into account, the exact space re-

quirement would have to be determined, but see above.

However, this objective is indirectly taken into account in

the cost function through its operationalization of Objec-

tives 1 and 2, because a smaller space value signifies less

space consumption and more navigation clicks also result in

less space consumption through splitting the screen. Both

mean potentially less scrolling. Our constraint optimization

approach actually tries to avoid scrolling, and this is oper-

ationalized by using the available space as a constraint, see

below. Objective 3 is, however, not strict in this regard and

allows scrolling, if it cannot be avoided. In this sense, it is

actually operationalized as a soft-constraint.
Taking only the relativeSpace and the splitting proper-

ties into account for calculating the rule cost potentially re-

sults in a lot of rule combinations (corresponding to GUIs)

with identical cost, although their finally required space dif-

fers and they apply splitting for different Communication

Model elements. To distinguish such rule combinations, we

additionally consider the type of the matched Communica-

tion Model elements (i.e., the rule’s LHS) and the hierarchi-

cal position of the matched Communication Model pattern’s

root node in the Discourse Model tree when calculating the

cost for a specific rule combination. Both are available be-

fore the GUI actually needs to be generated.

More formally, we denote such a GUI as a vector −→r =
(r1, . . . , rk), where these k transformation rule instantia-

tions correspond to it and can (potentially) generate it (more

precisely, a structural model of it).

We defined the cost of a specific combination of trans-

formation rule instantiations (−→r ) as:

GUIcost(−→r ) =
k∑

i=1

rulecost(ri)

We calculate the cost of a specific transformation rule

instantiation r as:
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rulecost(r) = −wrelspace ∗ relspace(r)
+wsplitting ∗ splitting(r)
+wlevel ∗ level(r)

The first addend wrelspace ∗ relspace(r) operationalizes

Objective 1 and has a negative prefix, because this objec-

tive is to maximize the use of the available space, while the

overall objective is to minimize the cost. relspace(r) de-

pends on the relativeSpace property of the transformation

rule r. So, the value of relspace(r) reflects the relative or-

dering of the transformation rules established through this

property. relspace(r) is equal to 0 for all minimal basic
transformation rules where relativeSpace is c, and different

from 0 otherwise.

The second addend wsplitting ∗splitting(r) operational-

izes Objective 2 and has a positive prefix, since this ob-

jective is to minimize the number of navigation clicks.

splitting(r) depends on the type of discourse element that

is split (i.e., matched by the rule’s LHS). We use this mech-

anism to reflect the semantic meaning of a specific relation

through different weights. Assigning different splitting(r)
values for splitting Background or Elaboration, e.g.,

can be used to define that splitting Background has a

lower cost than splitting Elaboration. Our rationale

here is that the interaction specified in the Background
Satellite does not necessarily require interaction to

proceed in the discourse and will always be displayed.

An Elaboration Satellite, in contrast, is only dis-

played if a specific condition is fulfilled and is typically not

available initially. If this Satellite is displayed in an

additional tab after a screen change, it will be occluded by

the still available tab for the Nucleus and might, there-

fore, not be noticed by the user. splitting(r) is equal to 0
for all minimal basic transformation rules where splitting is

false, and different from 0 otherwise. i.e., the respective

branches are rendered on different screens, anyway.

The third addend wlevel ∗ level(r) is used to distinguish

rule combinations where at least one transformation rule

has been matched that is not part of the minimal basic rule

set. In particular, level(r) reflects the hierarchy level of the

matched pattern’s root node in the Discourse Model tree.

For example, splitting (i.e., violating Objective 2) a Joint
relation on a lower level has a higher cost than on a higher

level. Our rationale for this choice is that elements that are

related through their immediate parent are more closely re-

lated than elements via more remote ancestors (e.g., the root

node) and splitting them should, therefore, have a higher

cost. Similarly, creating smaller widgets (in comparison to

the other transformation rules, i.e., violating Objective 1)

on a lower level results in higher costs than doing so on

a higher level. So, this addend is equal to 0 for all mini-
mal basic transformation rules (i.e., relativeSpace is c and

splitting is false), and different from 0 otherwise.

