
Trajectory Mining on Capability Space:
Its Concept and Potential Application

 Hiroshi TSUJI Ryosuke SAGA Amrit TIWANA Dietrich ALBERT
 Osaka Prefecture University University of Georgia Graz Univ. of Tech. and Univ. of Graz
 {tsuji, saga}@cs.osakafu-u.ac.jp tiwana@uga.edu dietrich.albert@uni-graz.at

Abstract
To find the growth path for companies, this paper

proposes the concept of trajectory mining. The central
idea is to find the constraints and normal growth paths
from the volumes of the trajectories on the capability
space where capability space is spanned by multi-
dimensional axes. The identified trajectory shows the
reasonable direction for future growth. An application
for software outsourcing clients demonstrates the
proposed concept.

1. Introduction

To assign credit to software development
organizations, the Capability Maturity Model (CMM)
was proposed as an evaluation method that considers
both their capability and maturity [1]. Because the
framework of CMM can be extended to a wide range
of evaluation not only for IT companies but also for
individuals (hereafter both be referred to as simply
“units”), the framework has been extended to
Capability Maturity Model Integration (CMMI) [2-3]
and been applied to various application domains such
as information security management and project
management. Such works have inspired us to develop
support systems for personal learning [4], science
teacher development [5] and organizational security
management [6].

In CMMI, all units start at the lowest level and
climb up the levels step by step. The final destination is
the highest level for all capabilities. In between these
two states there are potential intermediary states and
paths that we refer to as the capability space. However,
some states may not be reachable if there are
prerequisite constraints preceding them. Furthermore,
there may be normal paths for most units moving from
one state to another state. To find the effective paths is
an important task, and to avoid the ineffective paths
can be a promising strategy for the unit.

Once we have a sufficient number of trajectories
that express the growth trajectory on the capability

space from the initial state to the current state, we
might have the prospect of finding such constraints. If
we can find constraints among states, we may
recommend a unit to follow a direction in accordance
with antecedent and prerequisite conditions.

Originally such a growth path was a kind of tacit
knowledge. No unit knew either the explicit way or
others’ paths. The audits themselves are just data and
do not guide growth strategy. The audits have seldom
been recorded explicitly. Once we regard the recorded
audit as externalized knowledge, we have the chance to
combine them. Analyzing the recorded audit, we
should find a strategy for further growth. Once a unit
learns strategy, it becomes smarter. Such a stream is
SECI model proposed in [7] in a wide sense. Recorded
audit analysis requires computing power. To
implement idea as a digitized information system [8],
the formal approach is required.

The purpose of this research is to propose the
formal concept of trajectory mining on the capability
space for implementing an information system. As the
term (which is similar to data mining [9]) suggests,
trajectory mining extracts knowledge for deciding
growth strategy. First, the terms will be defined. Next,
we will describe the visualization method illustrating
the operations and algorithms for finding constraints as
trajectory mining. Introducing the method for
collecting trajectories in a smart manner, we will
describe an application that explores the software
outsourcing capability space. Future research will be
also implied.

2. Term Definition

Let us first define basic terms for trajectory mining
for our proposal. “Unit Ui” is a growing object that
includes both organizations (including sports teams)
and individuals (like students). “Capability Cj” is a
growth axis. We suppose there are more than three
capabilities for one application domain. For a simple
example, there are four capabilities in the language
study domain (reading, writing, speaking and hearing)
where a unit is a person.

2013 46th Hawaii International Conference on System Sciences

1530-1605/12 $26.00 © 2012 IEEE

DOI 10.1109/HICSS.2013.572

3703

2013 46th Hawaii International Conference on System Sciences

1530-1605/12 $26.00 © 2012 IEEE

DOI 10.1109/HICSS.2013.572

3705

Each capability has some “levels ljk”. For example, low,
fair, good, very good and excellent at speaking a
language. For notation simplification, hereafter let us
assume each capability has K levels ljk : k=1, 2, …, K.
“Capability state” is a vector expressed as the
capability levels at their axes. For example, (reading,
writing, speaking, hearing) = (very good, fair, good,
low).

At first (t=1), each unit stands at the lowest level lj1

for all capability Cj . The final goal is to achieve the
highest level ljK for all capability Cj . Their examples
are initial state (low, low, low, low) and final state
(excellent, excellent, excellent, excellent). “The time-
series variable Xi(t)” is a capability state for unit Ui at
time t.

