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Abstract—In recent years, researchers have shown that un-
wanted web tracking is on the rise, as advertisers are trying to
capitalize on users’ online activity, using increasingly intrusive
and sophisticated techniques. Among these, browser fingerprint-
ing has received the most attention since it allows trackers to
uniquely identify users despite the clearing of cookies and the
use of a browser’s private mode.

In this paper, we investigate and quantify the fingerprintability
of browser extensions, such as, AdBlock and Ghostery. We
show that an extension’s organic activity in a page’s DOM can
be used to infer its presence, and develop XHOUND, the first
fully automated system for fingerprinting browser extensions. By
applying XHOUND to the 10,000 most popular Google Chrome
extensions, we find that a significant fraction of popular browser
extensions are fingerprintable and could thus be used to sup-
plement existing fingerprinting methods. Moreover, by surveying
the installed extensions of 854 users, we discover that many users
tend to install different sets of fingerprintable browser extensions
and could thus be uniquely, or near-uniquely identifiable by
extension-based fingerprinting. We use XHOUND’s results to
build a proof-of-concept extension-fingerprinting script and show
that trackers can fingerprint tens of extensions in just a few
seconds. Finally, we describe why the fingerprinting of extensions
is more intrusive than the fingerprinting of other browser and
system properties, and sketch two different approaches towards
defending against extension-based fingerprinting.

I. INTRODUCTION

Mayer in 2009 [38] and Eckersley in 2010 [19] showed that,

contrary to popular belief, web trackers could keep tracking

users without the need of any stateful identifiers, such as,

third-party HTTP and Flash cookies. The authors showed that

a tracker can create a sufficiently stable, per-user identifier

(called a browser fingerprint) by combining features that are

already present in the browsers of users, such as, their list

of installed plugins, the list of fonts, and the HTTP headers

of their browsers. Specifically, Eckersley discovered that fonts

and plugins were the two most discriminating features, allow-

ing him to uniquely identify 94.2% of the surveyed users.

Many researchers have conducted follow-up studies validating

and extending Eckersley’s findings [12], [14], [22], [36], mea-

suring the adoption of browser fingerprinting in the wild [6],

[7], [37], [44], showing that smartphone components are fin-

gerprintable [16], [17], [51], quantifying the fingerprintability

of mobile browsers [27], [36], and proposing countermeasures

against browser fingerprinting [11], [43], [49].

Laperdrix et al. [36], in a recent study validating and

extending Eckersley’s findings, discovered that even though

browser plugins remain one of the most revealing features

of desktop and laptop browsers, the entropy that they offer

has considerably decreased since Eckersley’s study. This is

due to the increasing popularity of HTML5, providing pow-

erful functionality to developers, and the decreasing trust in

proprietary browser plugins which have, in the past, caused

many performance and security issues. For instance, Google

Chrome has stopped supporting plugins utilizing the NPAPI

architecture [3] and Mozilla Firefox announced a plan to do

the same [5], while already limiting the ability of scripts to

enumerate plugins [1]. As the popularity and fingerprinting

power of plugins is decreasing, we argue that trackers will

look for new techniques to fingerprint users. Predicting these

new techniques will allow the research community to start

developing countermeasures for these future threats.
In this paper, we show that browser extensions, such as,

AdBlock and Ghostery, installed via browser add-on markets

can serve as powerful discriminating features for fingerprinting

and uniquely identifying the browsing environments of users.

Note that, in contrast with browser plugins, there are no

browser APIs that webpages can use to retrieve the list of

installed browser extensions. As such, the only way that

browser extensions can be detected is through their side

effects on a page’s DOM, such as, the addition of new DOM

elements and the removal of existing ones. While researchers

are already aware that certain extensions are fingerprintable,

previous work has always revolved around the manual analysis

of a handful of extensions [7], [41], [44] and the subsequent

reasoning about their fingerprintable features.
To quantify the fingerprintability of browser extensions at

a large scale, we present XHOUND (Extension Hound), the

first fully automated system for fingerprinting browser exten-

sions, based on a combination of static and dynamic analysis.

XHOUND fingerprints the organic activity of extensions in a

page’s DOM, such as, the addition of new DOM elements

and the removal of existing ones, and is thus robust against

incremental patching of extensions. Using XHOUND, we are

able to answer, among others, the following four important

questions:

• How many popular extensions introduce on-page
changes and are thus fingerprintable? We examine

the top 10,000 Chrome Store extensions, and show that

at least 9.2% of extensions introduce detectable changes

on any arbitrary URL, and more than 16.6% introduce
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detectable changes on popular domains. The numbers

increase to more than 13.2% and 23% respectively, if

we consider just the top 1,000 extensions. Moreover, we

find that popular extensions remain fingerprintable over

time, despite updates and rank changes.

• What kind of on-page changes do browser exten-
sions introduce? The possibility of extension-based fin-

gerprinting relies on a tracker’s ability to distinguish

between introduced changes, i.e., which change was

introduced by what extension. For instance, many ad-

blocking extensions will result in the same absence of

an ad on the page, while the additional UI elements of

password managers will tend to have unique HTML code

structures. Analyzing XHOUND’s results, we show that

among 1,656 fingerprintable extensions almost 90% are

uniquely identified based on the on-page modifications

that they cause.

• How fingerprintable are the extension profiles of
real users? Extension fingerprinting will only work if

users have rather unique sets of detectable extensions. To

analyze extension profiles of everyday users, we deploy

an extension-survey, which anonymously collects the list

of installed extensions from a user’s browser. We find

that, among 854 participants, 14.1% have distinct sets

of universally detectable extensions and can thus be

identified with 100% accuracy, while an additional 19.4%

of users share the same extension-based fingerprint with

2-20 other users.

• How can a tracking script check for the presence
of browser extensions? As a final part, we implement

a proof-of-concept script that can fingerprint tens of

popular browser extensions in just a few seconds, us-

ing the triggering conditions and on-page side effects

extracted by XHOUND. A video demo of our extension-

fingerprinting script is available on this URL: https:
//vimeo.com/178330178 (password is SP2017).

Our results highlight the danger of extension-based fin-

gerprinting which, in conjunction with existing fingerprint-

ing techniques, can greatly boost the accuracy of stateless,

user identification. Moreover, our findings are likely to be

applicable to mobile platforms where most browsers have

poor or no support for plugins, yet popular browsers, such

as, Firefox Mobile and Dolphin Browser for Android, and

Chrome for iOS [32], support extensions. To address the

threat of extension-based fingerprinting, we first briefly discuss

the difficulty of protecting against it, and then sketch two

possible countermeasures, based on isolating DOM changes

and constructively polluting the DOM namespace.

II. BACKGROUND

In this section, we first provide a brief comparison of

browser extensions and browser plugins and then list the threat

models that we will use throughout this paper.

A. Plugins versus extensions

Even though many users tend to use the term “plugin” and

“extension” interchangeably [15], [23], [31], [39] in reality

plugins and extensions refer to very different technologies.

Plugins allow browsers to parse and display content that

is not traditional HTML. Webpages that depend on plugins,

directly invoke them through the use of appropriately set

<object> and <embed> tags. Plugins became popular

because they enabled the delivery of non-traditional HTML

content, such as, video, and audio, at a time when browsers

could only support basic HTML. Plugins, such as, Adobe’s

Flash, and Sun’s Java, dominated the landscape of plugins

until they started falling out of favor, due to their performance

impact on mobile devices [29], the large number of security

vulnerabilities that were routinely used to compromise the ma-

chines of users [34], [45], and the general tendency of moving

away from proprietary libraries and towards open standards.

HTML5 delivers many technologies, such as, WebRTC [18],

Canvas [48], and native audio and video players, that are now

used to build games and applications that, in the past, could

only be built using proprietary plugins.