So, a GUI corresponding to a combination of minimal

basic transformation rules only, has the cost 0 by definition.

This value is user defined and does not reflect the finally

required space by the corresponding GUI. The cost value is

only used for sorting the GUIs relatively to each other.

Each addend includes a weight (wrelspace, wsplitting and

wlevel), which can be used to influence the impact of each

addend on the overall rulecost. These weights can be used,

e.g., to strictly minimize the use of available space before

splitting a screen, or to allow for a trade-off between Objec-

tives 1 and 2.

Let us illustrate our cost function with the Discourse

Model excerpt shown in Figure 1 and the corresponding in-

stantiations of transformation rules shown in Table 1. The

last column of this table shows the hierarchy level for each

transformation rule, as assigned by the cost function. The

hierarchy level is also annotated in Figure 1 as H1, H2, etc.

The details of how it is assigned, however, are beyond the

scope of this paper.

The search space for our running example contains eight

alternative GUIs (see Figure 2) defined by their correspond-

ing transformation rule combinations. Our cost function as-

signs a cost value to each of these rule combinations, for

ordering them. So, after applying our cost function, the

following ordered list of these eight GUIs results: GUI 1,

GUI 5, . . . , GUI 8. This ordering reflects our optimization

objectives and can be calculated entirely based on the trans-

formation rule instantiation (i.e., without generating the cor-

responding GUIs).

GUI 1 is first in this ordered list and is only defined

through minimal basic transformation rules (i.e., R1, R4

and R5). All such rules specify the relativeSpace property

with value c and splitting as false. That is, the rulecost
for each such rule instantiation is equal to 0 and, therefore,

also the corresponding GUIcost.
Our current implementation of this cost function does

not separate Objectives 1 and 2 strictly, but allows for a

trade-off between them with a preference to rather split a

screen than to strongly reduce the use of available space.

So, GUI 5 is the next GUI in the list, because it matches the

additional basic transformation rule R3 on Alternative
A1, which splits the screen, instead of the minimal basic
transformation rule R2. Its cost is completely determined

through the cost of R3 A1, since all other matched rules are

still minimal basic transformation rules with rulecost = 0.

The GUI with the highest cost, i.e., the last GUI in our

ordered list, is GUI 8, which contains all three additional
basic transformation rules.

The factor splitting(r) is calculated dynamically based

on the number of elements of a certain relation, to ensure

that a given “splitting order” is achieved. It is determined

through a so-called “splitting-weight” assigned to each Dis-

course Relation that can potentially be split. For exam-

ple, if splitting a Background relation has a lower weight
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than splitting a Joint, this addend ensures that splitting all

Background relations in a given Communication Model

has a lower cost in total than splitting a single Joint rela-

tion. Assigning the same splitting-weights for different re-

lations makes them indistinguishable for our cost function.

In general, it is possible that the same cost value is cal-

culated for more than one rule combination. Each combina-

tion that has the lowest cost is optimal according to our cost

function, so there may be more than one optimal solution.

6 Heuristic Constraint Optimization Search

Based on this cost function, we implemented a heuris-

tic constraint optimization search along the lines of branch-

and-bound search [7] to find an optimal GUI according to

this function. In particular, we defined the available screen

space given in the Application-tailored Device Specification

as a constraint. When this constraint is not violated, i.e., no

screen needs more space, then no scrolling is needed, either.

In this case, Objective 3 is achieved, of course. Our search

uses this constraint for a cut-off condition to identify poten-

tial rule combinations early that violate it. This is important

as using such a branch-and-bound approach potentially al-

lows reducing the computational effort required.

Unfortunately, as explained above, the actual space re-

quirement of a GUI not yet generated is not available. The

space component of the cost function above cannot be used

as a reasonable estimate, since it only evaluates the relative
space need. So, we defined another estimate based on fur-

ther information contained in the transformation rules. A

potential GUI’s widgets are already defined in the RHSs of

the matched transformation rules. We calculate the mini-
mum area required by the RHS of a specific transformation

rule through summing up the areas of all widgets (e.g., la-

bels, buttons or text fields). The size calculation for each

non-container widget is already completed through the lay-

out module when the rule is matched (see [17]).