Then
Xi(1) = (l11, l21, l31,…….) for all Ui.

assuming that all units start growing at the same time
(a person’s capability state at a specific starting day is
(low, low, low, low). This assumption is not essential
and can be relaxed in the future.

We also suppose no unit can degrade its capability
along the time axis (once one achieved “very good”,
s/he shall not later be “good”, “fair” or “low”). This
assumption can be also relaxed in the future work.
Here, we suppose that there are semi-ordinal relations
on growth:

Xi(t) < Xi(s) iff t < s.
This assumption implies that as time passes, at least

one capability level should be updated. For our first
proposal, we initially assume that the difference
between Xi(t+1) and Xi(t) is just one element in their
vectors.

We present another concept called “growth path
Pi(t)” for Unit Ui. Then Pi(t) is the sequence {Xi(1) ,
Xi(2) , Xi(3) , … , Xi(t)}.

Let us define the capability space and the capability
structure next. The basic idea derives from the analogy
of knowledge space theory proposed in [10] for
knowledge acquisition while there are some similar
concepts called rough set for reasoning [11] and
version space for machine learning [12, 13].

Capability space is a set of potential capability
states. Then the cardinality of the set of capability
states is the Kth power of the number of capability axes.
The capability subspace is a set of state vectors that
consist of some capability axes. The example of three
dimensional capability subspace spanned by Cj, Cm and
Cn is illustrated in Figure 1.

To define the capability structure, we should
remember that there may be constraints when a unit
achieves a capability level. Sometimes levels ljk can be
achieved without any condition if a unit has already
achieved levels ljh where k=h+1. However, achieving
levels ljp may sometimes require another condition
even if a unit has already achieved levels ljk where
p=k+1: for example, lm3 should be achieved before a
unit achieves lj4 (see Figure 2); in other words, lj3 and
lm3 are prerequisites for achieving lj4,

For example, hearing level “good” may be achieved
without any constraint if one has already achieved
hearing level “fair”. However, speaking level “good” is
possible only if one has already achieved not only
speaking level “fair” but also hearing level “good”.

Figure�1�Capability�sub�space�for�Ci,�Cm�and�Cn

Figure�2�Example�of�capability�structure�
for�Ci,�Cm�and�Cn�

37043706

 Let us illustrate this simple example of capability
structure in Figure 2 which shows three capability axes
and four extra conditions for growth.

Note that there is an algorithm called ISM
(Interpretive Structural Modeling) [14] that identifies
such ordinal or hierarchical structures from a set of
pair-wise ordinal relations (“speaking fair” =>
“speaking good” and “hearing good” => ”speaking
good” are examples of pair-wise ordinal relations). The
algorithm is based on graph theory [15] and finds out
reach-ability matrix from adjacent matrix.

Finally, let us define “supervisor S” for units. The
supervisor is responsible for designing capabilities and
their levels in an application domain. It also should
give units advice how to improve their capability, and
may update its design as time passes. While the task
for such design is not simple, it is well-known that
CMMI is a wide framework and there have been
varieties of capability definition.

3. Research Questions

We have already developed capability
enhancement systems [4] that records Xi(t) for all units
i. The basic architecture is called the SPIral Capability
Enhancement support system (SPICE). Some functions
of SPICE are provided for units while others are
prepared for a supervisor. Note that the term “spiral” is
important as the name expresses.

At first the supervisor defines capabilities and their
levels. We suppose that it takes a lot of time by
multiple experts as CMM was defined. The initial
levels for capabilities are equal to 1 for all units as

defined before. Then as each unit achieves an upper
level along the defined capability, it updates its current
state. At that time, SPICE records the growth logs for
units: (Ui, Cj, ljk, t).

Our major issue is what SPICE can do for the units
and the supervisor after it accumulates volumes of
growth logs. There are two viewpoints as strategy: one
from a unit and the other from a supervisor.

To support the growing units, there are the
following research sub-questions:
(Q-u1) To review each growth history, how does

SPICE handle growth paths?
(Q-u2) To confirm each current position, how does

SPICE show the difference among units?
(Q-u3) To suggest the growth direction, how does

SPICE give advice?
To support the supervisor, there are also the

following research sub-questions:
(Q-s1) To review the growth histories, how does

SPICE find out constraints for growing units?
 (Q-s2) To confirm consistency among growing units

(whether there is a normal path or not), how does
SPICE evaluate?