In contrast with plugins, browser extensions are meant to

extend or modify the default behavior of a browser and are

targeted towards end users, rather than application develop-

ers. Browser extensions are built using JavaScript, CSS, and

HTML, and make use of well-defined APIs provided to them

by browsers. Using extensions, users can modify a browser’s

interface, add new features that are not, by default, supported,

and modify webpages according to their preferences. Users

utilize extensions to block ads, download videos, capture

screenshots, and manage their passwords. Since the target au-

dience of extensions are users, pages cannot ask for extensions

to “load” in the way that they could do with browser plugins.

Instead, browser extensions register hooks on various browser

events and are allowed to view and modify the DOM of all

the webpages whitelisted in their manifest files.

Plugins and extensions are also different from a finger-

printing standpoint. Since plugins are meant to be used by

developers, webpages can utilize JavaScript to obtain the

list of plugins currently installed in the user’s browser (by

accessing the navigator.plugins object). Webpages that

fingerprint their users abuse this functionality to retrieve all

plugins installed on a user’s browser and turn them into

features for differentiating users from one another. In contrast,

there is no API that webpages can use to retrieve the list of

installed extensions. The only generic method that a webpage

can use to detect an extension, is to identify a modified DOM

and attribute that modification to an installed extension. In

fact, many webpages are currently using this method to detect

the presence of ad-blockers (expected ad-related elements are

not present in the DOM of a page) [8]–[10].

B. Threat models

For our purposes, an attacker is an entity that wishes to

fingerprint the extensions of a user’s browser and use this

information to uniquely identify the user between browsing
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Fig. 1. LastPass extension as an example of content based on-page changes.

Listing 1 DOM changes introduced by LastPass.

<input type="password" style="cursor: pointer; background-
image: url(&quot;data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAABAAAAA...yeBAAAAAElFTkSuQmCC&
quot;); background-attachment: scroll; background-size:
16px 18px; background-position: 98% 50%; background-
repeat: no-repeat;">

sessions, without relying on cookies or other stateful identifiers

that users can delete.

As mentioned in Section II-A, extensions are only allowed

to access the DOM of the webpages that are specified in

their manifest files. This means that some extensions which

add functionality to specific popular web applications, reveal

their presence only on specific websites and paths, and

consequently, only those websites have the ability to detect

them and fingerprint them. For instance, a YouTube video

downloader will only reveal its presence when a user is

browsing video pages on youtube.com. As a consequence,

websites that are routinely “selected” by these non-generic

extensions have more fingerprinting power than the rest of

the web since they can detect and fingerprint both website-

specific and generic extensions. Thus, when considering

the fingerprintability of extensions, we can distinguish the

following two attack scenarios based on the vantage point of

the attacker.

Tracking script situated on an arbitrary domain
In this tracking scenario, any arbitrary webpage is able to

fingerprint extensions that are installed and enabled in a

browser. Such tracking scripts can be loaded inside any

custom domain and craft a web page which will trigger

extensions to reveal themselves. In this scenario, the tracker

will be able to detect only the extensions that introduce

changes regardless of the URL of the page. In other words,

the detectable functionality of these fingerprintable extensions

must be content-dependent instead of URL-dependent.

Figure 1 shows an example of content-dependent DOM

changes, introduced by the LastPass extension. This extension

is a password manager that adds an ellipsis button (...) to each

input field allowing users to conveniently access their stored

credentials. These visible changes are triggered by specific

content (a login form) and will work on any domain or URL

that includes such a form. Listing 1 shows the corresponding

DOM changes. Thus, any tracker situated on any arbitrary

Fig. 2. SaveToPocket extension as an example of URL based on-page
changes.

Listing 2 DOM changes introduced by SaveToPocket.

<div class="ProfileTweet-action action-pocket-container">
<a class="js-tooltip" href="#" data-original-title="

Save to Pocket">
<span class="icon icon-pocket"></span>
</a></div>

<div class="ProfileTweet-action...

domain can create a password input field and check whether

an ellipsis button appeared on it, thereby inferring the

presence of the LastPass extension in the browser of the

current user. Similarly, universal extensions that highlight

phone numbers in text, provide additional controls to any

videos, or block any ads, can be easily detected in the same

fashion.

Tracking script situated on a popular domain
Many popular extensions in the market are targeted towards

specific popular websites like Facebook, Twitter, YouTube, and

Gmail. Therefore, the changes that these extensions introduce

on those websites can be called URL- or domain-specific.

Figure 2 shows an example of such DOM changes, introduced

by an extension called SaveToPocket. Its functionality includes

the ability to save web pages or parts of web pages for

later reading. In addition, for specific popular domains, the

extension introduces its own buttons on their pages to facilitate

users. The current example is based on Twitter, where each

tweet receives the additional “save to pocket” button. Listing 2

shows the corresponding DOM changes. Any script loaded

from Twitter’s domain has the ability to test the presence

of this button. This includes both first-party scripts located

on Twitter servers, as well as third-party scripts loaded from

arbitrary remote domains. In practice, this means that hun-

dreds of third-party script providers, ranging from advertising

libraries, to content distribution networks, can capitalize on

their privileged position (being included on a popular domain)

to fingerprint these URL-dependent extensions and their users.

In fact, Nikiforakis et al. [44] found that skype.com was

including a fingerprinting script from a commercial finger-

printing vendor, and Acar et al. [6], [20] later discovered

that many popular websites, including whitehouse.gov
and youporn.com were including a tracking library from

addthis.com which was using canvas-fingerprinting.
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III. XHOUND ARCHITECTURE

A human analyst can straightforwardly reason about the

on-page changes made by any given extension (e.g. ad-

related iframes removed and new DOM elements added), craft

appropriately structured pages that would cause extensions

to reveal themselves, and write tests that are used to infer

the presence or absence of an extension in the browsers of

users. This manual approach, however, cannot scale to the

size of popular browser extension markets which are hosts

to tens of thousands of extensions. To address the challenge

of a large-scale, fingerprintability analysis of extensions, we

designed and developed XHOUND (Extension Hound), an

extension-discovering framework that automatically extracts

the visible and invisible on-page side-effects of any given

browser extension. In this section, we report on the architecture

of XHOUND and our design choices.

XHOUND uses a two-step approach where in the first step

our tool patches the JavaScript source code of extensions

in order to place hooks on functions of interest and, in

the second step, uses dynamic analysis in an attempt to

stimulate the DOM-changing code segments of each evaluated

extension. Similar two-step passes have been used to detect

malicious extensions that exfiltrate private user data or in-

ject advertisements. Kapravelos et al. introduced Hulk [30],

a framework for automatically detecting malicious Chrome

extensions. The authors developed the concept of dynamic

“honey pages” which are empty pages that have JavaScript

code which can dynamically create appropriate DOM elements

as those are queried by extensions. Jagpal et al. report on a

similar system used internally by Google to identify malicious

browser extensions in the Chrome Store [28]. In addition to

dynamic honey pages, the authors use static honey pages,

i.e., pages that appear to be hosting sensitive content (such

as login forms) and could thus trigger the content-dependent

functions in extensions. Thomas et al. [47] and Xing et

al. [50] developed tools for the dynamic analysis of Chrome

extensions, which detect extensions that inject malicious ads

or swap ads so that the authors of malicious extensions can

benefit from advertising revenue.

Even though XHOUND shares design choices with the

aforementioned systems, the goal of our platform is distinctly

different. Specifically, in XHOUND, we treat all extensions as

benign extensions which have no interest of evading dynamic

analysis tools and will modify pages by adding, modifying,

and removing DOM elements to achieve their stated goals.

XHOUND aims to capture these modifications and use them

to build detection code that can infer the presence or absence

of any given extension. On the one hand, these relaxed

requirements (in contrast with adversarial scenarios) relieve

us from implementing complex monitoring mechanisms like

traffic analysis. Therefore, in XHOUND, we focus on the

ability to analyze the final DOM tree of a web page, which

was rendered with the inspected extension being active. On

the other hand, we aim to maximize the detection of any

functional DOM modifications, and thus we have to trigger as

much of an extension’s functionality as possible. The ability

to stimulate an extension to, for example, create a new benign

DOM element is irrelevant for Hulk and the rest of the

aforementioned dynamic analysis systems, yet is crucial for

our system since that new DOM element can be used as a

signature for an extension’s presence.