This minimum area is obviously a lower-bound of the

actually required area, since the actual layout cannot use

less space than the total size of its contained widgets. This

can be formulated as:

minimumArea ≤ actuallyRequiredArea

If this lower-bound on the actually required space is al-

ready larger than the available screen space, then a cut-off

can already be made. The value of availableArea is calcu-

lated through multiplying the values for x-resolution
and y-resolution as specified. So, our cut-off condi-

tion can be formulated as:

minimumArea > availableArea

In principle, any usual search strategy (e.g., depth-first

or breadth-first) may be used to traverse this search space.

However, its definition allows for a special bottom-up traver-

sal that facilitates early cut-offs. Starting with the transfor-

mation rules that match Communicative Acts or Adjacency

Pairs allows identifying cut-offs early, because the minimum
area for each node of our search space tree can be calculated

directly. Starting at the root node, in contrast, requires the

evaluation of all nodes in a specific branch until the first one

is reached where concrete interaction widgets are specified

in the corresponding transformation rule’s LHS.

Let us illustrate the advantage of traversing the search

space bottom-up with the Vacation Planning Discourse

Model excerpt shown in Figure 1 above and the matched

rules shown in Table 1 above. Our transformation rule set

includes two rules (R5 and R6) that match the Adjacency
Pairs ADJ2 and ADJ3. R5 creates a radio button list

for the selection of a specific object (i.e., an Article for

ADJ2 and an Event for ADJ3) and R6 creates a drop-

down list, which requires less space. Alternative A1
in Figure 1 is matched through two rules (R2 and R3). R2

generates a panel for its sub-branches and R3 generates a

tabbed-pane (i.e., the splitting property of R3 is true). That

is, for R2 the size of its two child branches is summed-up,

whereas for R3 only the area of the largest child branch

is used. So, depending on the split property of a specific

transformation rule, either the largest area of a specific child

branch (i.e., splitting is true), or the sum of all child areas

(i.e., splitting is false) is used as minimum area. Travers-

ing the resulting search space shown in Figure 2 above

bottom-up means that the transformation rules for the Dis-

course Model leaf nodes (i.e., Communicative Acts
and Adjacency Pairs) are matched first. Such rules

generate widgets required for the corresponding interaction

(e.g., labels, buttons, etc.). The size for this widgets is avail-

able, i.e., the minimum area can be calculated immediately.

Let us assume that we want to generate a GUI for a de-

vice with a small display (e.g., a smartphone) and that R5 is

matched first on ADJ3. Let us further assume that the min-
imum area calculated for R5’s RHS fulfills our cut-off con-

dition. So, R5 can be discarded immediately for ADJ3 and

4 search tree branches are cut off (i.e., GUI 1, GUI 3, GUI 5

and GUI 7). Next, R6 is matched on ADJ3 and the cut-off

condition evaluated again. We assume here that there are no

more cut-offs, so the finally resulting search space contains

four branches (i.e., GUI 2, GUI 4, GUI 6 and GUI 8).

Alternatively, we want to generate a GUI for a de-

vice with a large display (e.g., desktop PC). Again, R5 is

matched on ADJ3 first, but this time the cut-off condition

is not fulfilled. Assuming that in this case only the area

sum for matching R5 to ADJ2 and ADJ3 fulfills our cut-

off condition, only GUI 1 in the left most branch (labeled

ADJ3,R5) is discarded. So, for the large device, the finally

used search space contains seven rule combinations (GUI 2

. . . GUI 8).
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Figure 3: Automated Tailoring Process

Traversing the search space top-down would mean that

transformation rule R1 on Title T1 is matched first. This

transformation rule specifies a container in its LHS for which

the size cannot be estimated, because it is not defined yet

which concrete interaction widgets (e.g., labels, buttons or

text fields) will be contained. Next, R4 is matched on ADJ1,

which we assume here does not fulfill our cut-off condition.

Next R2 and R3 are matched on Alternative A1, both

specifying containers in their respective LHSs. Again, the

cut-off condition cannot be evaluated, because it is not de-

fined yet which concrete interaction widgets will be con-

tained. The cut-off condition can again be evaluated for

the next nodes, where R5 and R6 are matched for ADJ2.