(Q-s3) To redesign capability axes and their levels,
how does SPICE suggest to the supervisor?
If most units follow the same path from the initial

state to the goal, we say that “they are consistent
among them (homogeneous)”. On the other hand, when
each unit takes a different path from the others, “they
are inconsistent among them (heterogeneous)”. The
stakeholders of SPICE and the research questions are
illustrated in Figure 3. Note that the growth logs are
stored and not modified like the case of a data-
warehouse [16].

4. Trajectory Mining

Let us answer the research sub-questions in this
section. We must remember that the stored log data,
(Ui, Cj, ljk, t), is peculiar multi-dimensional. Therefore,
it is difficult to be aware of growth without reducing
dimensions and transformation. As growth logs are
recorded in a data-warehouse for analysis, we have the
chance to introduce On-Line Analytical Program
(OLAP) operations [16] such as slicing and dicing to
analyze stored multi-dimensional data.

On the other hand, simple enumeration of growth
logs has given us little information even if the
dimensions are reduced. Thus, the visualization that
gives us a bird’s-eye view is an attractive approach.

Slicing operation refers to the ability to reduce
dimensions to simplify the stored data. Two-
dimensional visualization refers to the ability to clarify
the position in the capability space [17].

Figure�3�SPICE�and�research�questions

37053707

For (Q-u1), let us slice the multi-dimensional cube
by two capability axes C1 and C2 and filter the unit
dimension by Ui. Then we have a chance to connect
capability state time by time as a growth path on the
capability subspace.

An example growth path is shown in Figure 4.
From this figure, the growth order between C1 and C2

becomes clear for Ui.
By changing one capability axis C1 into another

axis C3, we can operate the log data warehouse as if we
were dicing the cube. Figure 4 also includes an
example of dicing operation where we can find that Ui

did not improve his C3 until he achieved l25 for C2.
For (Q-u2), let us slice the cube using two

capability axes Cj and Cm. We filter the time dimension
by time = T. Then we count the number of units state
by state and also the number of paths between
capability states. Changing the size of the node and the
thickness of the link in accordance with the counted
numbers, we illustrate the distribution of units at time
= T and of path until time = T. Dicing operation also
allows re-combining the dimension to see different
slices of the distribution. The example is shown in
Figure 5 where we can see the following:

(1) More than 100 units are now lj4 and lm4.
(2) Fewer than 50 units are now lj3 and lm2.
(3) All units grow along capability Cm first.
(4) There are two ways at (lj1, lm2) but growth along

Cj is more common.
(5) There is one way at (lj1, lm3) and no chance to

stay at (lj1, lm4).
 Note that not all units always start growing at the

same time. Therefore, there are options with regards to
time stamp: relative time stamp and absolute time
stamp. Although the origin for the relative time stamp
is the same, that for the absolute time stamp is different
unit by unit.

For (Q-u3), there are two cases for Ui. To consider
these options, let us introduce the Pareto (no inferior)
capability state. If unit Ui exists at the Pareto capability
state, it has achieved the highest levels for at least one
combination of capabilities. If not, there is at least one
unit superior to unit Ui.

(1) If unit Ui does not exist at the Pareto capability
state, then unit superior to it are collected. Then
some of them are filtered out if they did not
previously exist at the current Ui state. Then the
number of growth path should be calculated.
Finally, we can depict the potential growth
direction.

 (2) If unit Ui exists at the Pareto capability state, we
notify it with this fact and encourage it to be a
pioneer.

Figure�5�Unit�distribution with�trajectory�at�time=T

Figure�4�Visualization�by�OLAP�
operations�for�a�growth�path�

37063708

For (Q-s1), let us construct adjacent matrix
(“number of capability levels” x “number of capability
levels”) where the element is equal to

1 if at least one unit grew from ljk to its either
of neighbors (lj+1 k, lj k+1),

1 if it is diagonal element ljj , and
0 otherwise.

Let us show an example in Figure 6. Suppose that
there is a set of growth paths as shown in the upper
right. There are two levels for capability j and four
levels for capability m. Then the matrix size is 8 x 8 as
shown in upper left. Because there are six paths
between capability states, there are fourteen “1”s (6+8)
in the matrix. For example, there is a path, (lj1, lm3) to
(lj2, lm3), and then the corresponding entry is 1.