Figure 3 shows the architecture of XHOUND. We elaborate

on each component in the following paragraphs.

A. Test preparation

XHOUND first automatically unpacks an extension and

patches it with JavaScript code in order to hook into

functions of interest. More precisely, inspired by Hulk’s

honey pages, we developed the OnTheFlyDOM library in

JavaScript which, upon inclusion on a web page, intercepts

most of the possible queries that an extension may use to

locate DOM elements. For instance, XHOUND patches the

document.getElementById method so that, when an

extension uses it to inquire about the presence of an element

with a specific identifier, our library will actually create, on-

the-fly, such an element, record that it did so, and return that

element to the calling script. The end effect is that extensions

are made to believe that the queried elements are present on

a given page and are thus allowed to continue executing. Our

library is included in all honey pages deployed by XHOUND,

both static and dynamic, and is injected to all extensions under

examination as a first-to-include content script. This gives

us the ability to also intercept functions, which are defined

in the execution environment of extensions. Those functions

can be called from the declared content scripts or injected

programmatically, and are mainly used by extensions to query

the DOMs of web pages.

In comparison to Hulk’s pages, we attempt to increase

coverage of multi-step queries of DOM elements. First,

when an extension script receives a queried element, it

may additionally check it for proper attributes. Since

we have no way of predicting these attributes and

we cannot hook into their value checks, we populated

XHOUND’s honey pages with static web elements bearing

different parameters, which include parts of popular

HTML structures, like the ones found on the results of

popular search engines, or YouTube videos. Second, an

extension’s logic may search for a container element first

and launch subsequent queries from it on its subtree, e.g.,

container.getElementsByClassName("child").

This is a rather common JavaScript practice, aimed towards

increasing the performance of queries. To address this,

XHOUND recursively patches all DOM elements created on

the fly with intercepted functions for queries (including the

container element from the earlier example), as well as all

initial static elements present on the honey page. If such

multi-step queries are used to search for a child element, the

element will be created and appended to the proper parent

node.

Our aforementioned JavaScript library allows XHOUND to

fingerprint extensions that expect a particular DOM struc-
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Fig. 3. XHOUND’s data sources and architecture: patching extensions and filtering list of target URLs (1), running tests with Chrome Driver (2), and analyzing
introduced on-page changes (3).

ture before manifesting themselves. At the same time, many

extensions will only inspect the DOM and modify con-

tent on specific URLs. A video-downloader extension for

YouTube and the SaveToPocket extension described in Sec-

tion II-B, will only append extra controls for pages hosted on

youtube.com and twitter.com, respectively. While it is

certainly possible to navigate to popular sites with and without

an extension and compare their DOMs, this approach brings

a whole host of problems related to the dynamic nature of

the web. Due to third-party advertisements, featured content,

and client-side widget integration, the same URL can be

visited multiple times only seconds apart, and yet result in

significantly different DOMs. In these cases, attribution of a

DOM change to either the evaluated extension or the website

itself becomes challenging, and heuristic-based methods are

bound to be susceptible to false positives and false negatives.

In XHOUND, we tackle this challenge by only pretending to

visit popular domains, while in fact always visiting static pages

which host the aforementioned OnTheFlyDOM JS library.

To achieve this we make use of a local DNS stub resolver

which resolves the Alexa top 50 sites to localhost and

an appropriate Apache module that rewrites URLs so as to

always serve our honey pages. We address the issues that arise

due to HTTPS by installing our own root certificate in the

browser used by XHOUND, and accepting all HTTPS errors.

Moreover, instead of just pretending to visit the root page of

the top 50 Alexa domains, we use a search engine to identify

popular URLs for each Alexa domain and pretend to visit up

to 20 URLs for each popular domain. In total, each extension

is exposed to 780 URLs spanning 308 subdomains. These

additional visits are utilized in order to trigger extensions

that may be activated only on certain pages or subdomains

of popular websites. The combination of these two techniques

(local DNS resolutions and on-the-fly DOM population) allows

us to both convince extensions that they are on the “right” page

and present to them a DOM that is “as expected.” Note that

we follow this approach because we cannot rely on the URLs

whitelisted in an extension’s manifest since most extensions

request permission to run on every page that a user visits.

Even the extensions that request to run on specific domains

can include URL checks in their actual code and only execute

actions when a user is on a specific page or subdomain of

the whitelisted domain. Specifically, from our collected 10,000

Chrome extensions that we analyze in the next sections, more

than 67% of them request permissions to all possible URLs,

or at least to all non-HTTPS pages.

B. XHOUND Execution

XHOUND’s core is based on the Selenium ChromeDriver,

which provides the APIs that can be used to launch the Chrome

browser with a particular extension installed and navigate it to

a particular URL. To support honey pages, XHOUND instructs

the domain resolver component to resolve main URLs that the

browser visits to our local specially-crafted pages, omitting

other calls, which can be internal requests initiated by the

extension. That is, we differentiate between the loading of

a page that is meant to be locally served, and the request

for a remote resource requested by an extension, e.g., an

extension fetching a copy of the jQuery library from a content-

distribution network. After loading a web page, XHOUND

waits for five seconds and takes a snapshot of the current

state of the page’s DOM tree. Through empirical testing, we

chose a five second delay since each extension is taken to a

local honey page, which loads fast. However, longer timeouts

may potentially reveal even more functional on-page changes

from particular extensions, at the expense of increased total

analysis time. Moreover, during pilot runs with XHOUND, we

noticed that some extensions spent some time after installation

to load configuration files or other additional components

(e.g. update blacklists or check for newer versions). Failing

to account for the time necessary to complete these checks,

caused some extensions to either crash, or not be active. As

such, we decided to introduce another five-second wait right

before instructing Chrome to visit the first target URL. In
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its current instantiation, each extension requires appropriately

one-hour of dynamic analysis, on a single core and less than

1GB of RAM. Naturally, multiple multicore machines can be

used to parallelize the analysis of extensions.

The dynamic honey pages that were described in the pre-

vious section (where the DOM is populated on-the-fly, driven

by the methods for searching for elements) are not sufficient

for revealing all possible cases of on-page changes. Namely, a

number of extensions are purely content-based, examining all

content on a page and modifying the content that matches their

internal logic. For instance, an extension could be searching a

webpage’s text for phone numbers and making them clickable

so as to launch the user’s favorite VoIP client. Some ad-

blockers also fall into this category since they try to match

elements and outgoing requests to their internal blacklists and

remove/block those that match.

To account for these extensions, we designed static honey

pages with many types of content, including: tracking scripts,

audio and video tags, images, custom tables, phone numbers,

suspicious URLs, and login forms. While our static content is

by no means exhaustive, it was guided by a manual analysis of

a sample of 100 popular extensions so as to ensure that all the

fingerprintable extensions that we identified through manual

analysis as fingerprintable, would be stimulated by the content

of our static honey pages.

C. Analyzing results

All initial DOM elements on the honey pages are indexed to

facilitate further comparison of the potentially modified DOM

with the one of the original page. Each queried element, which

is created on the fly, is also recorded, so we can later check

whether it was modified by an extension. This enables us to

straightforwardly identify any on-page changes as shown in

Figure 3.

D. Limitations

XHOUND currently supports Google Chrome and Mozilla

Firefox extensions. We chose to focus on these browsers

due to their large market share and wealth of available

browser extensions. At the same time, we do not make use

of any platform-specific functionality hence our system can

be straightforwardly ported to other browsers.

The OnTheFlyDOM library intercepts many popular DOM-

querying methods, including:

• getElementById
• getElementsByName
• getElementsByTagName
• getElementsByTagNameNS
• getElementsByClassName

There are, however, possible ways of accessing the DOM

that are currently not supported by XHOUND, such as, discov-

ering elements through global lists, like, document.forms.

