The Community for Technology Leaders
Green Image
Issue No. 04 - July-Aug. (2013 vol. 30)
ISSN: 0740-7459
pp: 88-94
Randy Howard Katz , University of California, Berkeley
Ariel Rabkin , Princeton University
This article describes an examination of a sample of several hundred support tickets for the Hadoop ecosystem, a widely used group of big data storage and processing systems; a taxonomy of errors and how they are addressed by supporters; and the misconfigurations that are the dominant cause of failures. Some design "antipatterns" and missing platform features contribute to these problems. Developers can use various methods to build more robust distributed systems, thereby helping users and administrators prevent some of these rough edges.
Cluster approximation, Information management, Data handling, Data storage systems, Software development, Software reliability, Analytical models, system administration, reliability, distributed systems, cloud computing, big data
Randy Howard Katz, Ariel Rabkin, "How Hadoop Clusters Break", IEEE Software, vol. 30, no. , pp. 88-94, July-Aug. 2013, doi:10.1109/MS.2012.73
365 ms
(Ver 3.3 (11022016))