From our example above, we already know that the RHSs

of R5 and R6 together with the RHS of R4 do not violate

our constraint, because GUI 2, GUI 4, GUI 6 and GUI 8

are contained in both resulting search spaces. So, the cut-

offs, for both devices, will only be detected when R5 and R6

are matched on ADJ3. At this point in time, the complete

search space has already been created. So, the computa-

tional effort involved would be higher, because more nodes

would have to be analyzed to identify cut-offs.

Finally, the cost function is applied to all remaining rule

combinations and sorted according to their costs. So, the

result of the heuristic search is an ordered list of transfor-

mation rule combinations defining GUIs.

7 Automated Device Tailoring Process

Our automated process for device tailoring uses our

heuristic constraint optimization search approach based on

the cost function introduced above. Figure 3 shows this pro-

cess with a focus on the tailoring loop, which consists of

four steps (depicted as yellow rounded rectangles labeled 1

to 4).

Step 0 “Create Search Space of Rule Combinations and
their Evaluation”, depicted on the left side of Figure 3, has

to be completed only once and is a prerequisite for the auto-

mated tailoring loop. It is, therefore, not part of the loop.

This step results in an ordered list of GUIs as described

above. As an example, we use here the search result for the

device with the larger display, which specifies seven GUIs

that can potentially be generated (GUI 1 was already cut-

off). So, GUI 5 corresponds to the rule combination with

the lowest cost and GUI 8 to the one with the highest cost

in the ordered list.

Our automated tailoring loop starts with Step 1 “Gener-
ate Structural UI Model for Rule Combination with Lowest
Cost”, which generates the GUI for the transformation rule

combination with the lowest cost. In particular, it creates

the corresponding Structural UI Model, which is weaved

with the WIMP-UI Behavior Model in Step 2 “Weave Struc-
tural UI and WIMP-UI Behavior Model”, resulting in the

Screen Model [12]. Step 3 “Calculate Layout” calculates

the layout for each screen, including the calculation of all

container sizes. The execution of these three steps in each

loop is required as it is not possible to determine whether a

certain rule combination really violates the given constraint

without knowing the exact size of each screen, which is pro-

vided by the Screen Model. Step 4 “Check Constraint”
checks whether the size of each screen fits the space con-

straint of a given device.

In our running example, we generate GUI 5 in this first

loop. To keep the example simple, we selected a Discourse

Model excerpt that corresponds to one Presentation Unit

(i.e., all Communicative Acts are concurrently available).

That is, the Screen Model that is generated with minimal
basic rules (i.e., the transformation rule combination with

the lowest cost) displays all widgets concurrently and con-

tains only one screen. This would have been the discarded

GUI 1. Our tailoring process potentially splits such Presen-

tation Units into several screens, which actually happens in

GUI 5 through the use of the basic alternative transforma-

tion rule R3 for the Alternative A1. So, the Screen

Model for our running example has two screens, which cor-

respond to the same Presentation Unit. The given constraint

is checked for each of these screens. Let us assume that

both screens of GUI 5 satisfy it. In this case we already
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Figure 4: Vacation Planning Payment Discourse Model Excerpt

found an optimal solution according to our cost function

and the source code generation is triggered, following the

path labeled “YES” in Figure 3.

The tailoring process aims for a GUI without any screen

that would require scrolling. So, in case that at least one

of the screens does not fit, it takes the next rule combina-

tion from the sorted list, discards the current combination

and triggers the “Generate Structural UI Model for Rule
Combination with Lowest Cost” Step 1 again (following the

path labeled “NO” in Figure 3). If there is no rule combi-

nation left in the sorted list, the current combination is kept

as it still fulfills Objective 3, even though it requires (mini-

mal) scrolling. So, the source code generation is triggered,

following the path labeled “YES”. In our running example,

let us now assume that all combinations violate the given

constraint. In this case, the tailoring process generates and

checks all seven GUIs of the sorted list and finally delivers

GUI 8 as its result. This GUI with the highest cost still fits

Objective 3, because it requires the least screen space. The

reason is that all possible space reductions and splits have

already been made on this GUI screen.