For the querySelector and querySelectorAll
methods, our library supports the parsing of CSS selectors and

attempts to recreate a proper hierarchy of DOM elements ex-

actly as requested by the utilized query. Additionally, we tested

our approach in scenarios where an extension makes use of the

jQuery library to discover DOM elements. Modern implemen-

tations of jQuery will leverage powerful querySelector
methods for most of the cases of complex selectors, and thus

we do not need to separately support differences of jQuery

syntax since we instrument the querySelector method.

XHOUND is currently limited in that it searches for mod-

ifications in a page’s DOM but not in the browser’s BOM

(Browser Object Module). As such, our tool will not be able

to detect certain niche extensions, such as, user-agent spoofers

which spoof attributes from the navigator object in an

effort to spoof the identity of the browser [44]. Finally, it

is worth noting that XHOUND does not attempt to configure

an extension, once that is installed in the utilized browser.

As such, if an extension requires a user to configure it by

clicking through various dialogues the first time that extension

is installed, XHOUND may not be able to detect its presence.

IV. ANALYSIS OF RESULTS

In this section, we first describe the results of applying

XHOUND to popular browser extensions and then analyze the

findings of multiple user surveys which we conducted, in an

effort to estimate the presence and popularity of extensions in

the browsing environments of everyday users.

A. Fingerprintability of Popular Extensions

To estimate the overall fraction of detectable extensions in

the market we applied XHOUND to the 10,000 most popular

extensions in the Chrome Store. Popularity is measured

in terms of downloads, with the most popular extensions

like AdBlock, AdBlock Plus, Avast SafePrice, and Avira

Browser Safety having more than 10 million active users,

and the least popular one (ranked 10,000th) having 450

active users. XHOUND’s results show that at least 9.2%

of extensions introduce detectable DOM changes on any

arbitrary domain. This means that any webpage with an

appropriately structured DOM could infer approximately

10% of the extensions available in the Google Chrome store.

Moreover, more than 16.6% are fingerprintable on at least

one popular URL of the Alexa top 50 websites. If, instead of

looking at all 10K extensions, we limit ourselves to the top

1K, the fraction of detectable extensions increases to 13.2%

for arbitrary domains and 23% for popular URLs. Figure 4

illustrates the distribution of fingerprintable extensions across

popularity ranks. Note that all statistics presented in this

section are lower-bounds since XHOUND cannot always

detect the side-effects and appropriate stimulation parameters

that a human analyst could, through manual analysis, discover.

Fingerprintability as a function of ranking
As seen in Figure 4, the overall trend is that the fraction

of detectable extensions decreases when we consider less

popular Chrome extensions. Interestingly, the ratio of the

number of extensions fingerprintable on any arbitrary domain,

to the total number of fingerprintable extensions amounts

to more than 0.5 and is stable across ranks. The fact that
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Fig. 4. Results of applying XHOUND to the top 10,000 most popular extensions and to a random sample of 1,000 other extensions. Higher-ranked extensions
tend to be more fingerprintable, presumably because of their higher utility, compared to lower-ranked extensions.

the percentage of detectable extensions is higher among the

more popular extensions indicates that the threat of web

tracking via browser extensions is a realistic threat since most

extension-utilizing users are likely to be fingerprintable. At

the same time, in addition to using fingerprintable extensions,

different users must be using different sets of fingerprintable

extensions, if they are to be differentiated from each other by

a web tracker. We demonstrate that this is, in fact, the case,

in Section IV-B. In addition to the top 10K extensions, we

also randomly sampled 1,000 extensions from lower ranks

and discovered, as shown in the rightmost part of Figure 4,

that they are as fingerprintable as the browser extensions

between the 9,000 and 10,000 rank.

Fingerprintability as a function of category
Next to differences according to popularity, the

fingerprintability of extensions differs among categories.

As Table IV-A illustrates, many shopping extensions are

detectable on at least one URL, presumably, being designed

for a specific set of online stores; as well as social extensions,

which support specific popular social websites. At the same

time, some universal shopping extensions and those belonging

to categories like accessibility, productivity and photos, are

more content-dependent and therefore, more of them can be

detected on any arbitrary URL. According to the Pearson’s

Chi-squared test, in both of the cases URL dependent and

independent on-page changes, fingerprintability is significantly

dependent on categories, as p-values for the null hypothesis

of their independence are 3.812e-15 and 2.2e-16 respectively.

Uniqueness and types of DOM modifications
By analyzing the DOM changes incurred by the 1,656 de-

tectable extensions, we discovered that almost 90% of them

perform uniquely identifiable combinations of changes, and

more than 86% have at least one completely distinct on-page

side-effect that cannot be attributed to any other extension

or group of extensions. In other words, the vast majority of

fingerprintable extensions perform at least one DOM change

(or combination of changes) that is unique to each one of them.

Therefore, for the majority of extensions, a web tracker can

create signatures based on their DOM changes and precisely

TABLE I
DETECTABLE EXTENSIONS PER CATEGORY

Category #Evaluated Ex-
tensions

Detectable
On Some
URLs

Detectable
On Any
URL

Productivity 3,438 14.95% 10.01%
Social & Commun. 1,397 27.06% 9.81%
Fun 1,300 12.92% 6.31%
Accessibility 952 17.02% 11.87%
Developer Tools 936 9.29% 8.23%
Search Tools 595 13.28% 5.71%
Shopping 444 34.68% 17.57%
News & Weather 336 4.76% 3.87%
Photos 208 19.71% 11.54%
Blogging 144 14.58% 5.56%
Unknown 129 23.26% 4.65%
Sports 121 4.96% 4.13%

attribute the changes to the underlying browser extension. The

main type of extension which was not uniquely identifiable

is that of ad-blockers. Our current static honey pages utilize

tracking scripts from well-known web trackers which appear

to be in the blacklists of most of the evaluated extensions.

However, as recent research has shown [40], the blacklists

of different ad-blockers are not identical, hence, an interested

party could potentially analyze the blacklist of each extension

and pinpoint entries that are unique to each one. This task

requires a significant upfront cost of getting and maintaining

a large list of ad URLs and exposing all ad-blockers to these

URLs in order to identify their “blind spots.” We consider this

procedure as out-of-scope for this paper.

Table II shows statistics of the four types of modifications

performed by the 1,656 fingerprintable extensions. Specifi-

cally, whenever an extension modifies the DOM it can i) add

a new DOM element, ii) delete an existing DOM element, iii)

set/change a tag’s attribute, and iv) change the text on the page.

As the data shows, the most popular action among fingerprint-

able extensions is to introduce new elements on a page. These

new elements are typically used to provide extension-driven

UIs to the user, such as, additional controls, overlays, and

menus. The LastPass and SaveToPocket extensions described

in Section II-B, both fall into this category. A consequence of
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TABLE II
TYPES OF DOM CHANGES FROM EXTENSIONS

Type Extensions In on-the-fly content
New DOM node 78.7% 20.3%
Changed attribute 41.6% 84.4%

Removed DOM node 15.8% 59.9%
Changed text 4.7% 61.5%

this finding is that, extension authors who wish to protect the

privacy of their users, may have a hard time implementing their

desired functionality without introducing changes in a page’s

DOM. We further elaborate on this problem and possible

solutions in Section VI.

The low percentage of discovered textual changes may be

due to the limited textual content of XHOUND’s static honey

pages. Our honey pages can be straightforwardly extended to

include a larger and more varied text corpus, including more

specific words, names, and headings.

Overall, 42.9% of the fingerprintable extensions make

changes to the content they query on web pages, i.e. to

the DOM hierarchies or particular elements that are created

on-the-fly by our honey pages. Table II shows how such

modifications in queried contents contribute to the amount

of detected extensions per each type of DOM changes. This

proves the value of dynamic honey pages in the detection of

fingerprintable extensions. Moreover, almost 90% of 1,656

detected extensions issue at least one query to the DOM,

which will often serve as a check that an extension is on the

right page, before it proceeds to modify the available content.