By multiplying the adjacent matrix with itself
repeatedly, the ISM (Interpretive Structural Modeling)
algorithm [14] determines the reach-ability matrix
which is well-known in graph theory [15]. The matrix
expresses some restrictive capability levels that must
be achieved before other levels can be achieved. An
example is shown in the bottom left of Figure 6. From
the reach-ability matrix, we can produce the capability
structure. Once we create the capability structure, the
constraints between two capabilities become easy to
identify. An example capability structure is shown in
the bottom right of Figure 6: To reach level 2 of
capability j one must achieve level 2 of capability m
and to reach level 4 of capability m one must achieve
level 2 of capability j. The algorithm will also be
enhanced if we consider the thicknesses of paths in the
future.

On the basis of the capability structure, the
supervisor may identify the ordinal constraints for unit
growth among capabilities and to give growing units
appropriate advice for direction or priority. This might
be regarded as a normal path.

For (Q-s2), first we should consider two kinds of
index on paths. One is the number of potential paths
varieties and the other is the number of recorded path
varieties. Their ratio can be regarded as the density.
Again let us slice the capability space by selecting two
capability axes for simplification: C1 and C2. Then the
initial state is (l11, l21) and the final state is (l1K, l2K).

Then the former combinatorial number is 8C4 = 70
if K=5. If all units followed the same path (in other
words, they are consistent on two capabilities and there
are strict ordinal constraints between them), the density
is 1/70. On the other hand, if there are more than
seventy units and there are seventy sorts of recorded
paths (in other words, they are inconsistent on two
capabilities and there is no ordinal constraints among
them), the density is 70/70 = 1.

Thus, by calculating the density between two
capabilities, SPICE finds consistent and inconsistent

Figure�7�Examples�of�consistency�
�between�two�capability�axes�

Figure�6�Example�for�identifying�capability�structure

37073709

pairs. Figure 7 illustrates a consistent pair (Cj and Cm)
and an inconsistent pair (Cj and Cn). If the density is
close to 1, the supervisor does not need to advise units
about the growth direction because there is no ordinal
constraint. Consistent and inconsistent subspaces can
also be found by identifying the two capabilities.

For (Q-s3), let us consider whether, at first,
supervisor S could define appropriate capability axes
and their levels which is probably a difficult task for
him. It may take a lot of time even if some experts join
the task. Sometimes, it may miss some axes or include
redundant axes. Once he is aware of the
inappropriateness in his design, there should be a
chance to redesign them.

Until now, we have supposed that the difference
between Xi(t+1) and Xi(t) is just one element in their
vectors. However, this cannot always be true.

In fact there are two cases: (1) the difference is
more than two elements and (2) there is no difference.
For the former case, a capability axis may be redundant
or the number of levels may be too large. On the other
hand, for the latter, another capability axis may be
introduced. Alternatively the number of levels may be
too small.

We have proposed answers for the research sub-
questions described in Section 3. Because the concept
on trajectory mining is still new, there are still a lot of
discussion issues for strategic knowledge management.
For example, there are some kinds of units based on
their demographics. Each cluster may have different
characteristics based on their capability structure and
consistency. This shows that the clustering on
capability space is an interesting research topic.

Another idea to support the supervisor for such
redesign is to introduce a time span. The requisite time
for growing one level along a capability is naturally
different from each other. If SPICE calculates the
average time and deviation for growth between
capability states, it may suggest a shortest path for both
growing units and the supervisor.

5. Application for Evaluating Software
Outsourcing Clients

As a potential application of the proposed trajectory
mining, we design capability axes and their levels for
evaluating IT companies who are outsourcing software
development to Asian countries such as India and
China. The basic idea comes from JEITA’s (Japan
Electronics and Information Technology Industries
Association) discussion in which more than ten experts
participated for three years [18]. Although in the past
Japanese IT companies had developed software using
their domestic affiliate companies, they are now

concerned with methods to reduce costs and how to
procure the volumes of engineers [19-21].

As a first rough analysis, it can be said that there
are four maturity stages as shown in Table 1. Because
the first stage is a trial, both client and vendor have low
capability levels. On the other hand, they have high
capability levels at the fourth stage. To promote
offshore outsourcing, they should upgrade their
capability to improve their stages.

