tion medium, this is definitely not the place to look. But if you are looking for examples of what is possible, some ideas of how to do it, or what colleagues are up to, you may find this collection interesting.

When these papers were presented, some of the authors faced major obstacles just installing hardware and locating or creating software, let alone determining if their innovations made a difference to learning. They are sometimes slightly defensive (and often justifiably so) about the results of the innovations they are undertaking.

Thus the clarity of vision in these educational innovations often leaves much to be desired. Without a clear sense of the intended outcomes, it is difficult to steer a course, design an approach for getting there, and know whether you’ve arrived. There is very little evidence of any systematic evaluation of — but much speculation about — the effect these innovations have on their educational environments.

For the pioneers, this is not a damning criticism. Traditional educational evaluation techniques leave something to be desired when the potential outcomes of new technologies such as expert tutor systems are often unanticipated and therefore difficult to capture with conventional evaluation methodologies, but the (lack of) evaluation on the educational significance of these projects reduces their utility to anecdotal accounts of trials and tribulations.

Projects that one suspects were either slightly disastrous or barely started are talked about in glowing terms while others that could bring about real change in education are underfunded and doomed before they begin. These papers can give you an idea of some uses of computers for instruction, but you will need to look elsewhere or wait for guidance concerning what is worth doing and how to go about it.

The picture painted by the papers in the second category of papers is quite different. Computers as new tools of the trade are thriving and radically changing everyday practice. Scale-down systems that run on smaller computers are reducing costs to more acceptable levels and technology is being transferred from larger, wealthier industrial, research, and educational institutions to the masses.

These areas of application are the most successful and the clearest of the papers because the goals and pay-offs are more tangible. Adoption in education often follows adoption by opinion shapers in other settings, and pedagogical questions are not central. The issues are technological and therefore easier to describe, quantify, and solve.

These papers offer sufficient detail about the systems so you can get a feel for their use. Just as I had the feeling that these are the most successful projects described in this collection of papers, I also felt that they are the ones that represent how new computer technology will most immediately and pervasively affect engineering education.

This collection of papers reminds me again of the pace of technology. It is really too early to discern which applications — educational or otherwise — will pass from innovation to routine use or just into oblivion. But the relevant issues are not system-specific, and, in this one book, you can read about an assortment of projects that represent a reasonable sample of the possibilities.

With a little luck, you’ll find projects that are directly applicable (if you teach engineering). And, with some imagination and transfer of learning, you may be sufficiently stimulated to come up with your own ideas for trying your hand at using computer-aided processes in instruction and research. But you should look elsewhere for guidance about the educational use of computer-aided processes.

SMITH COLLEGE

Smith College invites applicants for a tenure-track position in Computer Science beginning in September 1987 with an initial three-year appointment at the Assistant Professor level. A Ph.D. degree in Computer Science or a related discipline is required. The College offers excellent fringe benefits including full TIAA/CREF contributions and full pay during sabbatical leaves.

Smith College has an undergraduate Computer Science major and currently has a full-time Computer Science staff of six. All members of the staff teach undergraduate courses at the introductory, intermediate, and advanced levels. Candidates should have an interest in teaching and have demonstrated promise in their chosen field of research. Applicants whose specialties are in the areas of computer systems, software engineering, computer architecture, or theoretical computer science are especially encouraged to apply.

Smith has excellent resources for both teaching and research. A VAX 8500 as well as many microcomputers are dedicated to academic use. The Computer Science Program has its own VAX II/785, a MicroVAX II, and a TI Explorer. The College has been expanding its local area network ever since it was first installed three years ago.

Northampton is located on the Connecticut River in western Massachusetts. It is approximately two hours' drive from Boston, three hours from New York City and within minutes of the Berkshire Mountains. Smith College is one of the five institutions of higher learning comprising the Five College Consortium located in the Pioneer Valley. All five are connected by a free commuter bus system. One of the five is the University of Massachusetts which has an excellent graduate program in Computer Science.

Applicants are asked to submit resumes and at least three letters of recommendation by February 1, 1987. Please address correspondence to the Computer Science Search Committee, c/o Ms. Joan Brink, Secretary to the Committee, Smith College, Northampton, MA 01063.

As an equal opportunity employer, Smith College welcomes applications from women and minorities.