Longitudinal analysis of fingerprintability
To understand whether the fingerprintable DOM changes are

temporal artifacts of extension development, or necessary

modifications that persist through time, we performed a small-

scale, longitudinal study of fingerprintable extensions. Specif-

ically, we waited for four months since the original collection

of Chrome extensions and examined the updated versions

of a sample of 2,000 extensions. 1,000 of these extensions

were originally fingerprintable by XHOUND, and 1,000 were

originally invisible, i.e., XHOUND could not identify any

DOM changes for any of these extensions. Table III shows the

results of our analysis. First, we find that more than 90% of the

extensions are still available in the Chrome store. Among the

extensions that were originally fingerprintable, approximately

38% were updated and, overall, 88% of them remained fin-

gerprintable. An example of an extension that stopped being

fingerprintable is the Hola extension [26] that provides free

VPN access to its users. Specifically, the extension used to

set a “hola ext inject” attribute to the root HTML node of

each visited page, but now only sets a similar attribute on

URLs owned by hola.org. It is likely that this change was

a reaction due to a recent crackdown by streaming services,

such as, Netflix, on users that utilize VPNs and proxies to fake

their location and stream content that is not available to their

home country [33]. At the same time, nine extensions that were

TABLE III
TRENDS IN FINGERPRINTABILITY OF EXTENSIONS (RE-RUNNING

EVALUATION AFTER 4 MONTHS)

Sample Available Updated Detectable
Detectable 91.0% 37.9% 88.0%
Invisible 95.3% 25.9% 3.73%

previously invisible to XHOUND, became fingerprintable. An

example extension is Imagine Easy Scholar [25], which started

injecting additional style sheets on more recent versions of the

extension.

Finally, we took advantage of the elapsed time of our

previous experiment (four months), to assess whether the

“new” top 1,000 extensions were as fingerprintable as the

“old” top 1,000 extensions. We found that the intersection

of these two sets of top 1,000 extensions was 79.8% out

of which 54.6% had updated their versions. By applying

XHOUND on the new top 1,000 extension set, we discovered

that 12.2% of the extensions were fingerprintable on any

arbitrary URL, while 21.6% were fingerprintable on at least

one popular URL, compared to our previous 13.2% and 23%.

As such, we can conclude that the fraction of fingerprintable

extensions appears to be a stable property of the extension

ecosystem and is therefore an issue that will not be resolved

by itself.

Fingerprintability of extensions for other browsers
A browser extension’s modifications to web pages that are

taken advantage by XHOUND to fingerprint it, are part of that

extension’s organic activity, rather than a specific vulnerability

of a particular browser. Therefore, other popular web browsers

that support extensions are likely to “allow” extension finger-

printing. To test this assumption, we modify XHOUND and

use it on the most popular extensions of Mozilla Firefox. At

the time of this writing, the Firefox browser supports several

technologies for developing add-ons, though developers are

officially advised to use the newest WebExtensions APIs, or

its predecessor, the Add-on SDK. Since XHOUND is already

compatible with the WebExtensions API (since this is the one

used by Google Chrome), to support Add-on SDK extensions,

we enhanced our patching methods to include the ability

to intercept DOM queries from programmatically injected

content scripts (as each such script runs in its own execution

context).

Among the most popular 1,000 Firefox extensions im-

plemented with either WebExtensions or Add-on SDK, we

found that 16% are fingerprintable on at least one URL, and

7.3% on any domain. The fingerprintable extensions include

add-ons that have equally fingerprintable Chrome versions

like Ghostery, Grammarly, Turn Off the Lights and, Privacy

Badger, as well as extensions which are only detected on

Firefox, such as, ZenMate Security & Privacy VPN. 88% of

the fingerprintable Firefox extensions introduce distinct on-

page changes which can thus be used for precise attribution

of changes back to their originating extensions. Similar to
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the analyzed Chrome extensions, the most popular types of

changes are the addition of new DOM elements (67%), the

changing of particular attributes (37%) and the deleting of

parts of content (27%). Overall, these results correlate with

our findings from examining Chrome extensions, showing that

extensions developed for either browser are equally likely to

be fingerprintable.

B. Fingerprintability of Regular Users based on their
Extensions

In Section IV-A we showed that a significant fraction

of popular browser extensions are fingerprintable, i.e., a

website could infer the extensions installed by preparing

an appropriately-structured DOM and allowing the installed

extensions to modify it. At the same time, even though

knowing that an extension is installed could be used to infer

a user’s preferences (we discuss this issue in Section VI),

that, in itself, does not allow websites to uniquely identify the

user. In order for users to be uniquely identifiable, they must

not only utilize fingerprintable extensions, but each user must,

to a certain extent, utilize a different set of fingerprintable

extensions.

Collecting extension-usage data from real users
To understand the sets of extensions that everyday users of the

web install, and to what extent these extensions could be used

for uniquely identifying users, we deployed several surveys

where we collected the list of installed extensions from each

volunteering user.

In prior work, when researchers where collecting data to

assess the fingerprintability of browsers, they would merely

ask users to visit a website which would utilize JavaScript

to collect various attributes of the users’ browsing environ-

ments [19], [36]. In our case, since browsers do not have APIs

for collecting the list of installed extensions, the only way

of collecting installed extensions through the mere visiting

of a website, would be to use XHOUND’s results and cre-

ate webpages that would fingerprint extensions through their

DOM changes. While, as we later show in Section V, it is

certainly possible to fingerprint the extensions that have been

analyzed by XHOUND, we would have no way of gauging

the fingerprintability of extensions that were not in the set

of extensions analyzed by our system, e.g., less popular, or

custom extensions. Therefore, we opted to design and imple-

ment a browser extension which, upon installation, retrieves

the list of other extensions installed on the user’s browser, and

send this list to our monitoring server, in an anonymous (no

PII collected) and secure (using HTTPS for communication)

fashion. In addition to the list of extensions, our extension also

calculates and sends the size of the browsing history and the

number of cookies in the browser’s cookie jar (just the size,

not the actual history or cookies). As we discuss later in this

section, we use these quantities to isolate entries of users who

are not active users of Google Chrome, e.g., users who could

have just installed the browser in order to participate in our

surveys and get compensated.

TABLE IV
CONDUCTED SURVEYS FOR EXTENSION PROFILES

Survey Audience Participants
#Unique

Extensions
Friends and Colleagues 51 148
US MTurk Workers 313 482
Non-US MTurk Workers 196 312
Students 294 385

Total 854 941

TABLE V
ACTIVE USERS OF EXTENSIONS PER SURVEY AUDIENCE

Survey Audience Mean Median
Friends and Colleagues 1,466,066 283,909
US MTurk Workers 835,046 118,696
Non-US MTurk Workers 1,196,496 190,454
Students 1,049,267 217,896

Since our surveys involved the installation of software

and the extraction of data from users’ machines, we applied

and obtained permission from our institute’s IRB that

allowed us to conduct our surveys. Initially, we distributed

our survey among colleagues and friends from US and

European institutions. We then targeted a larger audience

by making use of the Amazon Mechanical Turk platform

and by sending advertisements for volunteers to our campus

mailing list. Mechanical Turk users were compensated

directly after completing our survey, whereas students from

our university participated in a raffle to win multiple gift cards.

Statistics of extension usage
Overall, 854 users participated in our surveys who had a

total of 941 unique browser extensions installed and enabled.

Table IV presents exact numbers for each set of users who

participate in our surveys. On average, surveyed users had

4.81 active extensions in their browsers. Interestingly, we

discovered that some users keep extensions that are no longer

available in the market, or are side-loaded from third-party

websites, regardless of Google’s disapproval of this practice.