Our screen-based tailoring approach allows for specific

savings of computational effort, if an application has more

than one screen, which process-oriented applications (e.g.,

booking applications) typically have. So, let us extend our

running example with a second screen to illustrate this ben-

efit. We use here a payment Discourse Model, in which

the System asks the User for a billing address and credit

card details, modeled through OpenQuestion-Answer
Adjacency Pairs and presents a summary of the book-

ing details, modeled through an Informing Communica-

tive Act (see Figure 4). All this information is concurrently

available. This is specified through an OrderedJoint
that relates the two Adjacency Pairs and a Background
that relates the OrderedJoint and the InformingCom-

municative Act. So, all Communicative Acts may be on

the same screen. It could be related with the Discourse

Model for the Start Screen (shown in Figure 1) through a

Sequence relation, for example.

The Payment Discourse Model consists of five Commu-

nication Model patterns matched by the transformation rules.

Table 2 shows the pattern identifier in column one, the match-

ing minimal basic transformation rule instantiation in col-

umn two, and potentially available basic alternative trans-

formation rules in column three.

Table 2: Transformation Rules for Vacation Planning

Payment Discourse Excerpt

Pattern

Identifier

Minimal
Basic Rules

Additional
Basic Rules

B1 R6 B1 R7 B1

O1 R8 O1 R9 O1

ADJ4 R10 ADJ4 -

ADJ5 R10 ADJ5 -

ADJ6 R4 ADJ6 -

If no rule combinations can be cut off, the complete

search space with 25 = 32 different combinations has to

be considered. However, let us assume again that one rule

combination for the start screen could be discarded through

our branch-and-bound mechanism. So, the ordered list con-

tains 31 transformation rule combinations sorted according

to their costs. The rule combination with the lowest cost

is the one that contains only minimal basic transformation

rules, except for Alternative A1.

So, this GUI is generated first through executing Steps 1

to 3 in our tailoring process. In Step 4 the constraint is

checked for each screen. First the two screens for the Start

Screen are checked, which we assume here, again, satisfy
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the constraint. So, an optimal solution according to our

cost function has already been found for these screens and

we can discard all solutions for these screens with higher

cost. That is, for our running example the list is reduced

to 1/8 (i.e., four rule combinations), because eight differ-

ent GUIs can theoretically be generated for the Start Screen

Discourse Model. We assume here that the Payment Screen

violates the given constraint. Discarding all other combina-

tions for the Start Screen reduces the number of rule com-

binations with a higher cost in the ordered list to three, be-

cause the current combination can already be discarded, too.

So, another optimization loop (following the path labeled

“NO” in Figure 3) using the next transformation rule com-

bination is triggered.

In this second loop, each screen is checked again. How-

ever, the implementation of our approach skips already fit-

ting screens to reduce the computational effort. So, the tai-

loring process does not check the Start Screen again, but

only the Payment Screens, which have been split and which

we assume now to fit. As there are no more screens that

violate the given constraint, an optimal solution according

to our cost function has been found. So, the tailoring pro-

cess triggers the source code generation (following the path

labeled “YES” in Figure 3).

To further reduce the computational effort, our approach

also skips screens that do not fit and for which no alternative

rule combinations are available.

If all screens of a given Screen Model violate the given

constraint, the rule combination with the highest cost is

the resulting GUI, because scrolling is minimal through re-

duced screen space usage and additional navigation clicks.

8 Evaluation

Previous studies in the literature already exist that serve

as an evaluation of the tailoring strategies presented in this

paper [13], [14], and [1]. Let us summarize here briefly

the evaluation approach taken and the essential results from

measuring task times in two of these studies. In addition,

we mention selected subjective results.

According to the user study setup (common for all

three studies), each participant interacted with both HTML-

based GUIs compared (depending on the respective study),

recorded on video. All GUIs were generated for a simpli-

fied flight-booking application. Task times were measured

and adjusted to avoid bias, e.g., through variances of times

used for typing. Point-biserial Pearson correlation coeffi-

cients were calculated for these adjusted task times. Finally,

subjective questionnaires were used for collecting subjec-

tive opinions.