Table�1�Overview�of�offshore�software�development�
maturity�stages�

Client
View Vendor View Method

1
Try for
Cost

Reduction

Learn Technical
Skill and project

Management
Bridge Engineer

2 Receive
Returns

Improve Quality
based on credit Traditional CMMI

3 Enlarge
Scales

Rock-in Clients
for long term

Knowledge
Management

4 Balance
Portfolio

Acquire Domain
Knowledge

Collaborative
Creation

Our concerns based on interviews with Japanese IT
companies are

 (1) How has each company improved its capability?
(2) How effective are they in managing vendors?
(3) In which order should they improve their

capability?
(4) Are there any ordinal constraints for improving

the capability?
(5) Are there differences among companies?
(6) Is our questionnaire appropriate?

Figure�8 An�example�growth�logs�collection
�web�interface�for�client�managers�

37083710

To collect the companies’ growth audit, we designed
a questionnaire that includes thirteen capabilities Cj

and their levels ljk. Referring to JEITA report [18], we
asked some experts to review the capabilities and their
levels. Then number of level for each capability is less
than five. An example list of capabilities and their
levels defined by those experts are shown in Table 2.

The question treats (Ui, Cj, ljk, t) where t=’05-’14
year by year. In other words, it asks clients (units)
about their states for ten years: their past state (t=’05-
‘11), current state (t=’12) and future planned state
(t=’13-’14). An example questionnaire is shown in
Figure 8. Such a questionnaire structure (just select
radio buttons in the web browser) allows us to collect
growth paths Pi(t) in a short period from multiple
clients.

The questionnaire also asks about control
parameters such as vendor countries (India, China,
Vietnam and others) and software categories
(embedded software, middleware and customer
applications). Our survey includes 213 responses
(units) Ui from project managers in Japanese IT
companies. Because some responses have
extraordinary audits or missing answers, we use 73
responses.

Let us show example screen shots. Figure 9
visualizes individual growth path in the left side and
current distribution in the center. The identified

constraint in capability structure is also shown in right
side. Note that there are diagonal lines meaning that
the unit improves multiple capabilities at the same
period. We can change a unit as a filtering option or
capability axis as a slicing/dicing option.

Figure 10 shows bird-eye-view for capability
structure where we can identify the existence of
constraints for growth. The detailed description for
analysis procedure on business strategy is an important
topic but beyond the scope of this paper.

Table�2�Example�list�of�capabilities�and�their�levels�
Capability Levels

1 General
Status

No Experience, Trial, Repeat based on
Failure Experience, Repeat based on
Success Experience, Repeat based Good
Practice, Repeat based on Clear Strategy

2 Goal
Setting

Not Clear, Define by Project, Qualitative
Goal, Quantitative Goal, Optimization

3
Outsource

Process
Selection

Not clear, Subjective decision by Project,
Check-list for Decision, Check-list for
Decision with Quantitative Measure,
Optimization

4 Vendor
Selection

Not Defined, Reputation-based, By
Original Criteria, Strategic Criteria,
Optimization

5 Cost
Estimate

Not Clear, Project by Project, Optional
Estimate Method, Obligatory Process for
Estimate, Optimization

6
Gap

Analysis
Frequency

No Case, Seldom Case(-20%), Some
Cases(20-80%), Most Cases(80%-), All
Cases

Figure�10�An�example�of�screen�of�SPICE:
�bird�eye�view�for�capability�structures�

Figure�9�A�screen�example�of�SPICE:
Personal�and�group�growth�paths�

37093711

6. Conclusion

This paper has proposed the basic idea of trajectory
mining on capability space and shown the formal
description. The method consists of two operations: (1)
visualization and (2) capability structure identification.
The visualization includes a bird’s eye view of a
specific time stamp and trajectory as the growth history.
The capability structure identification shows the
constraints among capability states. Because the basic
idea comes from combination of CMMI [2-3],
knowledge space theory [10] and ISM [14], the paper
addressed the relationship between our proposal and
them.

Connecting the new approach with an already
existing system (SPICE), this paper has also
demonstrated a potential application for rating offshore
software outsourcing companies. The user screens for
collecting trajectories and for mining growth trajectory
have been described. Such trajectory disappears time
by time unless we propose that trajectory record works
for knowledge management. In this sense, our proposal
will contribute to strategic knowledge management for
such companies.

 The current proposal is rather theoretical but is
applicable to varieties of potential application such as
personal learning and organization compliance because
the base theory CMMI has been applied widely. Of
course, there are still a lot of discussion issues both on
technology and on application domains.