As such, even though the participating users were using a total

of 941 unique browser extensions, we were able to download

and analyze only 856 of these extensions from the Chrome

Store. As such, the statistics reported in the rest of this section

are obtained using these 856 browser extensions.

By deploying different surveys we targeted participants

that represent different professions, technical backgrounds and

geographical locations. First, as Figure 5 illustrates, Non-US

Mechanical Turk users, most of whom originate from India,

along with surveyed students, tend to have less extensions

installed. Second, Table V shows that US Mechanical Turk

workers tend to use less popular Chrome extensions compared

to the other surveyed audiences. Specifically, Table V shows

that the average extension installed by the “US MTurk Work-

ers” group is installed by approximately 835K users, compared

to 1.4 million installations of the average extension of “Friends

and Colleagues”.
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As mentioned earlier, our survey extension also collects

the size of browsing history and size of cookie jars to help

us identify entries of inactive users. As Figure 6 illustrates,

the size of browsing history and the number of extensions

in a user’s browser are positively correlated. The number of

extensions also depends on the particular group of users. One

may notice that MTurk users tend to have a different ratio

between the number of extensions and the size of browsing

history, e.g., even users with large browsing histories have

less installed extensions, compared to the rest of the surveyed

audiences. Even though, as shown in Figure 6, the fitted

regression lines are less steep for MTurk workers, the analysis

of covariance showed no significant interaction between the

size of browsing history and different user groups. We take

advantage of this fact to combine an overall set of users, as

well as to extract a new subset of users across all surveyed

audiences, whose history size is above the first quartile of

their respective distribution. We label these 641 (75.1%) users

as “Frequent Chrome Users” and report separate statistics for

them.

Fingerprintability of collected extensions
Overall, from the 856 unique extensions obtained from

surveys, 174 (20.3%) were fingerprintable, introducing 81
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All Together
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Non−US MTurk
Workers

US MTurk
Workers

Students
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Fig. 7. Distribution of anonymity set sizes based on different survey
audiences.

unique, on-page DOM changes. Of these 174 extensions, 93

were fingerprintable on any arbitrary URL. To understand the

fingerprintability of users utilizing these extensions, we use

the notion of anonymity sets as described by Eckersley [19]

and used by Laperdrix et al. in [36]. Each anonymity set

represents a group of users with the same extension-based

fingerprint. The smaller the size of an anonymity set, the

more trackable, users of this set are. In its extreme, an

anonymity set with a size of one, means that a user is

uniquely identifiable, i.e., no other user has the same browser

extensions installed. Figure 7 shows the distribution of the

anonymity sizes of our surveyed audiences. One can see

that, for all groups of users, with the exception of Non-US

MTurk workers, approximately 70% of users had at least one

fingerprintable extension. In addition, 14.1% of all users in all

groups are uniquely identifiable (belong to an anonymity set

of size equal to one). These results show that extension-based

fingerprinting is a real threat to online privacy and could be

straightforwardly used to supplement existing fingerprinting

techniques.

Discriminatory power of extension-fingerprinting
To quantitatively compare extensions with other popular at-

tributes for fingerprinting, we calculated the normalized values

of Shannon’s entropy, following the approach of Laperdrix et

al. [36] and Cao et al. [14]. This gives us ability to compare

entropies of fingerprinting attributes investigated in previous

studies, despite the different sizes of testing sets. At the same

time, because Laperdrix et al.’s dataset is significantly larger

than ours, we limit our comparison to the work of Cao et

al. [14] who collected 3,615 fingerprints from 1,903 users.

Table VI compares the entropy values, which we calculate

for each surveyed audience of our study, to the entropy of

other attributes of desktop and mobile browsers as calculated

by Cao et al. [14]. As one can observe, the normalized

entropy provided by extension-based fingerprinting can reach

the values of other popular attributes for fingerprinting desk-

top browsers. Moreover, for users from a CS background
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TABLE VI
NORMALIZED ENTROPY OF EXTENSIONS COMPARED TO OTHER

ATTRIBUTES FROM CROSS-BROWSER FINGERPRINTING STUDY [14]

Extension Fingerprinting

Attribute Actual Normalized
Extensions (Friends and Colleagues) 3.24 0.571
Extensions (US MTurk Workers) 4.20 0.507
Extensions (Students) 4.03 0.491
Extensions (Frequent Chrome Users) 4.40 0.472
Extensions (All Together) 4.25 0.437
Extensions (Non-US MTurk Workers) 3.02 0.397

Attributes from Tables I and IV of [14]

Attribute Actual Normalized
User Agent 6.71 0.612
List of Plugins 5.77 0.526
Timezone 3.72 0.340
Screen Resolution Not listed 0.285
List of Fonts (Flash) 2.40 0.219
Cookie Enabled 0.00 0.001

who tend to use more extensions (the ones in our “Friends

and Colleagues” audience), extensions may even eventually

substitute one of the most discriminating attributes according

to previous studies, namely installed plugins. However, we

again acknowledge the limitation of our study in terms of the

significantly smaller set of collected fingerprints compared to

other studies and how this could be biasing our normalized

results. For this reason, Table VI also shows the actual, non-

normalized, entropy values. We hope to be able to, in the

future, repeat our survey against a larger set of users in order

to better estimate the discriminatory power of extension-based

fingerprinting.

V. IMPLEMENTATION & PERFORMANCE

Having shown that browser extensions are fingerprintable

and that different users tend to use different sets of finger-

printable extensions, the only question that remains is how our

findings could be put into practice by trackers. In this section,

we describe a proof-of-concept, extension-fingerprinting script

and measure its performance overhead.

According to our threat models, we assume that an attacker,

i.e., a tracker, keeps a database of detectable extensions with

the on-page changes that each extension introduces. To keep

such a database up-to-date the attacker may periodically run

a system similar to XHOUND on a market’s most popular

extensions. Given these inputs, we identify two different ways

to architect an extension-fingerprinting script. First, the script

may deliver a page with all the content necessary for triggering

fingerprintable extensions of interest, extract the resulting

DOM, and send the entire DOM to the tracking server,

for further offline analysis. Later, the comparator module of

XHOUND can match the modified DOM to specific browser

extensions and combine them into a fingerprint. Second, in

addition to including the extension-triggering content, the

tracking script can also include logic that immediately ana-

lyzes the page searching for extension-specific changes.

In both scenarios, the attacker needs a way to generate

DOM content which triggers the detectable functionality of

fingerprintable browser extensions. We argue that, to a large

Listing 3 Examples of DOM contents retrieved by XHOUND,

which trigger on-page changes from extensions (underlined)

// HoverZoom inserts special class attribute
<a data-expanded-url="nstagram.com/p/"

class="hoverZoomLink"></a>
<img src="http://gravatar.com/avatar/"

class="hoverZoomLink">

// Skype removes the following script
<script id="skype_script" src="chrome-extension://

lifbcibllhkdhoafpjfnlhfpfgnpldfl/menu_handler.js">
</script>

// Google Calendar adds a link
<div class="vevent">

<div class="summary">
<a href="https://calendar.google.com/calendar/...">
<img src="chrome-extension://.../calendar_add_38.png
alt="add to google calendar"></a>
<div class="description"></div>
<div class="dtstart"></div>
<div class="published"></div>
<div class="dtend"></div>
<div class="url"></div>

<adr>
<div class="locality"></div>
<div class="region"></div>

</adr>
<div class="location"></div>
</div>

</div>

extent, this can be done automatically using the information

already provided by XHOUND. Depending on each specific

case, an extension may need as little as an ad or a web form

to reveal itself (XHOUND discovers these types of extensions

through its static honey pages) or as much as a specifically-

named DOM element or a series of elements in parent-child

relationships. These latter changes are recovered by XHOUND

through the use of dynamic honeypages and on-the-fly DOM

generation.