The first and most important study [13] (with 30 par-

ticipants) showed that the (adjusted) task time on a rela-

tively small screen (typical for a smartphone) using vertical

scrolling was statistically significantly smaller than using

tapping (tab-based navigation, the result of the strategy that

tries to avoid scrolling). In total, it took 54 percent longer to

operate tapping. While 60 percent of the participants sub-

jectively preferred vertical scrolling, only 30 percent pre-

ferred tapping.

The second study [14] (with 20 participants) showed that

the (adjusted) task time on a smartphone using tapping was

significantly smaller than using horizontal scrolling. On a

tablet PC, in contrast, no scrolling was necessary for this

latter layout. So, the (adjusted) task time on this larger

device using tapping was significantly higher than for the

other layout. The reason is that all information fitted on

the screens, so that no scrolling was needed on this device.

However, additional clicks were needed for tapping. For

both devices, these results are statistically significant. The

subjective preferences were fully consistent with these mea-

sured results. So, this study also provided (further) evidence

that it is important to tailor GUIs to fit the size of the screen.

9 Related Work

Our previous approach to GUI optimization [16] eval-

uated the GUI as a whole without considering differ-

ent screens. Our new screen-based device-tailoring pro-

vides different tailoring strategies, which facilitate the ex-

ploration of alternatives for different devices, in contrast

to simply trying to avoid scrolling at all, while vertical

scrolling is actually efficient on touch-based devices. In

addition, screen-based device tailoring allows keeping an

already fitting screen, and discarding all other rule combi-

nations that apply different rules to this screen. This re-

duces the number of remaining rule combinations if more

than one combination is applicable for the given screen.

Otherwise, this screen does not have to be checked again

in future automated tailoring iterations. The latter also ap-

plies for non-fitting screens. Furthermore, our screen-based

approach guarantees an optimal rule combination for each

screen, whereas the previous approach was not able to con-

sider which screen was violated. Our screen-based ap-

proach still delivers an optimal solution for the remaining

screens, according to our cost function, if they do not vio-

late the constraint.

The early GADGET approach proposed optimization-

based generation of the GUI layout for selecting appropri-

ate interactors for different GUI elements [18]. GADGET

used input models on widget-level and required information

about the frequency of their use, in contrast to our approach,

which uses high-level interaction models as input.

SUPPLE [4] introduced another approach that treats GUI

generation as an optimization problem. In particular, it sup-

ported the generation of optimal GUIs for specific user abil-

ities or devices, based on functional GUI models. These
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specify what functionality should be exposed to the user.

How this functionality is to be rendered was determined

through different types of constraints. Compared to our

high-level interaction models, such functional GUI speci-

fications are on a lower level of abstraction and provide less

flexibility for generating concrete UIs [5]. SUPPLE sup-

ported the adaptation of direct-manipulation GUIs (e.g., a

text-processor GUI) for users that have not been consid-

ered as target users by the original GUI designers (e.g.,

motor-impaired users). Our approach, in contrast, focuses

on providing GUIs for process-oriented applications (e.g.,

booking applications), following the gender-inclusive de-

sign principle, i.e., we aim at generating GUIs usable for all

users. In fact, SUPPLE was a user-centered GUI genera-

tion approach, whereas the approach proposed in this paper

is usage-centered.

10 Conclusion

The ubiquitous use of different and multiple devices en-

tails a need for GUIs tailored to them. As compared to cre-

ating a single GUI, e.g., for a PC, providing tailored GUIs

for several devices manually takes more time and is espe-

cially more costly.

While automated GUI generation from a high-level in-

teraction model is not (yet) widely used, it has the potential

to improve this situation. However, this potential may only

be achieved, when the GUI generation can automatically

generate different and specifically tailored GUIs from a sin-

gle interaction model, without the need to adapt it manually.

The new approach presented in this paper provides even dif-

ferent strategies for automated GUI generation, which allow

specific tailoring for multiple devices through automatic op-

timization that takes device specifications into account.
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