7. Acknowledgement

 The authors would like to express sincere thanks to
Mr. Yu Nakamura and Mr. Takeo Ichinotsubo for their
prototyping. This work is partially supported by Japan
Society for the Promotion of Science KAKENHI-C
grant (23500049).

8. References

[1] W. Humphrey, Managing the Software Process, Addison
Wesley (1989)

[2] CMMI Product Team: \CMMI for Development,
Version1.3",http://www.sei.cmu.edu/library/abstracts/
reports/10tr033.cfm (2011-03-31 accessed)

[3] M.B. Chrissis, M. Konrad, S. Shrum: Guidelines for
Process Integration and Product Improvement, Pearson
Education, Inc. (2003)

[4] Y. Nakamura and H. Tsuji, Spiral Capability Enhance-
ment Support System, Proc. of the 2nd International
Symposium on Aware Computing, pp.233-238 (2010)

[5] M. Sakoda, Y. Wada, H. Tsuji and K. Seta, Social
Network Service with Maturity Level for Science Teachers.
Proc. of IEEE International Conference on Systems, Man and
Cybernetics, pp.1718-1723 (2009)

[6] Y. Kuo, Y. Nakamura, M. Sakoda, H. Tsuji, C. Lee,
Giving Awareness of Maturity by Capability Assessment,
Proc. of FUZZ-IEEE 2011, pp.1055-1060 (2011)

[7] I. Nonaka and H. Takeuchi, The Knowledge-Creating
Company: How Japanese Companies Create the Dynamics of
Innovation, Oxford Univ. Pr. (1995).

[8] A. Tiwana, The Knowledge Management Toolkit,
Orchestrating IT, Strategy and knowledge Platforms, Prentice
Hall PTR, Upper Saddle River, NJ (2002)

[9] J. Han, M. Kamber, J. Pei, Data Mining: Concepts and
Techniques, Elsevier Inc., (2006)

[10] J. Doignon and J. Falmagne, Spaces for the assessment
of knowledge, International Journal of Man-Machine Studies,
Vol.23, pp.175-196 (1985)

[11] M. Inuiguchi, Analysis of Information Table by Rough
Set Theory, System, control and information: The Institute of
Systems, Control and Information Engineers, Vol.49, No.5,
pp.165-172 (2005)

[12] T. M. Mitchell, Machine Learning, Boston, McGraw-
Hill (1997)

[13] M.R. Genesereth and N.J. Nilsson, Logical Foundations
of Artificial Intelligence, Morgan Kaufmann (1986)

[14] J. N. Warfield, Interpretive structural modeling. In:
Olsen, S. A. (ed.), Group planning and problem solving
methods in engineering management. John Wiley and Sons,
Inc. (1982)

[15] N. Hartsfield and G. Ringel, Pearls in Graph Theory: A
Comprehensive Introduction, Academic Press, Inc. (1990)

[16] W.H. Inmon, Building the Data Warehouse, Fourth
Edition, Wiley Publishing Inc. (2005)

[17] Y. Nakamura, H. Tsuji, K. Seta, K. Hashimoto, D.
Albert, Visualization of Learner's State and Learning Paths
with Knowledge Structures: A. Konig et al. (Eds.): KES 2011,
Part IV, LNAI 6884, pp.261-270 (2011)

[18] JEITA, Survey report for optimizing software develop-
ment resources, http://home.jeita.or.jp/is/publica/2008/is-08-
jyousi-3.html, in Japanese (2007)

[19] H. Tsuji, A. Sakurai, K. Yoshida, A. Tiwana and A.
Bush, Questionnaire-based Risk Assessment Scheme for
Japanese Offshore Software Outsourcing, Lecture Notes on
Computer Science 4716, B. Meyer and M. Joseph (Eds.),
pp.114-127, Sprinter-Verlag Berlin Heidelberg (2007)

37103712

[20] A. Tiwana, A. Bush, H. Tsuji, A. Sakurai, and K.
Yoshida, Myths and Paradoxes in Japanese IT Outsourcing,
Communications of the ACM, Vol. 51, No.1, pp.141-145
(2008)

[21] A. Bush, A. Tiwana, H. Tsuji: An empirical
investigation of the drivers of software outsourcing decisions
in Japanese Organizations, Information and Software
Technology, Journal of Information and Software
Technology archive, Volume 50 Issue 6, May, pp.499-510
(2008)

37113713