For instance, while analyzing the popular

HoverZoom extension, XHOUND recorded Hov-

erZoom’s queries for finding all elements like

“a[data-expanded-url*="nstagram.com/p/"]”,

“img[src*="gravatar.com/avatar/"]” and created

mock elements that satisfied the requirements. Listing 3

shows the created mock content and introduced changes after

HoverZoom finds it (new “hoverZoomLink” class name).

In most of the cases, this mock content can immediately

serve as extension-triggering content. Similarly, XHOUND

identified and created a mock script that was queried by

the Skype extension in order to remove it, and created the

necessary complicated hierarchy so that the Google Calendar

extension inserts a link into it, as shown in the Listing 3.

Given such triggering content, the actual in-page detection

consist of simple DOM queries and if-checks, such as the

ones illustrated in the Listing 4.

Finally, it is worth noting that, for most extensions, an

attacker can use a single fingerprinting script to identify

extensions since, according to our results, more than 86%

of extensions are uniquely identifiable regardless of possible

overlapping on-page changes. If one would still want to isolate
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Listing 4 Examples of DOM queries that are sufficient to

detect triggered extensions

if (document.querySelector(".hoverZoomLink") !== null) {
// HoverZoom is present

}
if (document.getElementById(’skype_script’) === null) {

// Skype is present
}
if (document.querySelector(’a[href*="https://calendar.

google.com/calendar/event"]’) !== null || document.
querySelector(’img[src*="chrome-extension://
gmbgaklkmjakoegficnlkhebmhkjfich"]’) !== null) {
// Google Calendar is present

}

the effects of extensions, one strategy would be to use iframes

where each extension would manifest itself in a separate DOM.

To analyze the performance of our proof-of-concept

extension-fingerprinting script, we automatically retrieved

the XHOUND-detected triggering content for 30 universally-

fingerprintable extensions and implemented the corresponding

checks. These checks could, in principle, be automatically

generated by parsing XHOUND’s output but we leave this

automation for future work. Our sample of extensions includes

popular fingerprintable extensions based on the number of

active users, which we found in the market and during our user

study, as well as randomly selected lower-ranked extensions.

Our non-minimized script together with the triggering content

has a size of less than 16 Kb. For testing, we run our

script on random subsets of up to 20 extensions, taking the

average of ten runs per subset. The testbed was automated

with Selenium’s ChromeDriver on a MacBook Air laptop (1.7

GHZ Intel Core i5, 4 GB RAM, other applications open).

All fingerprintable extensions were correctly identified by

our script. Apart from the time that we need to wait so

that extensions manifest themselves (discussed in the next

paragraph), the actual checks take less than 5 ms.

The part that “delays” the fingerprinting process is the

fact that, unlike traditional fingerprinting which, for the most

part, just reads out existing properties, such as screen size

or a list of plugins, most extensions introduce their changes

after a web page is loaded (window.onload event fires).

An extension-fingerprinting script must therefore wait, or

keep polling the DOM, until a page has loaded and until

each extension has had a chance to introduce its changes.

To quantify this delay, we run our extension-fingerprinting

script 21 times in increments of one extension, starting with

a browser with no extensions and ending with a browser

with 20 installed extensions. If our script could not find the

appropriate number of extensions, it restarted itself after a

few tens of milliseconds. Figure 8 present the necessary load

time (after the window.onload event fires) as a function of

the number of installed extensions (whiskers represent 95%

confidence intervals). One can see a wave-shaped growth of

the extension load time which increases as the number of

installed extensions increase. We suspect that these changes

are because of multi-threading and non-overlapping processing
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Fig. 8. Load time of extensions before on-page changes appear. The blue
vertical line signifies the number of extension that an average user installs, as
discovered by our Mechanical Turk experiment.

of particular on-page changes. We attribute the presence of

spikes to our system load, as well as recurrent additional

delays from the use of ChromeDriver. Overall, despite these

“delays”, our results show that even for as many as twenty

installed extensions, the entire fingerprinting process takes

less than one second. Note that this delay is not affected

by checking for extensions that are not present. Therefore, a

tracker can try to trigger multiple hundreds of extensions and

still wait for less than a second, under the assumption that the

vast majority of them will not be present and will therefore not

delay the manifestation of the ones that are present (our results

from Section IV-B indicate that the average user utilizes five

extensions).

The reader can view a video demonstration of our

extension-fingerprinting script by visiting this URL: https:
//vimeo.com/178330178 (password is SP2017). The

script waits for a few seconds after the window.onload
event fires and proceeds to fingerprint the page’s DOM.

As one can notice, a few extensions reveal the fact that

they performed an action (coaxed by the XHOUND-extracted

triggering conditions) by adding visual elements in a page’s

DOM (such as Avira which informs the user that it blocked a

suspicious resource). Since these visual elements are part of a

page’s DOM, the tracking script can immediately delete them

and hence, even for these “verbose” extensions, hide the fact

that the user’s browser is being fingerprinted.

VI. DISCUSSION AND FUTURE WORK

In this section we first discuss the implications of our

findings with regard to user privacy and then sketch two pos-

sible countermeasures against tracking facilitated by browser

extensions.

A. Privacy Implications

As described in Section IV-A, XHOUND was able to auto-

matically fingerprint 9.2% to 23% of all evaluated extensions,

with the exact percentage depending on the popularity of the

extension, and the considered threat model. Moreover, by col-

lecting extension profiles from 854 real users (Section IV-B),
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we discovered that not only do most users utilize fingerprint-

able extensions, but that many of them use different sets of

fingerprintable extensions, allowing trackers to use extensions

as a way of uniquely, or near-uniquely identifying them. It

is worth pointing out that, given the current architecture of

browser-extension frameworks, we do not assign blame to the

developers of the extensions that XHOUND can fingerprint.

The functionality of the majority of extensions that modify

the DOM depends on the same modifications that make them

fingerprintable. To quantify this dependence, we manually

examined a random sample of 100 fingerprintable extensions

and discovered that 75% of them were modifying the DOM

in accordance with the stated purpose of the extension.

Our findings demonstrate that extension-based fingerprint-

ing is a real and credible threat that further complicates online

browsing. By utilizing an XHOUND-like system, advertising

companies and online trackers can, in bulk, discover the

side-effects of browser extensions and incorporate extension-

detection code in their existing tracking scripts. As we showed

in Section IV-B, the amount of entropy that browser-extensions

provide is higher than many fingerprintable attributes, such as,

canvas, that are already adopted by fingerprinting scripts [6].

Moreover, since the extensions of Google Chrome users can

be synced between different machines, extension-based finger-

printing can be used for cross-device tracking.

Interestingly, our results are also likely applicable to mobile

browsers. Most mobile browsers do not support plugins (such

as Flash or Java) and hence are less susceptible to standard

fingerprinting practices, than desktop and laptop browsers. At

the same time, many popular mobile browsers, like Firefox

Mobile and Dolphin Browser for Android, and Google Chrome

for iOS [32], are extendable, i.e., they allow users to install

browser extensions, much like their desktop counterparts.

Therefore, the ability to fingerprint browser extensions can,

in principle, allow trackers to extract entropy from a platform

that has been long-considered, from a tracking point of view,

“problematic.”

A more subtle implication of fingerprinting browser exten-

sions is that extensions, unlike plugins and other existing fin-

gerprintable features, capture, to a certain extent, the interests

of users. That is, in addition to offering bits of entropy that

can be used to uniquely identify them, browser extensions

can give away the income-level of a user (e.g., extensions

that automatically search and apply coupons to various online

shops), the fact that they are not located where their browser

claims to be (e.g., VPN and geolocation-bypass extensions),

whether they are tech-savvy or not (e.g. extensions that block

ads and trackers, or those that show the security status of a

website), and even their political inclinations (e.g. extensions

that automatically remove or replace text and links that contain

keywords associated with specific political figures). All of this

information can be extracted and made part of a user’s profile,

allowing further deanonymization and targeting.

B. Countermeasures
It is important to note that since the fingerprinting

of extensions is done through benign-looking DOM

queries, “easy” solutions, such as, limiting access to the

navigator.plugins object [1], will not be of help for

combatting extension-based fingerprinting. In this section,

we briefly sketch two possible countermeasures that could

be used to combat extension-based fingerprinting based on

encapsulation and namespace pollution.

Encapsulation
The idea of enhancing only the appearance of web pages is

close to the concept of Shadow DOM, which gives the ability

to web developers to encapsulate presentational widgets from

other JavaScript and CSS on the page [2]. With Shadow DOM,

a subtree of DOM elements can be rendered as a part of

a document while not being a part of the main document’s

DOM tree. For instance, to change the appearance of a web

form, a shadow subtree can be created on the top of the

form with new CSS styles, additional labels and graphics,

and also with special content elements that project original

input fields to the rendered DOM. These shadow elements

are invisible to queries from the main DOM. Indeed, there

exist examples of Chrome extensions that plan or already

adopt such techniques, e.g., Adblock Plus and AdBlock to

hide non-blocking ads without breaking a page’s layout [4].

However, since Shadow DOM is designed with the aim of

mainly separating presentation from content, it is not possible

to implement all on-page changes from extensions in the

same fashion. Although adding additional control elements

can be effectively achieved with shadow elements, particular

extensions would still require altering the main DOM tree in

order to perform the desired changes, which would require

synchronization between shadow and main elements:

• to set or update functional attributes on the original nodes,

which change the logic flow of original scripts on a page

(e.g., the global document.title property)

• to change parts of the internal text, which is further

processed by a web page as an input, or to integrate

additional control elements inside the text

• to actually block or delete existing DOM nodes, such as,

ads or tracking scripts

Therefore, even though the Shadow DOM is a step in

the right direction for achieving an architecture offering

undetectable on-page changes, there are multiple challenges

that need to be overcome before this mechanism can be

effective. We plan to research these directions along with

alternative designs for encapsulation and isolation in future

work.

Namespace Pollution
Even though the results of a system like XHOUND could be

used to identify browser extensions and therefore to reduce a

user’s online privacy, they could also be used in a constructive

fashion. Namely, given a list of extensions and their DOM
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side-effects, a user could pretend to have a certain number

of extensions installed by populating these side effects in a

page, without actually installing any extensions. In addition, a

dedicated anti-fingerprinting extension could, for every page

load, select a random sample of DOM modifications and

apply them to the newly loaded page. This will significantly

complicate the task of simple extension-based fingerprinting

which will now have to distinguish between extensions that

are really installed, from extensions whose side-effects are

merely mimicked. A tracking script that fails to account for

these mimicries, will be computing a different fingerprint for

every page load and will thus be unable to associate different

page visits with the same user. Despite its seeming simplicity,

this technique is also likely to have its own unique set of

challenges, e.g., preserving the functionality of a webpage

when arbitrary nodes are being modified, which we will

investigate in future work.

VII. RELATED WORK

To the best of our knowledge, this paper is the first one that

proposes a fully automated system for fingerprinting browser

extensions based on their side-effects on a page’s DOM, and

quantifies the fingerprintability of popular extensions installed

on the browsers of real users. In this section, we discuss

the related work dealing with the fingerprinting of browser

extensions, separating it into fingerprinting made possible

by manual analysis of browser extensions, and automated

fingerprinting.

Manual Analysis
Mowery et al. described the process of inferring the user-

customized rules of the NoScript browser extension by trying

to load multiple JavaScript scripts from various domains and

observing which ones succeed and which ones fail [41]. The

same technique has been used both by researchers [36], as

well as advertising companies [8]–[10], in order to detect the

presence of ad-blockers.

Nikiforakis et al., as part of their study of commercial

fingerprinting providers, manually analyzed eleven user-agent

spoofing extensions and showed that the inconsistencies of

the claimed browser identity and JavaScript-accessible objects

could be abused to detect the presence of the evaluated

browser extensions [44]. In a subsequent study, Acar et al.

analyzed an anti-fingerprinting browser extension [11], [12]

and showed that it was, in fact, also fingerprintable [7].

Automated Detection
In 2012, Kotowicz presented a technique, reminiscent of

timing attacks [13], [21], for detecting the browser extensions

installed by Chrome users [35]. Using JavaScript, he attempted

to load the manifest files of thousands of extensions by

addressing them through the chrome-extension:// URL

scheme and their unique extension identifier. Through the

appropriate setting of onload and onerror event handlers,

Kotowicz could differentiate between the presence and the

absence of the tested browser extensions. This attack no longer

works since Google Chrome changed its extension architecture

so that all extension resources are hidden from the public web,

with the exception of the resources that an extension developer

has explicitly marked as “web accessible” [24]. At the same

time, Golubovic [42] and Sjösten et al. [46] found that many

popular extensions, do in fact make use of web-accessible

resources and are thus discoverable.

In XHOUND, we chose to focus on the DOM-level side-

effects of the presence of browser extensions and thus did

not consider web-accessible resources. While this technique

can be straightforwardly incorporated in XHOUND, we argue

that our discovery method is significantly more robust than the

ones based on web-accessible resources. At any given point in

time, the developers of browser extensions can disable the use

of web-accessible resources, making their extensions invisi-

ble to the aforementioned extension-fingerprinting technique.

Contrastingly, our fingerprinting techniques are based on an

extension’s organic activity in a page’s DOM. To remove this

DOM-level activity, if at all possible, requires significant re-

engineering of the entire extension’s codebase. At the same

time, from a practical point of view, the techniques that

XHOUND uses and web-accessible resources are fully orthog-

onal and thus a tracker can incorporate both techniques in

their tracking scripts. To quantify this complementary nature,

we analyzed the manifest files of the 1,656 extensions that

XHOUND was able to fingerprint and discovered that more

than 40% of them do not make use of web-accessible resources

and thus would not be detectable by them.

VIII. CONCLUSION

Recent years have seen the web browser becoming an all-

encompassing platform, offering to web applications features

that were traditionally only available to installed native appli-

cations. One crucial feature of these modern browsers is their

ability to be extended to meet individual user requirements.

In this paper, we investigated the fingerprintability of

browser extensions and sought to quantify it, in terms of the

fraction of popular extensions that are fingerprintable and the

sets of extensions that different users install. To this end, we

designed and implemented the first fully-automated, robust

system, XHOUND, which uses a combination of static and

dynamic analysis to identify an extension’s organic, finger-

printable activity in a webpage’s DOM. By applying XHOUND

to the 10,000 most popular Google Chrome browser exten-

sions, we discovered that 9.2% to 23% of these extensions

are fingerprintable and their presence could be inferred by

webpages. We then surveyed 854 real users and discovered that

most users utilize fingerprintable extensions, and a significant

fraction of them use different sets of fingerprintable exten-

sions, allowing trackers to uniquely or near-uniquely identify

them. We described the process of developing an extension-

fingerprinting script using XHOUND’s results, and showed that

a tracker can fingerprint a large number of extensions in just

a few seconds.

On the defensive side, we explained why extension-based

fingerprinting is more intrusive than traditional fingerprinting
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and why, in the current architectures of browsers, eliminating

the risk of extension-based fingerprinting is far from trivial.

Finally, we sketched two possible countermeasures based on

the ideas of encapsulation and namespace pollution that aim

to either hide the presence of extensions or confuse trackers

about which extensions are really installed in a user’s browser.
We hope that our work will be of use to browser vendors,

extension developers, and end users. Browser vendors

can investigate alternative architectures for supporting

extensions that make it harder for webpages to infer the

presence of installed extensions, while extension developers

can reconsider the designs of their extensions, adopting

encapsulation techniques where possible and ensuring that all

DOM changes are absolutely necessary. Finally, end users

can become aware of the privacy implications of installing

browser extensions and consider uninstalling or disabling the

ones that they do not absolutely need.
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IX. AVAILABILITY

Our plan is to eventually make XHOUND available to the

research community (either by open-sourcing it, or by making

it available as a service).
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